| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > termccd | Structured version Visualization version GIF version | ||
| Description: A terminal category is a category (deduction form). (Contributed by Zhi Wang, 16-Oct-2025.) |
| Ref | Expression |
|---|---|
| termcthind.c | ⊢ (𝜑 → 𝐶 ∈ TermCat) |
| Ref | Expression |
|---|---|
| termccd | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | termcthind.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ TermCat) | |
| 2 | 1 | termcthind 49098 | . 2 ⊢ (𝜑 → 𝐶 ∈ ThinCat) |
| 3 | 2 | thinccd 49046 | 1 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 Catccat 17703 TermCatctermc 49092 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-nul 5304 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-mo 2539 df-clab 2714 df-cleq 2728 df-clel 2815 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4906 df-br 5142 df-iota 6512 df-fv 6567 df-ov 7432 df-thinc 49041 df-termc 49093 |
| This theorem is referenced by: termchomn0 49102 termcterm 49118 termcterm2 49119 termc2 49121 |
| Copyright terms: Public domain | W3C validator |