Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  termcbasmo Structured version   Visualization version   GIF version

Theorem termcbasmo 49101
Description: Two objects in a terminal category are identical. (Contributed by Zhi Wang, 16-Oct-2025.)
Hypotheses
Ref Expression
termcbas.c (𝜑𝐶 ∈ TermCat)
termcbas.b 𝐵 = (Base‘𝐶)
termcbasmo.x (𝜑𝑋𝐵)
termcbasmo.y (𝜑𝑌𝐵)
Assertion
Ref Expression
termcbasmo (𝜑𝑋 = 𝑌)

Proof of Theorem termcbasmo
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2740 . 2 (𝑥 = 𝑋 → (𝑥 = 𝑦𝑋 = 𝑦))
2 eqeq2 2748 . 2 (𝑦 = 𝑌 → (𝑋 = 𝑦𝑋 = 𝑌))
3 termcbas.c . . . . 5 (𝜑𝐶 ∈ TermCat)
4 termcbas.b . . . . 5 𝐵 = (Base‘𝐶)
53, 4termcbas 49100 . . . 4 (𝜑 → ∃𝑧 𝐵 = {𝑧})
6 mosn 48705 . . . . 5 (𝐵 = {𝑧} → ∃*𝑥 𝑥𝐵)
76exlimiv 1930 . . . 4 (∃𝑧 𝐵 = {𝑧} → ∃*𝑥 𝑥𝐵)
85, 7syl 17 . . 3 (𝜑 → ∃*𝑥 𝑥𝐵)
9 moel 3401 . . 3 (∃*𝑥 𝑥𝐵 ↔ ∀𝑥𝐵𝑦𝐵 𝑥 = 𝑦)
108, 9sylib 218 . 2 (𝜑 → ∀𝑥𝐵𝑦𝐵 𝑥 = 𝑦)
11 termcbasmo.x . 2 (𝜑𝑋𝐵)
12 termcbasmo.y . 2 (𝜑𝑌𝐵)
131, 2, 10, 11, 12rspc2dv 3636 1 (𝜑𝑋 = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wex 1779  wcel 2108  ∃*wmo 2537  wral 3060  {csn 4624  cfv 6559  Basecbs 17243  TermCatctermc 49092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-dif 3953  df-un 3955  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4906  df-br 5142  df-iota 6512  df-fv 6567  df-termc 49093
This theorem is referenced by:  termchomn0  49102  termchommo  49103  termcid  49104  termcid2  49105
  Copyright terms: Public domain W3C validator