|   | Mathbox for Zhi Wang | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > diag1f1o | Structured version Visualization version GIF version | ||
| Description: The object part of the diagonal functor is a bijection if 𝐷 is terminal. So any functor from a terminal category is one-to-one correspondent to an object of the target base. (Contributed by Zhi Wang, 21-Oct-2025.) | 
| Ref | Expression | 
|---|---|
| diag1f1o.a | ⊢ 𝐴 = (Base‘𝐶) | 
| diag1f1o.d | ⊢ (𝜑 → 𝐷 ∈ TermCat) | 
| diag1f1o.c | ⊢ (𝜑 → 𝐶 ∈ Cat) | 
| diag1f1o.l | ⊢ 𝐿 = (𝐶Δfunc𝐷) | 
| Ref | Expression | 
|---|---|
| diag1f1o | ⊢ (𝜑 → (1st ‘𝐿):𝐴–1-1-onto→(𝐷 Func 𝐶)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | diag1f1o.l | . . 3 ⊢ 𝐿 = (𝐶Δfunc𝐷) | |
| 2 | diag1f1o.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 3 | diag1f1o.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ TermCat) | |
| 4 | 3 | termccd 49151 | . . 3 ⊢ (𝜑 → 𝐷 ∈ Cat) | 
| 5 | diag1f1o.a | . . 3 ⊢ 𝐴 = (Base‘𝐶) | |
| 6 | eqid 2736 | . . 3 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 7 | 6 | istermc2 49147 | . . . . . . 7 ⊢ (𝐷 ∈ TermCat ↔ (𝐷 ∈ ThinCat ∧ ∃!𝑦 𝑦 ∈ (Base‘𝐷))) | 
| 8 | 3, 7 | sylib 218 | . . . . . 6 ⊢ (𝜑 → (𝐷 ∈ ThinCat ∧ ∃!𝑦 𝑦 ∈ (Base‘𝐷))) | 
| 9 | 8 | simprd 495 | . . . . 5 ⊢ (𝜑 → ∃!𝑦 𝑦 ∈ (Base‘𝐷)) | 
| 10 | euex 2576 | . . . . 5 ⊢ (∃!𝑦 𝑦 ∈ (Base‘𝐷) → ∃𝑦 𝑦 ∈ (Base‘𝐷)) | |
| 11 | 9, 10 | syl 17 | . . . 4 ⊢ (𝜑 → ∃𝑦 𝑦 ∈ (Base‘𝐷)) | 
| 12 | n0 4352 | . . . 4 ⊢ ((Base‘𝐷) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ (Base‘𝐷)) | |
| 13 | 11, 12 | sylibr 234 | . . 3 ⊢ (𝜑 → (Base‘𝐷) ≠ ∅) | 
| 14 | 1, 2, 4, 5, 6, 13 | diag1f1 49025 | . 2 ⊢ (𝜑 → (1st ‘𝐿):𝐴–1-1→(𝐷 Func 𝐶)) | 
| 15 | f1f 6803 | . . . 4 ⊢ ((1st ‘𝐿):𝐴–1-1→(𝐷 Func 𝐶) → (1st ‘𝐿):𝐴⟶(𝐷 Func 𝐶)) | |
| 16 | 14, 15 | syl 17 | . . 3 ⊢ (𝜑 → (1st ‘𝐿):𝐴⟶(𝐷 Func 𝐶)) | 
| 17 | 3, 6 | termcbas 49152 | . . . . . 6 ⊢ (𝜑 → ∃𝑦(Base‘𝐷) = {𝑦}) | 
| 18 | 17 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷 Func 𝐶)) → ∃𝑦(Base‘𝐷) = {𝑦}) | 
| 19 | fveq2 6905 | . . . . . . 7 ⊢ (𝑥 = ((1st ‘𝑘)‘𝑦) → ((1st ‘𝐿)‘𝑥) = ((1st ‘𝐿)‘((1st ‘𝑘)‘𝑦))) | |
| 20 | 19 | eqeq2d 2747 | . . . . . 6 ⊢ (𝑥 = ((1st ‘𝑘)‘𝑦) → (𝑘 = ((1st ‘𝐿)‘𝑥) ↔ 𝑘 = ((1st ‘𝐿)‘((1st ‘𝑘)‘𝑦)))) | 
| 21 | 3 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑘 ∈ (𝐷 Func 𝐶)) ∧ (Base‘𝐷) = {𝑦}) → 𝐷 ∈ TermCat) | 
| 22 | simplr 768 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑘 ∈ (𝐷 Func 𝐶)) ∧ (Base‘𝐷) = {𝑦}) → 𝑘 ∈ (𝐷 Func 𝐶)) | |
| 23 | vsnid 4662 | . . . . . . . . 9 ⊢ 𝑦 ∈ {𝑦} | |
