Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  termcarweu Structured version   Visualization version   GIF version

Theorem termcarweu 49533
Description: There exists a unique disjointified arrow in a terminal category. (Contributed by Zhi Wang, 20-Oct-2025.)
Assertion
Ref Expression
termcarweu (𝐶 ∈ TermCat → ∃!𝑎 𝑎 ∈ (Arrow‘𝐶))
Distinct variable group:   𝐶,𝑎

Proof of Theorem termcarweu
Dummy variables 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . 4 (𝐶 ∈ TermCat → 𝐶 ∈ TermCat)
2 eqid 2729 . . . 4 (Base‘𝐶) = (Base‘𝐶)
31, 2termcbas 49485 . . 3 (𝐶 ∈ TermCat → ∃𝑥(Base‘𝐶) = {𝑥})
4 eqid 2729 . . . . 5 (Homa𝐶) = (Homa𝐶)
51adantr 480 . . . . . 6 ((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) → 𝐶 ∈ TermCat)
65termccd 49484 . . . . 5 ((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) → 𝐶 ∈ Cat)
7 eqid 2729 . . . . 5 (Hom ‘𝐶) = (Hom ‘𝐶)
8 vsnid 4615 . . . . . 6 𝑥 ∈ {𝑥}
9 simpr 484 . . . . . 6 ((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) → (Base‘𝐶) = {𝑥})
108, 9eleqtrrid 2835 . . . . 5 ((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) → 𝑥 ∈ (Base‘𝐶))
11 eqid 2729 . . . . . 6 (Id‘𝐶) = (Id‘𝐶)
122, 7, 11, 6, 10catidcl 17588 . . . . 5 ((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) → ((Id‘𝐶)‘𝑥) ∈ (𝑥(Hom ‘𝐶)𝑥))
134, 2, 6, 7, 10, 10, 12elhomai2 17941 . . . 4 ((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) → ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩ ∈ (𝑥(Homa𝐶)𝑥))
14 eqid 2729 . . . . . . . . 9 (Arrow‘𝐶) = (Arrow‘𝐶)
1514arwdmcd 17959 . . . . . . . 8 (𝑎 ∈ (Arrow‘𝐶) → 𝑎 = ⟨(doma𝑎), (coda𝑎), (2nd𝑎)⟩)
1615adantl 481 . . . . . . 7 (((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) ∧ 𝑎 ∈ (Arrow‘𝐶)) → 𝑎 = ⟨(doma𝑎), (coda𝑎), (2nd𝑎)⟩)
175adantr 480 . . . . . . . . 9 (((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) ∧ 𝑎 ∈ (Arrow‘𝐶)) → 𝐶 ∈ TermCat)
1814, 2arwdm 17954 . . . . . . . . . 10 (𝑎 ∈ (Arrow‘𝐶) → (doma𝑎) ∈ (Base‘𝐶))
1918adantl 481 . . . . . . . . 9 (((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) ∧ 𝑎 ∈ (Arrow‘𝐶)) → (doma𝑎) ∈ (Base‘𝐶))
2010adantr 480 . . . . . . . . 9 (((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) ∧ 𝑎 ∈ (Arrow‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
2117, 2, 19, 20termcbasmo 49488 . . . . . . . 8 (((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) ∧ 𝑎 ∈ (Arrow‘𝐶)) → (doma𝑎) = 𝑥)
2214, 2arwcd 17955 . . . . . . . . . 10 (𝑎 ∈ (Arrow‘𝐶) → (coda𝑎) ∈ (Base‘𝐶))
2322adantl 481 . . . . . . . . 9 (((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) ∧ 𝑎 ∈ (Arrow‘𝐶)) → (coda𝑎) ∈ (Base‘𝐶))
2417, 2, 23, 20termcbasmo 49488 . . . . . . . 8 (((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) ∧ 𝑎 ∈ (Arrow‘𝐶)) → (coda𝑎) = 𝑥)
2514, 7arwhom 17958 . . . . . . . . . 10 (𝑎 ∈ (Arrow‘𝐶) → (2nd𝑎) ∈ ((doma𝑎)(Hom ‘𝐶)(coda𝑎)))
2625adantl 481 . . . . . . . . 9 (((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) ∧ 𝑎 ∈ (Arrow‘𝐶)) → (2nd𝑎) ∈ ((doma𝑎)(Hom ‘𝐶)(coda𝑎)))
2712adantr 480 . . . . . . . . 9 (((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) ∧ 𝑎 ∈ (Arrow‘𝐶)) → ((Id‘𝐶)‘𝑥) ∈ (𝑥(Hom ‘𝐶)𝑥))
