| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > termccd | Structured version Visualization version GIF version | ||
| Description: A terminal category is a category (deduction form). (Contributed by Zhi Wang, 16-Oct-2025.) |
| Ref | Expression |
|---|---|
| termcthind.c | ⊢ (𝜑 → 𝐶 ∈ TermCat) |
| Ref | Expression |
|---|---|
| termccd | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | termcthind.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ TermCat) | |
| 2 | 1 | termcthind 49440 | . 2 ⊢ (𝜑 → 𝐶 ∈ ThinCat) |
| 3 | 2 | thinccd 49385 | 1 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Catccat 17601 TermCatctermc 49434 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5256 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-iota 6452 df-fv 6507 df-ov 7372 df-thinc 49380 df-termc 49435 |
| This theorem is referenced by: termchomn0 49446 funcsetc1ocl 49458 funcsetc1o 49459 isinito2lem 49460 isinito3 49462 termcterm 49475 termcterm2 49476 termc2 49480 termcarweu 49490 diag1f1olem 49495 diag1f1o 49496 diag2f1olem 49498 diag2f1o 49499 diagffth 49500 diagciso 49501 diagcic 49502 termfucterm 49506 uobeqterm 49508 isinito4a 49510 setc1onsubc 49564 lmdran 49633 |
| Copyright terms: Public domain | W3C validator |