Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  termcarweu Structured version   Visualization version   GIF version

Theorem termcarweu 49628
Description: There exists a unique disjointified arrow in a terminal category. (Contributed by Zhi Wang, 20-Oct-2025.)
Assertion
Ref Expression
termcarweu (𝐶 ∈ TermCat → ∃!𝑎 𝑎 ∈ (Arrow‘𝐶))
Distinct variable group:   𝐶,𝑎

Proof of Theorem termcarweu
Dummy variables 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . 4 (𝐶 ∈ TermCat → 𝐶 ∈ TermCat)
2 eqid 2731 . . . 4 (Base‘𝐶) = (Base‘𝐶)
31, 2termcbas 49580 . . 3 (𝐶 ∈ TermCat → ∃𝑥(Base‘𝐶) = {𝑥})
4 eqid 2731 . . . . 5 (Homa𝐶) = (Homa𝐶)
51adantr 480 . . . . . 6 ((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) → 𝐶 ∈ TermCat)
65termccd 49579 . . . . 5 ((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) → 𝐶 ∈ Cat)
7 eqid 2731 . . . . 5 (Hom ‘𝐶) = (Hom ‘𝐶)
8 vsnid 4613 . . . . . 6 𝑥 ∈ {𝑥}
9 simpr 484 . . . . . 6 ((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) → (Base‘𝐶) = {𝑥})
108, 9eleqtrrid 2838 . . . . 5 ((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) → 𝑥 ∈ (Base‘𝐶))
11 eqid 2731 . . . . . 6 (Id‘𝐶) = (Id‘𝐶)
122, 7, 11, 6, 10catidcl 17588 . . . . 5 ((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) → ((Id‘𝐶)‘𝑥) ∈ (𝑥(Hom ‘𝐶)𝑥))
134, 2, 6, 7, 10, 10, 12elhomai2 17941 . . . 4 ((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) → ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩ ∈ (𝑥(Homa𝐶)𝑥))
14 eqid 2731 . . . . . . . . 9 (Arrow‘𝐶) = (Arrow‘𝐶)
1514arwdmcd 17959 . . . . . . . 8 (𝑎 ∈ (Arrow‘𝐶) → 𝑎 = ⟨(doma𝑎), (coda𝑎), (2nd𝑎)⟩)
1615adantl 481 . . . . . . 7 (((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) ∧ 𝑎 ∈ (Arrow‘𝐶)) → 𝑎 = ⟨(doma𝑎), (coda𝑎), (2nd𝑎)⟩)
175adantr 480 . . . . . . . . 9 (((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) ∧ 𝑎 ∈ (Arrow‘𝐶)) → 𝐶 ∈ TermCat)
1814, 2arwdm 17954 . . . . . . . . . 10 (𝑎 ∈ (Arrow‘𝐶) → (doma𝑎) ∈ (Base‘𝐶))
1918adantl 481 . . . . . . . . 9 (((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) ∧ 𝑎 ∈ (Arrow‘𝐶)) → (doma𝑎) ∈ (Base‘𝐶))
2010adantr 480 . . . . . . . . 9 (((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) ∧ 𝑎 ∈ (Arrow‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
2117, 2, 19, 20termcbasmo 49583 . . . . . . . 8 (((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) ∧ 𝑎 ∈ (Arrow‘𝐶)) → (doma𝑎) = 𝑥)
2214, 2arwcd 17955 . . . . . . . . . 10 (𝑎 ∈ (Arrow‘𝐶) → (coda𝑎) ∈ (Base‘𝐶))
2322adantl 481 . . . . . . . . 9 (((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) ∧ 𝑎 ∈ (Arrow‘𝐶)) → (coda𝑎) ∈ (Base‘𝐶))
2417, 2, 23, 20termcbasmo 49583 . . . . . . . 8 (((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) ∧ 𝑎 ∈ (Arrow‘𝐶)) → (coda𝑎) = 𝑥)
2514, 7arwhom 17958 . . . . . . . . . 10 (𝑎 ∈ (Arrow‘𝐶) → (2nd𝑎) ∈ ((doma𝑎)(Hom ‘𝐶)(coda𝑎)))
2625adantl 481 . . . . . . . . 9 (((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) ∧ 𝑎 ∈ (Arrow‘𝐶)) → (2nd𝑎) ∈ ((doma𝑎)(Hom ‘𝐶)(coda𝑎)))
2712adantr 480 . . . . . . . . 9 (((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) ∧ 𝑎 ∈ (Arrow‘𝐶)) → ((Id‘𝐶)‘𝑥) ∈ (𝑥(Hom ‘𝐶)𝑥))
