Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  termcarweu Structured version   Visualization version   GIF version

Theorem termcarweu 49380
Description: There exists a unique disjointified arrow in a terminal category. (Contributed by Zhi Wang, 20-Oct-2025.)
Assertion
Ref Expression
termcarweu (𝐶 ∈ TermCat → ∃!𝑎 𝑎 ∈ (Arrow‘𝐶))
Distinct variable group:   𝐶,𝑎

Proof of Theorem termcarweu
Dummy variables 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . 4 (𝐶 ∈ TermCat → 𝐶 ∈ TermCat)
2 eqid 2736 . . . 4 (Base‘𝐶) = (Base‘𝐶)
31, 2termcbas 49333 . . 3 (𝐶 ∈ TermCat → ∃𝑥(Base‘𝐶) = {𝑥})
4 eqid 2736 . . . . 5 (Homa𝐶) = (Homa𝐶)
51adantr 480 . . . . . 6 ((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) → 𝐶 ∈ TermCat)
65termccd 49332 . . . . 5 ((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) → 𝐶 ∈ Cat)
7 eqid 2736 . . . . 5 (Hom ‘𝐶) = (Hom ‘𝐶)
8 vsnid 4644 . . . . . 6 𝑥 ∈ {𝑥}
9 simpr 484 . . . . . 6 ((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) → (Base‘𝐶) = {𝑥})
108, 9eleqtrrid 2842 . . . . 5 ((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) → 𝑥 ∈ (Base‘𝐶))
11 eqid 2736 . . . . . 6 (Id‘𝐶) = (Id‘𝐶)
122, 7, 11, 6, 10catidcl 17699 . . . . 5 ((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) → ((Id‘𝐶)‘𝑥) ∈ (𝑥(Hom ‘𝐶)𝑥))
134, 2, 6, 7, 10, 10, 12elhomai2 18052 . . . 4 ((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) → ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩ ∈ (𝑥(Homa𝐶)𝑥))
14 eqid 2736 . . . . . . . . 9 (Arrow‘𝐶) = (Arrow‘𝐶)
1514arwdmcd 18070 . . . . . . . 8 (𝑎 ∈ (Arrow‘𝐶) → 𝑎 = ⟨(doma𝑎), (coda𝑎), (2nd𝑎)⟩)
1615adantl 481 . . . . . . 7 (((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) ∧ 𝑎 ∈ (Arrow‘𝐶)) → 𝑎 = ⟨(doma𝑎), (coda𝑎), (2nd𝑎)⟩)
175adantr 480 . . . . . . . . 9 (((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) ∧ 𝑎 ∈ (Arrow‘𝐶)) → 𝐶 ∈ TermCat)
1814, 2arwdm 18065 . . . . . . . . . 10 (𝑎 ∈ (Arrow‘𝐶) → (doma𝑎) ∈ (Base‘𝐶))
1918adantl 481 . . . . . . . . 9 (((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) ∧ 𝑎 ∈ (Arrow‘𝐶)) → (doma𝑎) ∈ (Base‘𝐶))
2010adantr 480 . . . . . . . . 9 (((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) ∧ 𝑎 ∈ (Arrow‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
2117, 2, 19, 20termcbasmo 49335 . . . . . . . 8 (((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) ∧ 𝑎 ∈ (Arrow‘𝐶)) → (doma𝑎) = 𝑥)
2214, 2arwcd 18066 . . . . . . . . . 10 (𝑎 ∈ (Arrow‘𝐶) → (coda𝑎) ∈ (Base‘𝐶))
2322adantl 481 . . . . . . . . 9 (((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) ∧ 𝑎 ∈ (Arrow‘𝐶)) → (coda𝑎) ∈ (Base‘𝐶))
2417, 2, 23, 20termcbasmo 49335 . . . . . . . 8 (((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) ∧ 𝑎 ∈ (Arrow‘𝐶)) → (coda𝑎) = 𝑥)
2514, 7arwhom 18069 . . . . . . . . . 10 (𝑎 ∈ (Arrow‘𝐶) → (2nd𝑎) ∈ ((doma𝑎)(Hom ‘𝐶)(coda𝑎)))
2625adantl 481 . . . . . . . . 9 (((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) ∧ 𝑎 ∈ (Arrow‘𝐶)) → (2nd𝑎) ∈ ((doma𝑎)(Hom ‘𝐶)(coda𝑎)))
2712adantr 480 . . . . . . . . 9 (((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) ∧ 𝑎 ∈ (Arrow‘𝐶)) → ((Id‘𝐶)‘𝑥) ∈ (𝑥(Hom ‘𝐶)𝑥))
