![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > termcbasmo | Structured version Visualization version GIF version |
Description: Two objects in a terminal category are identical. (Contributed by Zhi Wang, 16-Oct-2025.) |
Ref | Expression |
---|---|
termcbas.c | ⊢ (𝜑 → 𝐶 ∈ TermCat) |
termcbas.b | ⊢ 𝐵 = (Base‘𝐶) |
termcbasmo.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
termcbasmo.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
termcbasmo | ⊢ (𝜑 → 𝑋 = 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2740 | . 2 ⊢ (𝑥 = 𝑋 → (𝑥 = 𝑦 ↔ 𝑋 = 𝑦)) | |
2 | eqeq2 2748 | . 2 ⊢ (𝑦 = 𝑌 → (𝑋 = 𝑦 ↔ 𝑋 = 𝑌)) | |
3 | termcbas.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ TermCat) | |
4 | termcbas.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐶) | |
5 | 3, 4 | termcbas 49100 | . . . 4 ⊢ (𝜑 → ∃𝑧 𝐵 = {𝑧}) |
6 | mosn 48705 | . . . . 5 ⊢ (𝐵 = {𝑧} → ∃*𝑥 𝑥 ∈ 𝐵) | |
7 | 6 | exlimiv 1930 | . . . 4 ⊢ (∃𝑧 𝐵 = {𝑧} → ∃*𝑥 𝑥 ∈ 𝐵) |
8 | 5, 7 | syl 17 | . . 3 ⊢ (𝜑 → ∃*𝑥 𝑥 ∈ 𝐵) |
9 | moel 3401 | . . 3 ⊢ (∃*𝑥 𝑥 ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 𝑥 = 𝑦) | |
10 | 8, 9 | sylib 218 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 𝑥 = 𝑦) |
11 | termcbasmo.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
12 | termcbasmo.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
13 | 1, 2, 10, 11, 12 | rspc2dv 3636 | 1 ⊢ (𝜑 → 𝑋 = 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ∃*wmo 2537 ∀wral 3060 {csn 4624 ‘cfv 6559 Basecbs 17243 TermCatctermc 49092 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4906 df-br 5142 df-iota 6512 df-fv 6567 df-termc 49093 |
This theorem is referenced by: termchomn0 49102 termchommo 49103 termcid 49104 termcid2 49105 |
Copyright terms: Public domain | W3C validator |