Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  termcarweu Structured version   Visualization version   GIF version

Theorem termcarweu 49514
Description: There exists a unique disjointified arrow in a terminal category. (Contributed by Zhi Wang, 20-Oct-2025.)
Assertion
Ref Expression
termcarweu (𝐶 ∈ TermCat → ∃!𝑎 𝑎 ∈ (Arrow‘𝐶))
Distinct variable group:   𝐶,𝑎

Proof of Theorem termcarweu
Dummy variables 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . 4 (𝐶 ∈ TermCat → 𝐶 ∈ TermCat)
2 eqid 2729 . . . 4 (Base‘𝐶) = (Base‘𝐶)
31, 2termcbas 49466 . . 3 (𝐶 ∈ TermCat → ∃𝑥(Base‘𝐶) = {𝑥})
4 eqid 2729 . . . . 5 (Homa𝐶) = (Homa𝐶)
51adantr 480 . . . . . 6 ((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) → 𝐶 ∈ TermCat)
65termccd 49465 . . . . 5 ((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) → 𝐶 ∈ Cat)
7 eqid 2729 . . . . 5 (Hom ‘𝐶) = (Hom ‘𝐶)
8 vsnid 4627 . . . . . 6 𝑥 ∈ {𝑥}
9 simpr 484 . . . . . 6 ((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) → (Base‘𝐶) = {𝑥})
108, 9eleqtrrid 2835 . . . . 5 ((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) → 𝑥 ∈ (Base‘𝐶))
11 eqid 2729 . . . . . 6 (Id‘𝐶) = (Id‘𝐶)
122, 7, 11, 6, 10catidcl 17643 . . . . 5 ((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) → ((Id‘𝐶)‘𝑥) ∈ (𝑥(Hom ‘𝐶)𝑥))
134, 2, 6, 7, 10, 10, 12elhomai2 17996 . . . 4 ((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) → ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩ ∈ (𝑥(Homa𝐶)𝑥))
14 eqid 2729 . . . . . . . . 9 (Arrow‘𝐶) = (Arrow‘𝐶)
1514arwdmcd 18014 . . . . . . . 8 (𝑎 ∈ (Arrow‘𝐶) → 𝑎 = ⟨(doma𝑎), (coda𝑎), (2nd𝑎)⟩)
1615adantl 481 . . . . . . 7 (((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) ∧ 𝑎 ∈ (Arrow‘𝐶)) → 𝑎 = ⟨(doma𝑎), (coda𝑎), (2nd𝑎)⟩)
175adantr 480 . . . . . . . . 9 (((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) ∧ 𝑎 ∈ (Arrow‘𝐶)) → 𝐶 ∈ TermCat)
1814, 2arwdm 18009 . . . . . . . . . 10 (𝑎 ∈ (Arrow‘𝐶) → (doma𝑎) ∈ (Base‘𝐶))
1918adantl 481 . . . . . . . . 9 (((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) ∧ 𝑎 ∈ (Arrow‘𝐶)) → (doma𝑎) ∈ (Base‘𝐶))
2010adantr 480 . . . . . . . . 9 (((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) ∧ 𝑎 ∈ (Arrow‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
2117, 2, 19, 20termcbasmo 49469 . . . . . . . 8 (((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) ∧ 𝑎 ∈ (Arrow‘𝐶)) → (doma𝑎) = 𝑥)
2214, 2arwcd 18010 . . . . . . . . . 10 (𝑎 ∈ (Arrow‘𝐶) → (coda𝑎) ∈ (Base‘𝐶))
2322adantl 481 . . . . . . . . 9 (((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) ∧ 𝑎 ∈ (Arrow‘𝐶)) → (coda𝑎) ∈ (Base‘𝐶))
2417, 2, 23, 20termcbasmo 49469 . . . . . . . 8 (((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) ∧ 𝑎 ∈ (Arrow‘𝐶)) → (coda𝑎) = 𝑥)
2514, 7arwhom 18013 . . . . . . . . . 10 (𝑎 ∈ (Arrow‘𝐶) → (2nd𝑎) ∈ ((doma𝑎)(Hom ‘𝐶)(coda𝑎)))
2625adantl 481 . . . . . . . . 9 (((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) ∧ 𝑎 ∈ (Arrow‘𝐶)) → (2nd𝑎) ∈ ((doma𝑎)(Hom ‘𝐶)(coda𝑎)))
2712adantr 480 . . . . . . . . 9 (((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) ∧ 𝑎 ∈ (Arrow‘𝐶)) → ((Id‘𝐶)‘𝑥) ∈ (𝑥(Hom ‘𝐶)𝑥))
