Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diag1f1o Structured version   Visualization version   GIF version

Theorem diag1f1o 49517
Description: The object part of the diagonal functor is a bijection if 𝐷 is terminal. So any functor from a terminal category is one-to-one correspondent to an object of the target base. (Contributed by Zhi Wang, 21-Oct-2025.)
Hypotheses
Ref Expression
diag1f1o.a 𝐴 = (Base‘𝐶)
diag1f1o.d (𝜑𝐷 ∈ TermCat)
diag1f1o.c (𝜑𝐶 ∈ Cat)
diag1f1o.l 𝐿 = (𝐶Δfunc𝐷)
Assertion
Ref Expression
diag1f1o (𝜑 → (1st𝐿):𝐴1-1-onto→(𝐷 Func 𝐶))

Proof of Theorem diag1f1o
Dummy variables 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 diag1f1o.l . . 3 𝐿 = (𝐶Δfunc𝐷)
2 diag1f1o.c . . 3 (𝜑𝐶 ∈ Cat)
3 diag1f1o.d . . . 4 (𝜑𝐷 ∈ TermCat)
43termccd 49462 . . 3 (𝜑𝐷 ∈ Cat)
5 diag1f1o.a . . 3 𝐴 = (Base‘𝐶)
6 eqid 2729 . . 3 (Base‘𝐷) = (Base‘𝐷)
76istermc2 49458 . . . . . . 7 (𝐷 ∈ TermCat ↔ (𝐷 ∈ ThinCat ∧ ∃!𝑦 𝑦 ∈ (Base‘𝐷)))
83, 7sylib 218 . . . . . 6 (𝜑 → (𝐷 ∈ ThinCat ∧ ∃!𝑦 𝑦 ∈ (Base‘𝐷)))
98simprd 495 . . . . 5 (𝜑 → ∃!𝑦 𝑦 ∈ (Base‘𝐷))
10 euex 2570 . . . . 5 (∃!𝑦 𝑦 ∈ (Base‘𝐷) → ∃𝑦 𝑦 ∈ (Base‘𝐷))
119, 10syl 17 . . . 4 (𝜑 → ∃𝑦 𝑦 ∈ (Base‘𝐷))
12 n0 4312 . . . 4 ((Base‘𝐷) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ (Base‘𝐷))
1311, 12sylibr 234 . . 3 (𝜑 → (Base‘𝐷) ≠ ∅)
141, 2, 4, 5, 6, 13diag1f1 49290 . 2 (𝜑 → (1st𝐿):𝐴1-1→(𝐷 Func 𝐶))
15 f1f 6738 . . . 4 ((1st𝐿):𝐴1-1→(𝐷 Func 𝐶) → (1st𝐿):𝐴⟶(𝐷 Func 𝐶))
1614, 15syl 17 . . 3 (𝜑 → (1st𝐿):𝐴⟶(𝐷 Func 𝐶))
173, 6termcbas 49463 . . . . . 6 (𝜑 → ∃𝑦(Base‘𝐷) = {𝑦})
1817adantr 480 . . . . 5 ((𝜑𝑘 ∈ (𝐷 Func 𝐶)) → ∃𝑦(Base‘𝐷) = {𝑦})
19 fveq2 6840 . . . . . . 7 (𝑥 = ((1st𝑘)‘𝑦) → ((1st𝐿)‘𝑥) = ((1st𝐿)‘((1st𝑘)‘𝑦)))
2019eqeq2d 2740 . . . . . 6 (𝑥 = ((1st𝑘)‘𝑦) → (𝑘 = ((1st𝐿)‘𝑥) ↔ 𝑘 = ((1st𝐿)‘((1st𝑘)‘𝑦))))
213ad2antrr 726 . . . . . . . 8 (((𝜑𝑘 ∈ (𝐷 Func 𝐶)) ∧ (Base‘𝐷) = {𝑦}) → 𝐷 ∈ TermCat)
22 simplr 768 . . . . . . . 8 (((𝜑𝑘 ∈ (𝐷 Func 𝐶)) ∧ (Base‘𝐷) = {𝑦}) → 𝑘 ∈ (𝐷 Func 𝐶))
23 vsnid 4623 . . . . . . . . 9 𝑦 ∈ {𝑦}
24 simpr 484 . . . . . . . . 9 (((𝜑𝑘 ∈ (𝐷 Func 𝐶)) ∧ (Base‘𝐷) = {𝑦}) → (Base‘𝐷) = {𝑦})
2523, 24eleqtrrid 2835 . . . . . . . 8 (((𝜑𝑘 ∈ (𝐷 Func 𝐶)) ∧ (Base‘𝐷) = {𝑦}) → 𝑦 ∈ (Base‘𝐷))
26 eqid 2729 . . . . . . . 8 ((1st𝑘)‘𝑦) = ((1st𝑘)‘𝑦)
