Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  termcarweu Structured version   Visualization version   GIF version

Theorem termcarweu 49274
Description: There exists a unique disjointified arrow in a terminal category. (Contributed by Zhi Wang, 20-Oct-2025.)
Assertion
Ref Expression
termcarweu (𝐶 ∈ TermCat → ∃!𝑎 𝑎 ∈ (Arrow‘𝐶))
Distinct variable group:   𝐶,𝑎

Proof of Theorem termcarweu
Dummy variables 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . 4 (𝐶 ∈ TermCat → 𝐶 ∈ TermCat)
2 eqid 2734 . . . 4 (Base‘𝐶) = (Base‘𝐶)
31, 2termcbas 49227 . . 3 (𝐶 ∈ TermCat → ∃𝑥(Base‘𝐶) = {𝑥})
4 eqid 2734 . . . . 5 (Homa𝐶) = (Homa𝐶)
51adantr 480 . . . . . 6 ((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) → 𝐶 ∈ TermCat)
65termccd 49226 . . . . 5 ((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) → 𝐶 ∈ Cat)
7 eqid 2734 . . . . 5 (Hom ‘𝐶) = (Hom ‘𝐶)
8 vsnid 4637 . . . . . 6 𝑥 ∈ {𝑥}
9 simpr 484 . . . . . 6 ((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) → (Base‘𝐶) = {𝑥})
108, 9eleqtrrid 2840 . . . . 5 ((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) → 𝑥 ∈ (Base‘𝐶))
11 eqid 2734 . . . . . 6 (Id‘𝐶) = (Id‘𝐶)
122, 7, 11, 6, 10catidcl 17681 . . . . 5 ((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) → ((Id‘𝐶)‘𝑥) ∈ (𝑥(Hom ‘𝐶)𝑥))
134, 2, 6, 7, 10, 10, 12elhomai2 18034 . . . 4 ((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) → ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩ ∈ (𝑥(Homa𝐶)𝑥))
14 eqid 2734 . . . . . . . . 9 (Arrow‘𝐶) = (Arrow‘𝐶)
1514arwdmcd 18052 . . . . . . . 8 (𝑎 ∈ (Arrow‘𝐶) → 𝑎 = ⟨(doma𝑎), (coda𝑎), (2nd𝑎)⟩)
1615adantl 481 . . . . . . 7 (((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) ∧ 𝑎 ∈ (Arrow‘𝐶)) → 𝑎 = ⟨(doma𝑎), (coda𝑎), (2nd𝑎)⟩)
175adantr 480 . . . . . . . . 9 (((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) ∧ 𝑎 ∈ (Arrow‘𝐶)) → 𝐶 ∈ TermCat)
1814, 2arwdm 18047 . . . . . . . . . 10 (𝑎 ∈ (Arrow‘𝐶) → (doma𝑎) ∈ (Base‘𝐶))
1918adantl 481 . . . . . . . . 9 (((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) ∧ 𝑎 ∈ (Arrow‘𝐶)) → (doma𝑎) ∈ (Base‘𝐶))
2010adantr 480 . . . . . . . . 9 (((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) ∧ 𝑎 ∈ (Arrow‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
2117, 2, 19, 20termcbasmo 49229 . . . . . . . 8 (((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) ∧ 𝑎 ∈ (Arrow‘𝐶)) → (doma𝑎) = 𝑥)
2214, 2arwcd 18048 . . . . . . . . . 10 (𝑎 ∈ (Arrow‘𝐶) → (coda𝑎) ∈ (Base‘𝐶))
2322adantl 481 . . . . . . . . 9 (((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) ∧ 𝑎 ∈ (Arrow‘𝐶)) → (coda𝑎) ∈ (Base‘𝐶))
2417, 2, 23, 20termcbasmo 49229 . . . . . . . 8 (((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) ∧ 𝑎 ∈ (Arrow‘𝐶)) → (coda𝑎) = 𝑥)
2514, 7arwhom 18051 . . . . . . . . . 10 (𝑎 ∈ (Arrow‘𝐶) → (2nd𝑎) ∈ ((doma𝑎)(Hom ‘𝐶)(coda𝑎)))
2625adantl 481 . . . . . . . . 9 (((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) ∧ 𝑎 ∈ (Arrow‘𝐶)) → (2nd𝑎) ∈ ((doma𝑎)(Hom ‘𝐶)(coda𝑎)))
2712adantr 480 . . . . . . . . 9 (((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) ∧ 𝑎 ∈ (Arrow‘𝐶)) → ((Id‘𝐶)‘𝑥) ∈ (𝑥(Hom ‘𝐶)𝑥))
2817, 2, 19, 23, 7, 26, 20, 20, 27termchommo 49231 . . . . . . . 8 (((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) ∧ 𝑎 ∈ (Arrow‘𝐶)) → (2nd𝑎) = ((Id‘𝐶)‘𝑥))
