| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > termccd | Structured version Visualization version GIF version | ||
| Description: A terminal category is a category (deduction form). (Contributed by Zhi Wang, 16-Oct-2025.) |
| Ref | Expression |
|---|---|
| termcthind.c | ⊢ (𝜑 → 𝐶 ∈ TermCat) |
| Ref | Expression |
|---|---|
| termccd | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | termcthind.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ TermCat) | |
| 2 | 1 | termcthind 49177 | . 2 ⊢ (𝜑 → 𝐶 ∈ ThinCat) |
| 3 | 2 | thinccd 49124 | 1 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 Catccat 17679 TermCatctermc 49171 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-nul 5286 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-mo 2538 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-iota 6494 df-fv 6549 df-ov 7416 df-thinc 49119 df-termc 49172 |
| This theorem is referenced by: termchomn0 49182 funcsetc1ocl 49194 funcsetc1o 49195 isinito2lem 49196 isinito3 49198 termcterm 49211 termcterm2 49212 termc2 49216 termcarweu 49226 diag1f1olem 49231 diag1f1o 49232 diag2f1olem 49234 diag2f1o 49235 diagffth 49236 diagciso 49237 diagcic 49238 |
| Copyright terms: Public domain | W3C validator |