| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > diag1f1o | Structured version Visualization version GIF version | ||
| Description: The object part of the diagonal functor is a bijection if 𝐷 is terminal. So any functor from a terminal category is one-to-one correspondent to an object of the target base. (Contributed by Zhi Wang, 21-Oct-2025.) |
| Ref | Expression |
|---|---|
| diag1f1o.a | ⊢ 𝐴 = (Base‘𝐶) |
| diag1f1o.d | ⊢ (𝜑 → 𝐷 ∈ TermCat) |
| diag1f1o.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| diag1f1o.l | ⊢ 𝐿 = (𝐶Δfunc𝐷) |
| Ref | Expression |
|---|---|
| diag1f1o | ⊢ (𝜑 → (1st ‘𝐿):𝐴–1-1-onto→(𝐷 Func 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | diag1f1o.l | . . 3 ⊢ 𝐿 = (𝐶Δfunc𝐷) | |
| 2 | diag1f1o.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 3 | diag1f1o.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ TermCat) | |
| 4 | 3 | termccd 49462 | . . 3 ⊢ (𝜑 → 𝐷 ∈ Cat) |
| 5 | diag1f1o.a | . . 3 ⊢ 𝐴 = (Base‘𝐶) | |
| 6 | eqid 2729 | . . 3 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 7 | 6 | istermc2 49458 | . . . . . . 7 ⊢ (𝐷 ∈ TermCat ↔ (𝐷 ∈ ThinCat ∧ ∃!𝑦 𝑦 ∈ (Base‘𝐷))) |
| 8 | 3, 7 | sylib 218 | . . . . . 6 ⊢ (𝜑 → (𝐷 ∈ ThinCat ∧ ∃!𝑦 𝑦 ∈ (Base‘𝐷))) |
| 9 | 8 | simprd 495 | . . . . 5 ⊢ (𝜑 → ∃!𝑦 𝑦 ∈ (Base‘𝐷)) |
| 10 | euex 2570 | . . . . 5 ⊢ (∃!𝑦 𝑦 ∈ (Base‘𝐷) → ∃𝑦 𝑦 ∈ (Base‘𝐷)) | |
| 11 | 9, 10 | syl 17 | . . . 4 ⊢ (𝜑 → ∃𝑦 𝑦 ∈ (Base‘𝐷)) |
| 12 | n0 4312 | . . . 4 ⊢ ((Base‘𝐷) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ (Base‘𝐷)) | |
| 13 | 11, 12 | sylibr 234 | . . 3 ⊢ (𝜑 → (Base‘𝐷) ≠ ∅) |
| 14 | 1, 2, 4, 5, 6, 13 | diag1f1 49290 | . 2 ⊢ (𝜑 → (1st ‘𝐿):𝐴–1-1→(𝐷 Func 𝐶)) |
| 15 | f1f 6738 | . . . 4 ⊢ ((1st ‘𝐿):𝐴–1-1→(𝐷 Func 𝐶) → (1st ‘𝐿):𝐴⟶(𝐷 Func 𝐶)) | |
| 16 | 14, 15 | syl 17 | . . 3 ⊢ (𝜑 → (1st ‘𝐿):𝐴⟶(𝐷 Func 𝐶)) |
| 17 | 3, 6 | termcbas 49463 | . . . . . 6 ⊢ (𝜑 → ∃𝑦(Base‘𝐷) = {𝑦}) |
| 18 | 17 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷 Func 𝐶)) → ∃𝑦(Base‘𝐷) = {𝑦}) |
| 19 | fveq2 6840 | . . . . . . 7 ⊢ (𝑥 = ((1st ‘𝑘)‘𝑦) → ((1st ‘𝐿)‘𝑥) = ((1st ‘𝐿)‘((1st ‘𝑘)‘𝑦))) | |
| 20 | 19 | eqeq2d 2740 | . . . . . 6 ⊢ (𝑥 = ((1st ‘𝑘)‘𝑦) → (𝑘 = ((1st ‘𝐿)‘𝑥) ↔ 𝑘 = ((1st ‘𝐿)‘((1st ‘𝑘)‘𝑦)))) |
| 21 | 3 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑘 ∈ (𝐷 Func 𝐶)) ∧ (Base‘𝐷) = {𝑦}) → 𝐷 ∈ TermCat) |
| 22 | simplr 768 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑘 ∈ (𝐷 Func 𝐶)) ∧ (Base‘𝐷) = {𝑦}) → 𝑘 ∈ (𝐷 Func 𝐶)) | |
| 23 | vsnid 4623 | . . . . . . . . 9 ⊢ 𝑦 ∈ {𝑦} | |
| 24 | simpr 484 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑘 ∈ (𝐷 Func 𝐶)) ∧ (Base‘𝐷) = {𝑦}) → (Base‘𝐷) = {𝑦}) | |
| 25 | 23, 24 | eleqtrrid 2835 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑘 ∈ (𝐷 Func 𝐶)) ∧ (Base‘𝐷) = {𝑦}) → 𝑦 ∈ (Base‘𝐷)) |