2817, 2, 19, 23, 7, 26, 20, 20, 27termchommo 49585 . . . . . . . 8 (((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) ∧ 𝑎 ∈ (Arrow‘𝐶)) → (2nd𝑎) = ((Id‘𝐶)‘𝑥))
2921, 24, 28oteq123d 4837 . . . . . . 7 (((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) ∧ 𝑎 ∈ (Arrow‘𝐶)) → ⟨(doma𝑎), (coda𝑎), (2nd𝑎)⟩ = ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩)
3016, 29eqtrd 2766 . . . . . 6 (((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) ∧ 𝑎 ∈ (Arrow‘𝐶)) → 𝑎 = ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩)
31 simpr 484 . . . . . . 7 (((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) ∧ 𝑎 = ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩) → 𝑎 = ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩)
3214, 4homarw 17953 . . . . . . . . 9 (𝑥(Homa𝐶)𝑥) ⊆ (Arrow‘𝐶)
3332, 13sselid 3927 . . . . . . . 8 ((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) → ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩ ∈ (Arrow‘𝐶))
3433adantr 480 . . . . . . 7 (((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) ∧ 𝑎 = ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩) → ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩ ∈ (Arrow‘𝐶))
3531, 34eqeltrd 2831 . . . . . 6 (((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) ∧ 𝑎 = ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩) → 𝑎 ∈ (Arrow‘𝐶))
3630, 35impbida 800 . . . . 5 ((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) → (𝑎 ∈ (Arrow‘𝐶) ↔ 𝑎 = ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩))
3736alrimiv 1928 . . . 4 ((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) → ∀𝑎(𝑎 ∈ (Arrow‘𝐶) ↔ 𝑎 = ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩))
38 eqeq2 2743 . . . . . 6 (𝑏 = ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩ → (𝑎 = 𝑏𝑎 = ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩))
3938bibi2d 342 . . . . 5 (𝑏 = ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩ → ((𝑎 ∈ (Arrow‘𝐶) ↔ 𝑎 = 𝑏) ↔ (𝑎 ∈ (Arrow‘𝐶) ↔ 𝑎 = ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩)))
4039albidv 1921 . . . 4 (𝑏 = ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩ → (∀𝑎(𝑎 ∈ (Arrow‘𝐶) ↔ 𝑎 = 𝑏) ↔ ∀𝑎(𝑎 ∈ (Arrow‘𝐶) ↔ 𝑎 = ⟨𝑥, 𝑥, ((Id‘𝐶)‘𝑥)⟩)))
4113, 37, 40spcedv 3548 . . 3 ((𝐶 ∈ TermCat ∧ (Base‘𝐶) = {𝑥}) → ∃𝑏𝑎(𝑎 ∈ (Arrow‘𝐶) ↔ 𝑎 = 𝑏))
423, 41exlimddv 1936 . 2 (𝐶 ∈ TermCat → ∃𝑏𝑎(𝑎 ∈ (Arrow‘𝐶) ↔ 𝑎 = 𝑏))
43 eu6im 2570 . 2 (∃𝑏𝑎(𝑎 ∈ (Arrow‘𝐶) ↔ 𝑎 = 𝑏) → ∃!𝑎 𝑎 ∈ (Arrow‘𝐶))
4442, 43syl 17 1 (𝐶 ∈ TermCat → ∃!𝑎 𝑎 ∈ (Arrow‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1539   = wceq 1541  wex 1780  wcel 2111  ∃!weu 2563  {csn 4573  cotp 4581  cfv 6481  (class class class)co 7346  2nd c2nd 7920  Basecbs 17120  Hom chom 17172  Idccid 17571  domacdoma 17927  codaccoda 17928  Arrowcarw 17929  Homachoma 17930  TermCatctermc 49572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-ot 4582  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-1st 7921  df-2nd 7922  df-cat 17574  df-cid 17575  df-doma 17931  df-coda 17932  df-homa 17933  df-arw 17934  df-thinc 49518  df-termc 49573
This theorem is referenced by:  dftermc3  49631
  Copyright terms: Public domain W3C validator