| 24 | simpr 484 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑘 ∈ (𝐷 Func 𝐶)) ∧ (Base‘𝐷) = {𝑦}) → (Base‘𝐷) = {𝑦}) | |
| 25 | 23, 24 | eleqtrrid 2847 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑘 ∈ (𝐷 Func 𝐶)) ∧ (Base‘𝐷) = {𝑦}) → 𝑦 ∈ (Base‘𝐷)) | 
| 26 | eqid 2736 | . . . . . . . 8 ⊢ ((1st ‘𝑘)‘𝑦) = ((1st ‘𝑘)‘𝑦) | |
| 27 | 5, 21, 22, 6, 25, 26, 1 | diag1f1olem 49191 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑘 ∈ (𝐷 Func 𝐶)) ∧ (Base‘𝐷) = {𝑦}) → (((1st ‘𝑘)‘𝑦) ∈ 𝐴 ∧ 𝑘 = ((1st ‘𝐿)‘((1st ‘𝑘)‘𝑦)))) | 
| 28 | 27 | simpld 494 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑘 ∈ (𝐷 Func 𝐶)) ∧ (Base‘𝐷) = {𝑦}) → ((1st ‘𝑘)‘𝑦) ∈ 𝐴) | 
| 29 | 27 | simprd 495 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑘 ∈ (𝐷 Func 𝐶)) ∧ (Base‘𝐷) = {𝑦}) → 𝑘 = ((1st ‘𝐿)‘((1st ‘𝑘)‘𝑦))) | 
| 30 | 20, 28, 29 | rspcedvdw 3624 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ (𝐷 Func 𝐶)) ∧ (Base‘𝐷) = {𝑦}) → ∃𝑥 ∈ 𝐴 𝑘 = ((1st ‘𝐿)‘𝑥)) | 
| 31 | 18, 30 | exlimddv 1934 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷 Func 𝐶)) → ∃𝑥 ∈ 𝐴 𝑘 = ((1st ‘𝐿)‘𝑥)) | 
| 32 | 31 | ralrimiva 3145 | . . 3 ⊢ (𝜑 → ∀𝑘 ∈ (𝐷 Func 𝐶)∃𝑥 ∈ 𝐴 𝑘 = ((1st ‘𝐿)‘𝑥)) | 
| 33 | dffo3 7121 | . . 3 ⊢ ((1st ‘𝐿):𝐴–onto→(𝐷 Func 𝐶) ↔ ((1st ‘𝐿):𝐴⟶(𝐷 Func 𝐶) ∧ ∀𝑘 ∈ (𝐷 Func 𝐶)∃𝑥 ∈ 𝐴 𝑘 = ((1st ‘𝐿)‘𝑥))) | |
| 34 | 16, 32, 33 | sylanbrc 583 | . 2 ⊢ (𝜑 → (1st ‘𝐿):𝐴–onto→(𝐷 Func 𝐶)) | 
| 35 | df-f1o 6567 | . 2 ⊢ ((1st ‘𝐿):𝐴–1-1-onto→(𝐷 Func 𝐶) ↔ ((1st ‘𝐿):𝐴–1-1→(𝐷 Func 𝐶) ∧ (1st ‘𝐿):𝐴–onto→(𝐷 Func 𝐶))) | |
| 36 | 14, 34, 35 | sylanbrc 583 | 1 ⊢ (𝜑 → (1st ‘𝐿):𝐴–1-1-onto→(𝐷 Func 𝐶)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∃wex 1778 ∈ wcel 2107 ∃!weu 2567 ≠ wne 2939 ∀wral 3060 ∃wrex 3069 ∅c0 4332 {csn 4625 ⟶wf 6556 –1-1→wf1 6557 –onto→wfo 6558 –1-1-onto→wf1o 6559 ‘cfv 6560 (class class class)co 7432 1st c1st 8013 Basecbs 17248 Catccat 17708 Func cfunc 17900 Δfunccdiag 18258 ThinCatcthinc 49091 TermCatctermc 49144 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-er 8746 df-map 8869 df-ixp 8939 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-2 12330 df-3 12331 df-4 12332 df-5 12333 df-6 12334 df-7 12335 df-8 12336 df-9 12337 df-n0 12529 df-z 12616 df-dec 12736 df-uz 12880 df-fz 13549 df-struct 17185 df-slot 17220 df-ndx 17232 df-base 17249 df-hom 17322 df-cco 17323 df-cat 17712 df-cid 17713 df-func 17904 df-nat 17992 df-fuc 17993 df-xpc 18218 df-1stf 18219 df-curf 18260 df-diag 18262 df-thinc 49092 df-termc 49145 | 
| This theorem is referenced by: diagciso 49197 | 
| Copyright terms: Public domain | W3C validator |