| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > diag1f1o | Structured version Visualization version GIF version | ||
| Description: The object part of the diagonal functor is a bijection if 𝐷 is terminal. So any functor from a terminal category is one-to-one correspondent to an object of the target base. (Contributed by Zhi Wang, 21-Oct-2025.) |
| Ref | Expression |
|---|---|
| diag1f1o.a | ⊢ 𝐴 = (Base‘𝐶) |
| diag1f1o.d | ⊢ (𝜑 → 𝐷 ∈ TermCat) |
| diag1f1o.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| diag1f1o.l | ⊢ 𝐿 = (𝐶Δfunc𝐷) |
| Ref | Expression |
|---|---|
| diag1f1o | ⊢ (𝜑 → (1st ‘𝐿):𝐴–1-1-onto→(𝐷 Func 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | diag1f1o.l | . . 3 ⊢ 𝐿 = (𝐶Δfunc𝐷) | |
| 2 | diag1f1o.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 3 | diag1f1o.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ TermCat) | |
| 4 | 3 | termccd 49332 | . . 3 ⊢ (𝜑 → 𝐷 ∈ Cat) |
| 5 | diag1f1o.a | . . 3 ⊢ 𝐴 = (Base‘𝐶) | |
| 6 | eqid 2736 | . . 3 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 7 | 6 | istermc2 49328 | . . . . . . 7 ⊢ (𝐷 ∈ TermCat ↔ (𝐷 ∈ ThinCat ∧ ∃!𝑦 𝑦 ∈ (Base‘𝐷))) |
| 8 | 3, 7 | sylib 218 | . . . . . 6 ⊢ (𝜑 → (𝐷 ∈ ThinCat ∧ ∃!𝑦 𝑦 ∈ (Base‘𝐷))) |
| 9 | 8 | simprd 495 | . . . . 5 ⊢ (𝜑 → ∃!𝑦 𝑦 ∈ (Base‘𝐷)) |
| 10 | euex 2577 | . . . . 5 ⊢ (∃!𝑦 𝑦 ∈ (Base‘𝐷) → ∃𝑦 𝑦 ∈ (Base‘𝐷)) | |
| 11 | 9, 10 | syl 17 | . . . 4 ⊢ (𝜑 → ∃𝑦 𝑦 ∈ (Base‘𝐷)) |
| 12 | n0 4333 | . . . 4 ⊢ ((Base‘𝐷) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ (Base‘𝐷)) | |
| 13 | 11, 12 | sylibr 234 | . . 3 ⊢ (𝜑 → (Base‘𝐷) ≠ ∅) |
| 14 | 1, 2, 4, 5, 6, 13 | diag1f1 49185 | . 2 ⊢ (𝜑 → (1st ‘𝐿):𝐴–1-1→(𝐷 Func 𝐶)) |
| 15 | f1f 6779 | . . . 4 ⊢ ((1st ‘𝐿):𝐴–1-1→(𝐷 Func 𝐶) → (1st ‘𝐿):𝐴⟶(𝐷 Func 𝐶)) | |
| 16 | 14, 15 | syl 17 | . . 3 ⊢ (𝜑 → (1st ‘𝐿):𝐴⟶(𝐷 Func 𝐶)) |
| 17 | 3, 6 | termcbas 49333 | . . . . . 6 ⊢ (𝜑 → ∃𝑦(Base‘𝐷) = {𝑦}) |
| 18 | 17 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷 Func 𝐶)) → ∃𝑦(Base‘𝐷) = {𝑦}) |
| 19 | fveq2 6881 | . . . . . . 7 ⊢ (𝑥 = ((1st ‘𝑘)‘𝑦) → ((1st ‘𝐿)‘𝑥) = ((1st ‘𝐿)‘((1st ‘𝑘)‘𝑦))) | |
| 20 | 19 | eqeq2d 2747 | . . . . . 6 ⊢ (𝑥 = ((1st ‘𝑘)‘𝑦) → (𝑘 = ((1st ‘𝐿)‘𝑥) ↔ 𝑘 = ((1st ‘𝐿)‘((1st ‘𝑘)‘𝑦)))) |
| 21 | 3 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑘 ∈ (𝐷 Func 𝐶)) ∧ (Base‘𝐷) = {𝑦}) → 𝐷 ∈ TermCat) |
| 22 | simplr 768 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑘 ∈ (𝐷 Func 𝐶)) ∧ (Base‘𝐷) = {𝑦}) → 𝑘 ∈ (𝐷 Func 𝐶)) | |
