Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diag1f1o Structured version   Visualization version   GIF version

Theorem diag1f1o 49386
Description: The object part of the diagonal functor is a bijection if 𝐷 is terminal. So any functor from a terminal category is one-to-one correspondent to an object of the target base. (Contributed by Zhi Wang, 21-Oct-2025.)
Hypotheses
Ref Expression
diag1f1o.a 𝐴 = (Base‘𝐶)
diag1f1o.d (𝜑𝐷 ∈ TermCat)
diag1f1o.c (𝜑𝐶 ∈ Cat)
diag1f1o.l 𝐿 = (𝐶Δfunc𝐷)
Assertion
Ref Expression
diag1f1o (𝜑 → (1st𝐿):𝐴1-1-onto→(𝐷 Func 𝐶))

Proof of Theorem diag1f1o
Dummy variables 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 diag1f1o.l . . 3 𝐿 = (𝐶Δfunc𝐷)
2 diag1f1o.c . . 3 (𝜑𝐶 ∈ Cat)
3 diag1f1o.d . . . 4 (𝜑𝐷 ∈ TermCat)
43termccd 49332 . . 3 (𝜑𝐷 ∈ Cat)
5 diag1f1o.a . . 3 𝐴 = (Base‘𝐶)
6 eqid 2736 . . 3 (Base‘𝐷) = (Base‘𝐷)
76istermc2 49328 . . . . . . 7 (𝐷 ∈ TermCat ↔ (𝐷 ∈ ThinCat ∧ ∃!𝑦 𝑦 ∈ (Base‘𝐷)))
83, 7sylib 218 . . . . . 6 (𝜑 → (𝐷 ∈ ThinCat ∧ ∃!𝑦 𝑦 ∈ (Base‘𝐷)))
98simprd 495 . . . . 5 (𝜑 → ∃!𝑦 𝑦 ∈ (Base‘𝐷))
10 euex 2577 . . . . 5 (∃!𝑦 𝑦 ∈ (Base‘𝐷) → ∃𝑦 𝑦 ∈ (Base‘𝐷))
119, 10syl 17 . . . 4 (𝜑 → ∃𝑦 𝑦 ∈ (Base‘𝐷))
12 n0 4333 . . . 4 ((Base‘𝐷) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ (Base‘𝐷))
1311, 12sylibr 234 . . 3 (𝜑 → (Base‘𝐷) ≠ ∅)
141, 2, 4, 5, 6, 13diag1f1 49185 . 2 (𝜑 → (1st𝐿):𝐴1-1→(𝐷 Func 𝐶))
15 f1f 6779 . . . 4 ((1st𝐿):𝐴1-1→(𝐷 Func 𝐶) → (1st𝐿):𝐴⟶(𝐷 Func 𝐶))
1614, 15syl 17 . . 3 (𝜑 → (1st𝐿):𝐴⟶(𝐷 Func 𝐶))
173, 6termcbas 49333 . . . . . 6 (𝜑 → ∃𝑦(Base‘𝐷) = {𝑦})
1817adantr 480 . . . . 5 ((𝜑𝑘 ∈ (𝐷 Func 𝐶)) → ∃𝑦(Base‘𝐷) = {𝑦})
19 fveq2 6881 . . . . . . 7 (𝑥 = ((1st𝑘)‘𝑦) → ((1st𝐿)‘𝑥) = ((1st𝐿)‘((1st𝑘)‘𝑦)))
2019eqeq2d 2747 . . . . . 6 (𝑥 = ((1st𝑘)‘𝑦) → (𝑘 = ((1st𝐿)‘𝑥) ↔ 𝑘 = ((1st𝐿)‘((1st𝑘)‘𝑦))))
213ad2antrr 726 . . . . . . . 8 (((𝜑𝑘 ∈ (𝐷 Func 𝐶)) ∧ (Base‘𝐷) = {𝑦}) → 𝐷 ∈ TermCat)
22 simplr 768 . . . . . . . 8 (((𝜑𝑘 ∈ (𝐷 Func 𝐶)) ∧ (Base‘𝐷) = {𝑦}) → 𝑘 ∈ (𝐷 Func 𝐶))
