Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diag1f1o Structured version   Visualization version   GIF version

Theorem diag1f1o 49280
Description: The object part of the diagonal functor is a bijection if 𝐷 is terminal. So any functor from a terminal category is one-to-one correspondent to an object of the target base. (Contributed by Zhi Wang, 21-Oct-2025.)
Hypotheses
Ref Expression
diag1f1o.a 𝐴 = (Base‘𝐶)
diag1f1o.d (𝜑𝐷 ∈ TermCat)
diag1f1o.c (𝜑𝐶 ∈ Cat)
diag1f1o.l 𝐿 = (𝐶Δfunc𝐷)
Assertion
Ref Expression
diag1f1o (𝜑 → (1st𝐿):𝐴1-1-onto→(𝐷 Func 𝐶))

Proof of Theorem diag1f1o
Dummy variables 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 diag1f1o.l . . 3 𝐿 = (𝐶Δfunc𝐷)
2 diag1f1o.c . . 3 (𝜑𝐶 ∈ Cat)
3 diag1f1o.d . . . 4 (𝜑𝐷 ∈ TermCat)
43termccd 49226 . . 3 (𝜑𝐷 ∈ Cat)
5 diag1f1o.a . . 3 𝐴 = (Base‘𝐶)
6 eqid 2734 . . 3 (Base‘𝐷) = (Base‘𝐷)
76istermc2 49222 . . . . . . 7 (𝐷 ∈ TermCat ↔ (𝐷 ∈ ThinCat ∧ ∃!𝑦 𝑦 ∈ (Base‘𝐷)))
83, 7sylib 218 . . . . . 6 (𝜑 → (𝐷 ∈ ThinCat ∧ ∃!𝑦 𝑦 ∈ (Base‘𝐷)))
98simprd 495 . . . . 5 (𝜑 → ∃!𝑦 𝑦 ∈ (Base‘𝐷))
10 euex 2575 . . . . 5 (∃!𝑦 𝑦 ∈ (Base‘𝐷) → ∃𝑦 𝑦 ∈ (Base‘𝐷))
119, 10syl 17 . . . 4 (𝜑 → ∃𝑦 𝑦 ∈ (Base‘𝐷))
12 n0 4326 . . . 4 ((Base‘𝐷) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ (Base‘𝐷))
1311, 12sylibr 234 . . 3 (𝜑 → (Base‘𝐷) ≠ ∅)
141, 2, 4, 5, 6, 13diag1f1 49081 . 2 (𝜑 → (1st𝐿):𝐴1-1→(𝐷 Func 𝐶))
15 f1f 6771 . . . 4 ((1st𝐿):𝐴1-1→(𝐷 Func 𝐶) → (1st𝐿):𝐴⟶(𝐷 Func 𝐶))
1614, 15syl 17 . . 3 (𝜑 → (1st𝐿):𝐴⟶(𝐷 Func 𝐶))
173, 6termcbas 49227 . . . . . 6 (𝜑 → ∃𝑦(Base‘𝐷) = {𝑦})
1817adantr 480 . . . . 5 ((𝜑𝑘 ∈ (𝐷 Func 𝐶)) → ∃𝑦(Base‘𝐷) = {𝑦})
19 fveq2 6873 . . . . . . 7 (𝑥 = ((1st𝑘)‘𝑦) → ((1st𝐿)‘𝑥) = ((1st𝐿)‘((1st𝑘)‘𝑦)))
2019eqeq2d 2745 . . . . . 6 (𝑥 = ((1st𝑘)‘𝑦) → (𝑘 = ((1st𝐿)‘𝑥) ↔ 𝑘 = ((1st𝐿)‘((1st𝑘)‘𝑦))))
213ad2antrr 726 . . . . . . . 8 (((𝜑𝑘 ∈ (𝐷 Func 𝐶)) ∧ (Base‘𝐷) = {𝑦}) → 𝐷 ∈ TermCat)
22 simplr 768 . . . . . . . 8 (((𝜑𝑘 ∈ (𝐷 Func 𝐶)) ∧ (Base‘𝐷) = {𝑦}) → 𝑘 ∈ (𝐷 Func 𝐶))
23 vsnid 4637 . . . . . . . . 9 𝑦 ∈ {𝑦}
24 simpr 484 . . . . . . . . 9 (((𝜑𝑘 ∈ (𝐷 Func 𝐶)) ∧ (Base‘𝐷) = {𝑦}) → (Base‘𝐷) = {𝑦})
2523, 24eleqtrrid 2840 . . . . . . . 8 (((𝜑𝑘 ∈ (𝐷 Func 𝐶)) ∧ (Base‘𝐷) = {𝑦}) → 𝑦 ∈ (Base‘𝐷))
26 eqid 2734 . . . . . . . 8 ((1st𝑘)‘𝑦) = ((1st𝑘)‘𝑦)
275, 21, 22, 6, 25, 26, 1diag1f1olem 49279 . . . . . . 7 (((𝜑𝑘 ∈ (𝐷 Func 𝐶)) ∧ (Base‘𝐷) = {𝑦}) → (((1st𝑘)‘𝑦) ∈ 𝐴𝑘 = ((1st𝐿)‘((1st𝑘)‘𝑦))))
2827simpld 494 . . . . . 6 (((𝜑𝑘 ∈ (𝐷 Func 𝐶)) ∧ (Base‘𝐷) = {𝑦}) → ((1st𝑘)‘𝑦) ∈ 𝐴)
2927simprd 495 . . . . . 6 (((𝜑𝑘 ∈ (𝐷 Func 𝐶)) ∧ (Base‘𝐷) = {𝑦}) → 𝑘 = ((1st𝐿)‘((1st𝑘)‘𝑦)))
3020, 28, 29rspcedvdw 3602 . . . . 5 (((𝜑𝑘 ∈ (𝐷 Func 𝐶)) ∧ (Base‘𝐷) = {𝑦}) → ∃𝑥𝐴 𝑘 = ((1st𝐿)‘𝑥))