| 23 | vsnid 4644 | . . . . . . . . 9 ⊢ 𝑦 ∈ {𝑦} | |
| 24 | simpr 484 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑘 ∈ (𝐷 Func 𝐶)) ∧ (Base‘𝐷) = {𝑦}) → (Base‘𝐷) = {𝑦}) | |
| 25 | 23, 24 | eleqtrrid 2842 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑘 ∈ (𝐷 Func 𝐶)) ∧ (Base‘𝐷) = {𝑦}) → 𝑦 ∈ (Base‘𝐷)) |
| 26 | eqid 2736 | . . . . . . . 8 ⊢ ((1st ‘𝑘)‘𝑦) = ((1st ‘𝑘)‘𝑦) | |
| 27 | 5, 21, 22, 6, 25, 26, 1 | diag1f1olem 49385 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑘 ∈ (𝐷 Func 𝐶)) ∧ (Base‘𝐷) = {𝑦}) → (((1st ‘𝑘)‘𝑦) ∈ 𝐴 ∧ 𝑘 = ((1st ‘𝐿)‘((1st ‘𝑘)‘𝑦)))) |
| 28 | 27 | simpld 494 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑘 ∈ (𝐷 Func 𝐶)) ∧ (Base‘𝐷) = {𝑦}) → ((1st ‘𝑘)‘𝑦) ∈ 𝐴) |
| 29 | 27 | simprd 495 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑘 ∈ (𝐷 Func 𝐶)) ∧ (Base‘𝐷) = {𝑦}) → 𝑘 = ((1st ‘𝐿)‘((1st ‘𝑘)‘𝑦))) |
| 30 | 20, 28, 29 | rspcedvdw 3609 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ (𝐷 Func 𝐶)) ∧ (Base‘𝐷) = {𝑦}) → ∃𝑥 ∈ 𝐴 𝑘 = ((1st ‘𝐿)‘𝑥)) |
| 31 | 18, 30 | exlimddv 1935 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷 Func 𝐶)) → ∃𝑥 ∈ 𝐴 𝑘 = ((1st ‘𝐿)‘𝑥)) |
| 32 | 31 | ralrimiva 3133 | . . 3 ⊢ (𝜑 → ∀𝑘 ∈ (𝐷 Func 𝐶)∃𝑥 ∈ 𝐴 𝑘 = ((1st ‘𝐿)‘𝑥)) |
| 33 | dffo3 7097 | . . 3 ⊢ ((1st ‘𝐿):𝐴–onto→(𝐷 Func 𝐶) ↔ ((1st ‘𝐿):𝐴⟶(𝐷 Func 𝐶) ∧ ∀𝑘 ∈ (𝐷 Func 𝐶)∃𝑥 ∈ 𝐴 𝑘 = ((1st ‘𝐿)‘𝑥))) | |
| 34 | 16, 32, 33 | sylanbrc 583 | . 2 ⊢ (𝜑 → (1st ‘𝐿):𝐴–onto→(𝐷 Func 𝐶)) |
| 35 | df-f1o 6543 | . 2 ⊢ ((1st ‘𝐿):𝐴–1-1-onto→(𝐷 Func 𝐶) ↔ ((1st ‘𝐿):𝐴–1-1→(𝐷 Func 𝐶) ∧ (1st ‘𝐿):𝐴–onto→(𝐷 Func 𝐶))) | |
| 36 | 14, 34, 35 | sylanbrc 583 | 1 ⊢ (𝜑 → (1st ‘𝐿):𝐴–1-1-onto→(𝐷 Func 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∃!weu 2568 ≠ wne 2933 ∀wral 3052 ∃wrex 3061 ∅c0 4313 {csn 4606 ⟶wf 6532 –1-1→wf1 6533 –onto→wfo 6534 –1-1-onto→wf1o 6535 ‘cfv 6536 (class class class)co 7410 1st c1st 7991 Basecbs 17233 Catccat 17681 Func cfunc 17872 Δfunccdiag 18229 ThinCatcthinc 49270 TermCatctermc 49325 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-map 8847 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-uz 12858 df-fz 13530 df-struct 17171 df-slot 17206 df-ndx 17218 df-base 17234 df-hom 17300 df-cco 17301 df-cat 17685 df-cid 17686 df-func 17876 df-nat 17964 df-fuc 17965 df-xpc 18189 df-1stf 18190 df-curf 18231 df-diag 18233 df-thinc 49271 df-termc 49326 |
| This theorem is referenced by: diagciso 49391 |
| Copyright terms: Public domain | W3C validator |