Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  termcbasmo Structured version   Visualization version   GIF version

Theorem termcbasmo 49644
Description: Two objects in a terminal category are identical. (Contributed by Zhi Wang, 16-Oct-2025.)
Hypotheses
Ref Expression
termcbas.c (𝜑𝐶 ∈ TermCat)
termcbas.b 𝐵 = (Base‘𝐶)
termcbasmo.x (𝜑𝑋𝐵)
termcbasmo.y (𝜑𝑌𝐵)
Assertion
Ref Expression
termcbasmo (𝜑𝑋 = 𝑌)

Proof of Theorem termcbasmo
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2737 . 2 (𝑥 = 𝑋 → (𝑥 = 𝑦𝑋 = 𝑦))
2 eqeq2 2745 . 2 (𝑦 = 𝑌 → (𝑋 = 𝑦𝑋 = 𝑌))
3 termcbas.c . . . . 5 (𝜑𝐶 ∈ TermCat)
4 termcbas.b . . . . 5 𝐵 = (Base‘𝐶)
53, 4termcbas 49641 . . . 4 (𝜑 → ∃𝑧 𝐵 = {𝑧})
6 mosn 48974 . . . . 5 (𝐵 = {𝑧} → ∃*𝑥 𝑥𝐵)
76exlimiv 1931 . . . 4 (∃𝑧 𝐵 = {𝑧} → ∃*𝑥 𝑥𝐵)
85, 7syl 17 . . 3 (𝜑 → ∃*𝑥 𝑥𝐵)
9 moel 3367 . . 3 (∃*𝑥 𝑥𝐵 ↔ ∀𝑥𝐵𝑦𝐵 𝑥 = 𝑦)
108, 9sylib 218 . 2 (𝜑 → ∀𝑥𝐵𝑦𝐵 𝑥 = 𝑦)
11 termcbasmo.x . 2 (𝜑𝑋𝐵)
12 termcbasmo.y . 2 (𝜑𝑌𝐵)
131, 2, 10, 11, 12rspc2dv 3588 1 (𝜑𝑋 = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wex 1780  wcel 2113  ∃*wmo 2535  wral 3048  {csn 4577  cfv 6489  Basecbs 17127  TermCatctermc 49633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-iota 6445  df-fv 6497  df-termc 49634
This theorem is referenced by:  termchomn0  49645  termchommo  49646  termcid  49647  termcid2  49648  termchom2  49650  termcarweu  49689  termfucterm  49705  cofuterm  49706  uobeqterm  49707
  Copyright terms: Public domain W3C validator