3118, 30exlimddv 1934 . . . 4 ((𝜑𝑘 ∈ (𝐷 Func 𝐶)) → ∃𝑥𝐴 𝑘 = ((1st𝐿)‘𝑥))
3231ralrimiva 3130 . . 3 (𝜑 → ∀𝑘 ∈ (𝐷 Func 𝐶)∃𝑥𝐴 𝑘 = ((1st𝐿)‘𝑥))
33 dffo3 7089 . . 3 ((1st𝐿):𝐴onto→(𝐷 Func 𝐶) ↔ ((1st𝐿):𝐴⟶(𝐷 Func 𝐶) ∧ ∀𝑘 ∈ (𝐷 Func 𝐶)∃𝑥𝐴 𝑘 = ((1st𝐿)‘𝑥)))
3416, 32, 33sylanbrc 583 . 2 (𝜑 → (1st𝐿):𝐴onto→(𝐷 Func 𝐶))
35 df-f1o 6535 . 2 ((1st𝐿):𝐴1-1-onto→(𝐷 Func 𝐶) ↔ ((1st𝐿):𝐴1-1→(𝐷 Func 𝐶) ∧ (1st𝐿):𝐴onto→(𝐷 Func 𝐶)))
3614, 34, 35sylanbrc 583 1 (𝜑 → (1st𝐿):𝐴1-1-onto→(𝐷 Func 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wex 1778  wcel 2107  ∃!weu 2566  wne 2931  wral 3050  wrex 3059  c0 4306  {csn 4599  wf 6524  1-1wf1 6525  ontowfo 6526  1-1-ontowf1o 6527  cfv 6528  (class class class)co 7400  1st c1st 7981  Basecbs 17215  Catccat 17663   Func cfunc 17854  Δfunccdiag 18211  ThinCatcthinc 49166  TermCatctermc 49219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5247  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724  ax-cnex 11178  ax-resscn 11179  ax-1cn 11180  ax-icn 11181  ax-addcl 11182  ax-addrcl 11183  ax-mulcl 11184  ax-mulrcl 11185  ax-mulcom 11186  ax-addass 11187  ax-mulass 11188  ax-distr 11189  ax-i2m1 11190  ax-1ne0 11191  ax-1rid 11192  ax-rnegex 11193  ax-rrecex 11194  ax-cnre 11195  ax-pre-lttri 11196  ax-pre-lttrn 11197  ax-pre-ltadd 11198  ax-pre-mulgt0 11199
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-tp 4604  df-op 4606  df-uni 4882  df-iun 4967  df-br 5118  df-opab 5180  df-mpt 5200  df-tr 5228  df-id 5546  df-eprel 5551  df-po 5559  df-so 5560  df-fr 5604  df-we 5606  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-pred 6288  df-ord 6353  df-on 6354  df-lim 6355  df-suc 6356  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-riota 7357  df-ov 7403  df-oprab 7404  df-mpo 7405  df-om 7857  df-1st 7983  df-2nd 7984  df-frecs 8275  df-wrecs 8306  df-recs 8380  df-rdg 8419  df-1o 8475  df-er 8714  df-map 8837  df-ixp 8907  df-en 8955  df-dom 8956  df-sdom 8957  df-fin 8958  df-pnf 11264  df-mnf 11265  df-xr 11266  df-ltxr 11267  df-le 11268  df-sub 11461  df-neg 11462  df-nn 12234  df-2 12296  df-3 12297  df-4 12298  df-5 12299  df-6 12300  df-7 12301  df-8 12302  df-9 12303  df-n0 12495  df-z 12582  df-dec 12702  df-uz 12846  df-fz 13515  df-struct 17153  df-slot 17188  df-ndx 17200  df-base 17216  df-hom 17282  df-cco 17283  df-cat 17667  df-cid 17668  df-func 17858  df-nat 17946  df-fuc 17947  df-xpc 18171  df-1stf 18172  df-curf 18213  df-diag 18215  df-thinc 49167  df-termc 49220
This theorem is referenced by:  diagciso  49285
  Copyright terms: Public domain W3C validator