| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > termcbasmo | Structured version Visualization version GIF version | ||
| Description: Two objects in a terminal category are identical. (Contributed by Zhi Wang, 16-Oct-2025.) |
| Ref | Expression |
|---|---|
| termcbas.c | ⊢ (𝜑 → 𝐶 ∈ TermCat) |
| termcbas.b | ⊢ 𝐵 = (Base‘𝐶) |
| termcbasmo.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| termcbasmo.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| termcbasmo | ⊢ (𝜑 → 𝑋 = 𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2737 | . 2 ⊢ (𝑥 = 𝑋 → (𝑥 = 𝑦 ↔ 𝑋 = 𝑦)) | |
| 2 | eqeq2 2745 | . 2 ⊢ (𝑦 = 𝑌 → (𝑋 = 𝑦 ↔ 𝑋 = 𝑌)) | |
| 3 | termcbas.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ TermCat) | |
| 4 | termcbas.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐶) | |
| 5 | 3, 4 | termcbas 49641 | . . . 4 ⊢ (𝜑 → ∃𝑧 𝐵 = {𝑧}) |
| 6 | mosn 48974 | . . . . 5 ⊢ (𝐵 = {𝑧} → ∃*𝑥 𝑥 ∈ 𝐵) | |
| 7 | 6 | exlimiv 1931 | . . . 4 ⊢ (∃𝑧 𝐵 = {𝑧} → ∃*𝑥 𝑥 ∈ 𝐵) |
| 8 | 5, 7 | syl 17 | . . 3 ⊢ (𝜑 → ∃*𝑥 𝑥 ∈ 𝐵) |
| 9 | moel 3367 | . . 3 ⊢ (∃*𝑥 𝑥 ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 𝑥 = 𝑦) | |
| 10 | 8, 9 | sylib 218 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 𝑥 = 𝑦) |
| 11 | termcbasmo.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 12 | termcbasmo.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 13 | 1, 2, 10, 11, 12 | rspc2dv 3588 | 1 ⊢ (𝜑 → 𝑋 = 𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∃wex 1780 ∈ wcel 2113 ∃*wmo 2535 ∀wral 3048 {csn 4577 ‘cfv 6489 Basecbs 17127 TermCatctermc 49633 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-iota 6445 df-fv 6497 df-termc 49634 |
| This theorem is referenced by: termchomn0 49645 termchommo 49646 termcid 49647 termcid2 49648 termchom2 49650 termcarweu 49689 termfucterm 49705 cofuterm 49706 uobeqterm 49707 |
| Copyright terms: Public domain | W3C validator |