2817, 2, 19, 23, 7, 26, 20, 20, 27termchommo 49471 . . . . . . . 8 (((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) ∧ 𝑎 ∈ (Arrow‘𝐶)) → (2nd𝑎) = ((Id‘𝐶)‘𝑥))
2921, 24, 28oteq123d 4852 . . . . . . 7 (((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) ∧ 𝑎 ∈ (Arrow‘𝐶)) → ⟨(doma𝑎), (coda𝑎), (2nd𝑎)⟩ = ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩)
3016, 29eqtrd 2764 . . . . . 6 (((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) ∧ 𝑎 ∈ (Arrow‘𝐶)) → 𝑎 = ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩)
31 simpr 484 . . . . . . 7 (((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) ∧ 𝑎 = ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩) → 𝑎 = ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩)
3214, 4homarw 18008 . . . . . . . . 9 (𝑥(Homa𝐶)𝑥) ⊆ (Arrow‘𝐶)
3332, 13sselid 3944 . . . . . . . 8 ((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) → ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩ ∈ (Arrow‘𝐶))
3433adantr 480 . . . . . . 7 (((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) ∧ 𝑎 = ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩) → ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩ ∈ (Arrow‘𝐶))
3531, 34eqeltrd 2828 . . . . . 6 (((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) ∧ 𝑎 = ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩) → 𝑎 ∈ (Arrow‘𝐶))
3630, 35impbida 800 . . . . 5 ((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) → (𝑎 ∈ (Arrow‘𝐶) ↔ 𝑎 = ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩))
3736alrimiv 1927 . . . 4 ((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) → ∀𝑎(𝑎 ∈ (Arrow‘𝐶) ↔ 𝑎 = ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩))
38 eqeq2 2741 . . . . . 6 (𝑏 = ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩ → (𝑎 = 𝑏𝑎 = ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩))
3938bibi2d 342 . . . . 5 (𝑏 = ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩ → ((𝑎 ∈ (Arrow‘𝐶) ↔ 𝑎 = 𝑏) ↔ (𝑎 ∈ (Arrow‘𝐶) ↔ 𝑎 = ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩)))
4039albidv 1920 . . . 4 (𝑏 = ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩ → (∀𝑎(𝑎 ∈ (Arrow‘𝐶) ↔ 𝑎 = 𝑏) ↔ ∀𝑎(𝑎 ∈ (Arrow‘𝐶) ↔ 𝑎 = ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩)))
4113, 37, 40spcedv 3564 . . 3 ((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) → ∃𝑏𝑎(𝑎 ∈ (Arrow‘𝐶) ↔ 𝑎 = 𝑏))
423, 41exlimddv 1935 . 2 (𝐶 ∈ TermCat → ∃𝑏𝑎(𝑎 ∈ (Arrow‘𝐶) ↔ 𝑎 = 𝑏))
43 eu6im 2568 . 2 (∃𝑏𝑎(𝑎 ∈ (Arrow‘𝐶) ↔ 𝑎 = 𝑏) → ∃!𝑎 𝑎 ∈ (Arrow‘𝐶))
4442, 43syl 17 1 (𝐶 ∈ TermCat → ∃!𝑎 𝑎 ∈ (Arrow‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wex 1779  wcel 2109  ∃!weu 2561  {csn 4589  cotp 4597  cfv 6511  (class class class)co 7387  2nd c2nd 7967  Basecbs 17179  Hom chom 17231  Idccid 17626  domacdoma 17982  codaccoda 17983  Arrowcarw 17984  Homachoma 17985  TermCatctermc 49458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-ot 4598  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-1st 7968  df-2nd 7969  df-cat 17629  df-cid 17630  df-doma 17986  df-coda 17987  df-homa 17988  df-arw 17989  df-thinc 49404  df-termc 49459
This theorem is referenced by:  dftermc3  49517
  Copyright terms: Public domain W3C validator