| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > termccd | Structured version Visualization version GIF version | ||
| Description: A terminal category is a category (deduction form). (Contributed by Zhi Wang, 16-Oct-2025.) |
| Ref | Expression |
|---|---|
| termcthind.c | ⊢ (𝜑 → 𝐶 ∈ TermCat) |
| Ref | Expression |
|---|---|
| termccd | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | termcthind.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ TermCat) | |
| 2 | 1 | termcthind 49447 | . 2 ⊢ (𝜑 → 𝐶 ∈ ThinCat) |
| 3 | 2 | thinccd 49392 | 1 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Catccat 17631 TermCatctermc 49441 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-nul 5263 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2534 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3756 df-dif 3919 df-un 3921 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-iota 6466 df-fv 6521 df-ov 7392 df-thinc 49387 df-termc 49442 |
| This theorem is referenced by: termchomn0 49453 funcsetc1ocl 49465 funcsetc1o 49466 isinito2lem 49467 isinito3 49469 termcterm 49482 termcterm2 49483 termc2 49487 termcarweu 49497 diag1f1olem 49502 diag1f1o 49503 diag2f1olem 49505 diag2f1o 49506 diagffth 49507 diagciso 49508 diagcic 49509 termfucterm 49513 uobeqterm 49515 isinito4a 49517 setc1onsubc 49571 |
| Copyright terms: Public domain | W3C validator |