23 vsnid 4644 . . . . . . . . 9 𝑦 ∈ {𝑦}
24 simpr 484 . . . . . . . . 9 (((𝜑𝑘 ∈ (𝐷 Func 𝐶)) ∧ (Base‘𝐷) = {𝑦}) → (Base‘𝐷) = {𝑦})
2523, 24eleqtrrid 2842 . . . . . . . 8 (((𝜑𝑘 ∈ (𝐷 Func 𝐶)) ∧ (Base‘𝐷) = {𝑦}) → 𝑦 ∈ (Base‘𝐷))
26 eqid 2736 . . . . . . . 8 ((1st𝑘)‘𝑦) = ((1st𝑘)‘𝑦)
275, 21, 22, 6, 25, 26, 1diag1f1olem 49385 . . . . . . 7 (((𝜑𝑘 ∈ (𝐷 Func 𝐶)) ∧ (Base‘𝐷) = {𝑦}) → (((1st𝑘)‘𝑦) ∈ 𝐴𝑘 = ((1st𝐿)‘((1st𝑘)‘𝑦))))
2827simpld 494 . . . . . 6 (((𝜑𝑘 ∈ (𝐷 Func 𝐶)) ∧ (Base‘𝐷) = {𝑦}) → ((1st𝑘)‘𝑦) ∈ 𝐴)
2927simprd 495 . . . . . 6 (((𝜑𝑘 ∈ (𝐷 Func 𝐶)) ∧ (Base‘𝐷) = {𝑦}) → 𝑘 = ((1st𝐿)‘((1st𝑘)‘𝑦)))
3020, 28, 29rspcedvdw 3609 . . . . 5 (((𝜑𝑘 ∈ (𝐷 Func 𝐶)) ∧ (Base‘𝐷) = {𝑦}) → ∃𝑥𝐴 𝑘 = ((1st𝐿)‘𝑥))
3118, 30exlimddv 1935 . . . 4 ((𝜑𝑘 ∈ (𝐷 Func 𝐶)) → ∃𝑥𝐴 𝑘 = ((1st𝐿)‘𝑥))
3231ralrimiva 3133 . . 3 (𝜑 → ∀𝑘 ∈ (𝐷 Func 𝐶)∃𝑥𝐴 𝑘 = ((1st𝐿)‘𝑥))
33 dffo3 7097 . . 3 ((1st𝐿):𝐴onto→(𝐷 Func 𝐶) ↔ ((1st𝐿):𝐴⟶(𝐷 Func 𝐶) ∧ ∀𝑘 ∈ (𝐷 Func 𝐶)∃𝑥𝐴 𝑘 = ((1st𝐿)‘𝑥)))
3416, 32, 33sylanbrc 583 . 2 (𝜑 → (1st𝐿):𝐴onto→(𝐷 Func 𝐶))
35 df-f1o 6543 . 2 ((1st𝐿):𝐴1-1-onto→(𝐷 Func 𝐶) ↔ ((1st𝐿):𝐴1-1→(𝐷 Func 𝐶) ∧ (1st𝐿):𝐴onto→(𝐷 Func 𝐶)))
3614, 34, 35sylanbrc 583 1 (𝜑 → (1st𝐿):𝐴1-1-onto→(𝐷 Func 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  ∃!weu 2568  wne 2933  wral 3052  wrex 3061  c0 4313  {csn 4606  wf 6532  1-1wf1 6533  ontowfo 6534  1-1-ontowf1o 6535  cfv 6536  (class class class)co 7410  1st c1st 7991  Basecbs 17233  Catccat 17681   Func cfunc 17872  Δfunccdiag 18229  ThinCatcthinc 49270  TermCatctermc 49325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-fz 13530  df-struct 17171  df-slot 17206  df-ndx 17218  df-base 17234  df-hom 17300  df-cco 17301  df-cat 17685  df-cid 17686  df-func 17876  df-nat 17964  df-fuc 17965  df-xpc 18189  df-1stf 18190  df-curf 18231  df-diag 18233  df-thinc 49271  df-termc 49326
This theorem is referenced by:  diagciso  49391
  Copyright terms: Public domain W3C validator