2921, 24, 28oteq123d 4862 . . . . . . 7 (((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) ∧ 𝑎 ∈ (Arrow‘𝐶)) → ⟨(doma𝑎), (coda𝑎), (2nd𝑎)⟩ = ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩)
3016, 29eqtrd 2769 . . . . . 6 (((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) ∧ 𝑎 ∈ (Arrow‘𝐶)) → 𝑎 = ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩)
31 simpr 484 . . . . . . 7 (((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) ∧ 𝑎 = ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩) → 𝑎 = ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩)
3214, 4homarw 18046 . . . . . . . . 9 (𝑥(Homa𝐶)𝑥) ⊆ (Arrow‘𝐶)
3332, 13sselid 3954 . . . . . . . 8 ((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) → ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩ ∈ (Arrow‘𝐶))
3433adantr 480 . . . . . . 7 (((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) ∧ 𝑎 = ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩) → ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩ ∈ (Arrow‘𝐶))
3531, 34eqeltrd 2833 . . . . . 6 (((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) ∧ 𝑎 = ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩) → 𝑎 ∈ (Arrow‘𝐶))
3630, 35impbida 800 . . . . 5 ((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) → (𝑎 ∈ (Arrow‘𝐶) ↔ 𝑎 = ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩))
3736alrimiv 1926 . . . 4 ((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) → ∀𝑎(𝑎 ∈ (Arrow‘𝐶) ↔ 𝑎 = ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩))
38 eqeq2 2746 . . . . . 6 (𝑏 = ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩ → (𝑎 = 𝑏𝑎 = ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩))
3938bibi2d 342 . . . . 5 (𝑏 = ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩ → ((𝑎 ∈ (Arrow‘𝐶) ↔ 𝑎 = 𝑏) ↔ (𝑎 ∈ (Arrow‘𝐶) ↔ 𝑎 = ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩)))
4039albidv 1919 . . . 4 (𝑏 = ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩ → (∀𝑎(𝑎 ∈ (Arrow‘𝐶) ↔ 𝑎 = 𝑏) ↔ ∀𝑎(𝑎 ∈ (Arrow‘𝐶) ↔ 𝑎 = ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩)))
4113, 37, 40spcedv 3575 . . 3 ((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) → ∃𝑏𝑎(𝑎 ∈ (Arrow‘𝐶) ↔ 𝑎 = 𝑏))
423, 41exlimddv 1934 . 2 (𝐶 ∈ TermCat → ∃𝑏𝑎(𝑎 ∈ (Arrow‘𝐶) ↔ 𝑎 = 𝑏))
43 eu6im 2573 . 2 (∃𝑏𝑎(𝑎 ∈ (Arrow‘𝐶) ↔ 𝑎 = 𝑏) → ∃!𝑎 𝑎 ∈ (Arrow‘𝐶))
4442, 43syl 17 1 (𝐶 ∈ TermCat → ∃!𝑎 𝑎 ∈ (Arrow‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1537   = wceq 1539  wex 1778  wcel 2107  ∃!weu 2566  {csn 4599  cotp 4607  cfv 6528  (class class class)co 7400  2nd c2nd 7982  Basecbs 17215  Hom chom 17269  Idccid 17664  domacdoma 18020  codaccoda 18021  Arrowcarw 18022  Homachoma 18023  TermCatctermc 49219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5247  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-ot 4608  df-uni 4882  df-iun 4967  df-br 5118  df-opab 5180  df-mpt 5200  df-id 5546  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-riota 7357  df-ov 7403  df-1st 7983  df-2nd 7984  df-cat 17667  df-cid 17668  df-doma 18024  df-coda 18025  df-homa 18026  df-arw 18027  df-thinc 49167  df-termc 49220
This theorem is referenced by:  dftermc3  49277
  Copyright terms: Public domain W3C validator