275, 21, 22, 6, 25, 26, 1diag1f1olem 49516 . . . . . . 7 (((𝜑𝑘 ∈ (𝐷 Func 𝐶)) ∧ (Base‘𝐷) = {𝑦}) → (((1st𝑘)‘𝑦) ∈ 𝐴𝑘 = ((1st𝐿)‘((1st𝑘)‘𝑦))))
2827simpld 494 . . . . . 6 (((𝜑𝑘 ∈ (𝐷 Func 𝐶)) ∧ (Base‘𝐷) = {𝑦}) → ((1st𝑘)‘𝑦) ∈ 𝐴)
2927simprd 495 . . . . . 6 (((𝜑𝑘 ∈ (𝐷 Func 𝐶)) ∧ (Base‘𝐷) = {𝑦}) → 𝑘 = ((1st𝐿)‘((1st𝑘)‘𝑦)))
3020, 28, 29rspcedvdw 3588 . . . . 5 (((𝜑𝑘 ∈ (𝐷 Func 𝐶)) ∧ (Base‘𝐷) = {𝑦}) → ∃𝑥𝐴 𝑘 = ((1st𝐿)‘𝑥))
3118, 30exlimddv 1935 . . . 4 ((𝜑𝑘 ∈ (𝐷 Func 𝐶)) → ∃𝑥𝐴 𝑘 = ((1st𝐿)‘𝑥))
3231ralrimiva 3125 . . 3 (𝜑 → ∀𝑘 ∈ (𝐷 Func 𝐶)∃𝑥𝐴 𝑘 = ((1st𝐿)‘𝑥))
33 dffo3 7056 . . 3 ((1st𝐿):𝐴onto→(𝐷 Func 𝐶) ↔ ((1st𝐿):𝐴⟶(𝐷 Func 𝐶) ∧ ∀𝑘 ∈ (𝐷 Func 𝐶)∃𝑥𝐴 𝑘 = ((1st𝐿)‘𝑥)))
3416, 32, 33sylanbrc 583 . 2 (𝜑 → (1st𝐿):𝐴onto→(𝐷 Func 𝐶))
35 df-f1o 6506 . 2 ((1st𝐿):𝐴1-1-onto→(𝐷 Func 𝐶) ↔ ((1st𝐿):𝐴1-1→(𝐷 Func 𝐶) ∧ (1st𝐿):𝐴onto→(𝐷 Func 𝐶)))
3614, 34, 35sylanbrc 583 1 (𝜑 → (1st𝐿):𝐴1-1-onto→(𝐷 Func 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  ∃!weu 2561  wne 2925  wral 3044  wrex 3053  c0 4292  {csn 4585  wf 6495  1-1wf1 6496  ontowfo 6497  1-1-ontowf1o 6498  cfv 6499  (class class class)co 7369  1st c1st 7945  Basecbs 17156  Catccat 17606   Func cfunc 17797  Δfunccdiag 18154  ThinCatcthinc 49400  TermCatctermc 49455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11102  ax-resscn 11103  ax-1cn 11104  ax-icn 11105  ax-addcl 11106  ax-addrcl 11107  ax-mulcl 11108  ax-mulrcl 11109  ax-mulcom 11110  ax-addass 11111  ax-mulass 11112  ax-distr 11113  ax-i2m1 11114  ax-1ne0 11115  ax-1rid 11116  ax-rnegex 11117  ax-rrecex 11118  ax-cnre 11119  ax-pre-lttri 11120  ax-pre-lttrn 11121  ax-pre-ltadd 11122  ax-pre-mulgt0 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-pnf 11188  df-mnf 11189  df-xr 11190  df-ltxr 11191  df-le 11192  df-sub 11385  df-neg 11386  df-nn 12165  df-2 12227  df-3 12228  df-4 12229  df-5 12230  df-6 12231  df-7 12232  df-8 12233  df-9 12234  df-n0 12421  df-z 12508  df-dec 12628  df-uz 12772  df-fz 13447  df-struct 17094  df-slot 17129  df-ndx 17141  df-base 17157  df-hom 17221  df-cco 17222  df-cat 17610  df-cid 17611  df-func 17801  df-nat 17889  df-fuc 17890  df-xpc 18114  df-1stf 18115  df-curf 18156  df-diag 18158  df-thinc 49401  df-termc 49456
This theorem is referenced by:  diagciso  49522  lmdran  49654  cmdlan  49655
  Copyright terms: Public domain W3C validator