2817, 2, 19, 23, 7, 26, 20, 20, 27termchommo 49490 . . . . . . . 8 (((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) ∧ 𝑎 ∈ (Arrow‘𝐶)) → (2nd𝑎) = ((Id‘𝐶)‘𝑥))
2921, 24, 28oteq123d 4839 . . . . . . 7 (((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) ∧ 𝑎 ∈ (Arrow‘𝐶)) → ⟨(doma𝑎), (coda𝑎), (2nd𝑎)⟩ = ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩)
3016, 29eqtrd 2764 . . . . . 6 (((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) ∧ 𝑎 ∈ (Arrow‘𝐶)) → 𝑎 = ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩)
31 simpr 484 . . . . . . 7 (((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) ∧ 𝑎 = ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩) → 𝑎 = ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩)
3214, 4homarw 17953 . . . . . . . . 9 (𝑥(Homa𝐶)𝑥) ⊆ (Arrow‘𝐶)
3332, 13sselid 3933 . . . . . . . 8 ((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) → ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩ ∈ (Arrow‘𝐶))
3433adantr 480 . . . . . . 7 (((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) ∧ 𝑎 = ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩) → ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩ ∈ (Arrow‘𝐶))
3531, 34eqeltrd 2828 . . . . . 6 (((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) ∧ 𝑎 = ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩) → 𝑎 ∈ (Arrow‘𝐶))
3630, 35impbida 800 . . . . 5 ((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) → (𝑎 ∈ (Arrow‘𝐶) ↔ 𝑎 = ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩))
3736alrimiv 1927 . . . 4 ((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) → ∀𝑎(𝑎 ∈ (Arrow‘𝐶) ↔ 𝑎 = ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩))
38 eqeq2 2741 . . . . . 6 (𝑏 = ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩ → (𝑎 = 𝑏𝑎 = ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩))
3938bibi2d 342 . . . . 5 (𝑏 = ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩ → ((𝑎 ∈ (Arrow‘𝐶) ↔ 𝑎 = 𝑏) ↔ (𝑎 ∈ (Arrow‘𝐶) ↔ 𝑎 = ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩)))
4039albidv 1920 . . . 4 (𝑏 = ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩ → (∀𝑎(𝑎 ∈ (Arrow‘𝐶) ↔ 𝑎 = 𝑏) ↔ ∀𝑎(𝑎 ∈ (Arrow‘𝐶) ↔ 𝑎 = ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩)))
4113, 37, 40spcedv 3553 . . 3 ((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) → ∃𝑏𝑎(𝑎 ∈ (Arrow‘𝐶) ↔ 𝑎 = 𝑏))
423, 41exlimddv 1935 . 2 (𝐶 ∈ TermCat → ∃𝑏𝑎(𝑎 ∈ (Arrow‘𝐶) ↔ 𝑎 = 𝑏))
43 eu6im 2568 . 2 (∃𝑏𝑎(𝑎 ∈ (Arrow‘𝐶) ↔ 𝑎 = 𝑏) → ∃!𝑎 𝑎 ∈ (Arrow‘𝐶))
4442, 43syl 17 1 (𝐶 ∈ TermCat → ∃!𝑎 𝑎 ∈ (Arrow‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wex 1779  wcel 2109  ∃!weu 2561  {csn 4577  cotp 4585  cfv 6482  (class class class)co 7349  2nd c2nd 7923  Basecbs 17120  Hom chom 17172  Idccid 17571  domacdoma 17927  codaccoda 17928  Arrowcarw 17929  Homachoma 17930  TermCatctermc 49477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-ot 4586  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-1st 7924  df-2nd 7925  df-cat 17574  df-cid 17575  df-doma 17931  df-coda 17932  df-homa 17933  df-arw 17934  df-thinc 49423  df-termc 49478
This theorem is referenced by:  dftermc3  49536
  Copyright terms: Public domain W3C validator