| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > termcbasmo | Structured version Visualization version GIF version | ||
| Description: Two objects in a terminal category are identical. (Contributed by Zhi Wang, 16-Oct-2025.) |
| Ref | Expression |
|---|---|
| termcbas.c | ⊢ (𝜑 → 𝐶 ∈ TermCat) |
| termcbas.b | ⊢ 𝐵 = (Base‘𝐶) |
| termcbasmo.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| termcbasmo.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| termcbasmo | ⊢ (𝜑 → 𝑋 = 𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2738 | . 2 ⊢ (𝑥 = 𝑋 → (𝑥 = 𝑦 ↔ 𝑋 = 𝑦)) | |
| 2 | eqeq2 2746 | . 2 ⊢ (𝑦 = 𝑌 → (𝑋 = 𝑦 ↔ 𝑋 = 𝑌)) | |
| 3 | termcbas.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ TermCat) | |
| 4 | termcbas.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐶) | |
| 5 | 3, 4 | termcbas 49179 | . . . 4 ⊢ (𝜑 → ∃𝑧 𝐵 = {𝑧}) |
| 6 | mosn 48705 | . . . . 5 ⊢ (𝐵 = {𝑧} → ∃*𝑥 𝑥 ∈ 𝐵) | |
| 7 | 6 | exlimiv 1929 | . . . 4 ⊢ (∃𝑧 𝐵 = {𝑧} → ∃*𝑥 𝑥 ∈ 𝐵) |
| 8 | 5, 7 | syl 17 | . . 3 ⊢ (𝜑 → ∃*𝑥 𝑥 ∈ 𝐵) |
| 9 | moel 3385 | . . 3 ⊢ (∃*𝑥 𝑥 ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 𝑥 = 𝑦) | |
| 10 | 8, 9 | sylib 218 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 𝑥 = 𝑦) |
| 11 | termcbasmo.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 12 | termcbasmo.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 13 | 1, 2, 10, 11, 12 | rspc2dv 3620 | 1 ⊢ (𝜑 → 𝑋 = 𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∃wex 1778 ∈ wcel 2107 ∃*wmo 2536 ∀wral 3050 {csn 4606 ‘cfv 6541 Basecbs 17230 TermCatctermc 49171 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-iota 6494 df-fv 6549 df-termc 49172 |
| This theorem is referenced by: termchomn0 49182 termchommo 49183 termcid 49184 termcid2 49185 termchom2 49187 termcarweu 49226 |
| Copyright terms: Public domain | W3C validator |