| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > termccd | Structured version Visualization version GIF version | ||
| Description: A terminal category is a category (deduction form). (Contributed by Zhi Wang, 16-Oct-2025.) |
| Ref | Expression |
|---|---|
| termcthind.c | ⊢ (𝜑 → 𝐶 ∈ TermCat) |
| Ref | Expression |
|---|---|
| termccd | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | termcthind.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ TermCat) | |
| 2 | 1 | termcthind 49510 | . 2 ⊢ (𝜑 → 𝐶 ∈ ThinCat) |
| 3 | 2 | thinccd 49455 | 1 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 Catccat 17565 TermCatctermc 49504 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5239 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2535 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-iota 6432 df-fv 6484 df-ov 7344 df-thinc 49450 df-termc 49505 |
| This theorem is referenced by: termchomn0 49516 funcsetc1ocl 49528 funcsetc1o 49529 isinito2lem 49530 isinito3 49532 termcterm 49545 termcterm2 49546 termc2 49550 termcarweu 49560 diag1f1olem 49565 diag1f1o 49566 diag2f1olem 49568 diag2f1o 49569 diagffth 49570 diagciso 49571 diagcic 49572 termfucterm 49576 uobeqterm 49578 isinito4a 49580 setc1onsubc 49634 lmdran 49703 |
| Copyright terms: Public domain | W3C validator |