2817, 2, 19, 23, 7, 26, 20, 20, 27termchommo 49337 . . . . . . . 8 (((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) ∧ 𝑎 ∈ (Arrow‘𝐶)) → (2nd𝑎) = ((Id‘𝐶)‘𝑥))
2921, 24, 28oteq123d 4869 . . . . . . 7 (((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) ∧ 𝑎 ∈ (Arrow‘𝐶)) → ⟨(doma𝑎), (coda𝑎), (2nd𝑎)⟩ = ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩)
3016, 29eqtrd 2771 . . . . . 6 (((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) ∧ 𝑎 ∈ (Arrow‘𝐶)) → 𝑎 = ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩)
31 simpr 484 . . . . . . 7 (((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) ∧ 𝑎 = ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩) → 𝑎 = ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩)
3214, 4homarw 18064 . . . . . . . . 9 (𝑥(Homa𝐶)𝑥) ⊆ (Arrow‘𝐶)
3332, 13sselid 3961 . . . . . . . 8 ((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) → ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩ ∈ (Arrow‘𝐶))
3433adantr 480 . . . . . . 7 (((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) ∧ 𝑎 = ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩) → ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩ ∈ (Arrow‘𝐶))
3531, 34eqeltrd 2835 . . . . . 6 (((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) ∧ 𝑎 = ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩) → 𝑎 ∈ (Arrow‘𝐶))
3630, 35impbida 800 . . . . 5 ((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) → (𝑎 ∈ (Arrow‘𝐶) ↔ 𝑎 = ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩))
3736alrimiv 1927 . . . 4 ((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) → ∀𝑎(𝑎 ∈ (Arrow‘𝐶) ↔ 𝑎 = ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩))
38 eqeq2 2748 . . . . . 6 (𝑏 = ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩ → (𝑎 = 𝑏𝑎 = ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩))
3938bibi2d 342 . . . . 5 (𝑏 = ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩ → ((𝑎 ∈ (Arrow‘𝐶) ↔ 𝑎 = 𝑏) ↔ (𝑎 ∈ (Arrow‘𝐶) ↔ 𝑎 = ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩)))
4039albidv 1920 . . . 4 (𝑏 = ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩ → (∀𝑎(𝑎 ∈ (Arrow‘𝐶) ↔ 𝑎 = 𝑏) ↔ ∀𝑎(𝑎 ∈ (Arrow‘𝐶) ↔ 𝑎 = ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩)))
4113, 37, 40spcedv 3582 . . 3 ((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) → ∃𝑏𝑎(𝑎 ∈ (Arrow‘𝐶) ↔ 𝑎 = 𝑏))
423, 41exlimddv 1935 . 2 (𝐶 ∈ TermCat → ∃𝑏𝑎(𝑎 ∈ (Arrow‘𝐶) ↔ 𝑎 = 𝑏))
43 eu6im 2575 . 2 (∃𝑏𝑎(𝑎 ∈ (Arrow‘𝐶) ↔ 𝑎 = 𝑏) → ∃!𝑎 𝑎 ∈ (Arrow‘𝐶))
4442, 43syl 17 1 (𝐶 ∈ TermCat → ∃!𝑎 𝑎 ∈ (Arrow‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wex 1779  wcel 2109  ∃!weu 2568  {csn 4606  cotp 4614  cfv 6536  (class class class)co 7410  2nd c2nd 7992  Basecbs 17233  Hom chom 17287  Idccid 17682  domacdoma 18038  codaccoda 18039  Arrowcarw 18040  Homachoma 18041  TermCatctermc 49325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-ot 4615  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-1st 7993  df-2nd 7994  df-cat 17685  df-cid 17686  df-doma 18042  df-coda 18043  df-homa 18044  df-arw 18045  df-thinc 49271  df-termc 49326
This theorem is referenced by:  dftermc3  49383
  Copyright terms: Public domain W3C validator