| 26 | eqid 2729 | . . . . . . . 8 ⊢ ((1st ‘𝑘)‘𝑦) = ((1st ‘𝑘)‘𝑦) | |
| 27 | 5, 21, 22, 6, 25, 26, 1 | diag1f1olem 49516 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑘 ∈ (𝐷 Func 𝐶)) ∧ (Base‘𝐷) = {𝑦}) → (((1st ‘𝑘)‘𝑦) ∈ 𝐴 ∧ 𝑘 = ((1st ‘𝐿)‘((1st ‘𝑘)‘𝑦)))) |
| 28 | 27 | simpld 494 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑘 ∈ (𝐷 Func 𝐶)) ∧ (Base‘𝐷) = {𝑦}) → ((1st ‘𝑘)‘𝑦) ∈ 𝐴) |
| 29 | 27 | simprd 495 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑘 ∈ (𝐷 Func 𝐶)) ∧ (Base‘𝐷) = {𝑦}) → 𝑘 = ((1st ‘𝐿)‘((1st ‘𝑘)‘𝑦))) |
| 30 | 20, 28, 29 | rspcedvdw 3588 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ (𝐷 Func 𝐶)) ∧ (Base‘𝐷) = {𝑦}) → ∃𝑥 ∈ 𝐴 𝑘 = ((1st ‘𝐿)‘𝑥)) |
| 31 | 18, 30 | exlimddv 1935 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷 Func 𝐶)) → ∃𝑥 ∈ 𝐴 𝑘 = ((1st ‘𝐿)‘𝑥)) |
| 32 | 31 | ralrimiva 3125 | . . 3 ⊢ (𝜑 → ∀𝑘 ∈ (𝐷 Func 𝐶)∃𝑥 ∈ 𝐴 𝑘 = ((1st ‘𝐿)‘𝑥)) |
| 33 | dffo3 7056 | . . 3 ⊢ ((1st ‘𝐿):𝐴–onto→(𝐷 Func 𝐶) ↔ ((1st ‘𝐿):𝐴⟶(𝐷 Func 𝐶) ∧ ∀𝑘 ∈ (𝐷 Func 𝐶)∃𝑥 ∈ 𝐴 𝑘 = ((1st ‘𝐿)‘𝑥))) | |
| 34 | 16, 32, 33 | sylanbrc 583 | . 2 ⊢ (𝜑 → (1st ‘𝐿):𝐴–onto→(𝐷 Func 𝐶)) |
| 35 | df-f1o 6506 | . 2 ⊢ ((1st ‘𝐿):𝐴–1-1-onto→(𝐷 Func 𝐶) ↔ ((1st ‘𝐿):𝐴–1-1→(𝐷 Func 𝐶) ∧ (1st ‘𝐿):𝐴–onto→(𝐷 Func 𝐶))) | |
| 36 | 14, 34, 35 | sylanbrc 583 | 1 ⊢ (𝜑 → (1st ‘𝐿):𝐴–1-1-onto→(𝐷 Func 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∃!weu 2561 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 ∅c0 4292 {csn 4585 ⟶wf 6495 –1-1→wf1 6496 –onto→wfo 6497 –1-1-onto→wf1o 6498 ‘cfv 6499 (class class class)co 7369 1st c1st 7945 Basecbs 17156 Catccat 17606 Func cfunc 17797 Δfunccdiag 18154 ThinCatcthinc 49400 TermCatctermc 49455 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11102 ax-resscn 11103 ax-1cn 11104 ax-icn 11105 ax-addcl 11106 ax-addrcl 11107 ax-mulcl 11108 ax-mulrcl 11109 ax-mulcom 11110 ax-addass 11111 ax-mulass 11112 ax-distr 11113 ax-i2m1 11114 ax-1ne0 11115 ax-1rid 11116 ax-rnegex 11117 ax-rrecex 11118 ax-cnre 11119 ax-pre-lttri 11120 ax-pre-lttrn 11121 ax-pre-ltadd 11122 ax-pre-mulgt0 11123 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-pnf 11188 df-mnf 11189 df-xr 11190 df-ltxr 11191 df-le 11192 df-sub 11385 df-neg 11386 df-nn 12165 df-2 12227 df-3 12228 df-4 12229 df-5 12230 df-6 12231 df-7 12232 df-8 12233 df-9 12234 df-n0 12421 df-z 12508 df-dec 12628 df-uz 12772 df-fz 13447 df-struct 17094 df-slot 17129 df-ndx 17141 df-base 17157 df-hom 17221 df-cco 17222 df-cat 17610 df-cid 17611 df-func 17801 df-nat 17889 df-fuc 17890 df-xpc 18114 df-1stf 18115 df-curf 18156 df-diag 18158 df-thinc 49401 df-termc 49456 |
| This theorem is referenced by: diagciso 49522 lmdran 49654 cmdlan 49655 |
| Copyright terms: Public domain | W3C validator |