| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > diag1f1o | Structured version Visualization version GIF version | ||
| Description: The object part of the diagonal functor is a bijection if 𝐷 is terminal. So any functor from a terminal category is one-to-one correspondent to an object of the target base. (Contributed by Zhi Wang, 21-Oct-2025.) |
| Ref | Expression |
|---|---|
| diag1f1o.a | ⊢ 𝐴 = (Base‘𝐶) |
| diag1f1o.d | ⊢ (𝜑 → 𝐷 ∈ TermCat) |
| diag1f1o.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| diag1f1o.l | ⊢ 𝐿 = (𝐶Δfunc𝐷) |
| Ref | Expression |
|---|---|
| diag1f1o | ⊢ (𝜑 → (1st ‘𝐿):𝐴–1-1-onto→(𝐷 Func 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | diag1f1o.l | . . 3 ⊢ 𝐿 = (𝐶Δfunc𝐷) | |
| 2 | diag1f1o.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 3 | diag1f1o.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ TermCat) | |
| 4 | 3 | termccd 49472 | . . 3 ⊢ (𝜑 → 𝐷 ∈ Cat) |
| 5 | diag1f1o.a | . . 3 ⊢ 𝐴 = (Base‘𝐶) | |
| 6 | eqid 2730 | . . 3 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 7 | 6 | istermc2 49468 | . . . . . . 7 ⊢ (𝐷 ∈ TermCat ↔ (𝐷 ∈ ThinCat ∧ ∃!𝑦 𝑦 ∈ (Base‘𝐷))) |
| 8 | 3, 7 | sylib 218 | . . . . . 6 ⊢ (𝜑 → (𝐷 ∈ ThinCat ∧ ∃!𝑦 𝑦 ∈ (Base‘𝐷))) |
| 9 | 8 | simprd 495 | . . . . 5 ⊢ (𝜑 → ∃!𝑦 𝑦 ∈ (Base‘𝐷)) |
| 10 | euex 2571 | . . . . 5 ⊢ (∃!𝑦 𝑦 ∈ (Base‘𝐷) → ∃𝑦 𝑦 ∈ (Base‘𝐷)) | |
| 11 | 9, 10 | syl 17 | . . . 4 ⊢ (𝜑 → ∃𝑦 𝑦 ∈ (Base‘𝐷)) |
| 12 | n0 4319 | . . . 4 ⊢ ((Base‘𝐷) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ (Base‘𝐷)) | |
| 13 | 11, 12 | sylibr 234 | . . 3 ⊢ (𝜑 → (Base‘𝐷) ≠ ∅) |
| 14 | 1, 2, 4, 5, 6, 13 | diag1f1 49300 | . 2 ⊢ (𝜑 → (1st ‘𝐿):𝐴–1-1→(𝐷 Func 𝐶)) |
| 15 | f1f 6759 | . . . 4 ⊢ ((1st ‘𝐿):𝐴–1-1→(𝐷 Func 𝐶) → (1st ‘𝐿):𝐴⟶(𝐷 Func 𝐶)) | |
| 16 | 14, 15 | syl 17 | . . 3 ⊢ (𝜑 → (1st ‘𝐿):𝐴⟶(𝐷 Func 𝐶)) |
| 17 | 3, 6 | termcbas 49473 | . . . . . 6 ⊢ (𝜑 → ∃𝑦(Base‘𝐷) = {𝑦}) |
| 18 | 17 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷 Func 𝐶)) → ∃𝑦(Base‘𝐷) = {𝑦}) |
| 19 | fveq2 6861 | . . . . . . 7 ⊢ (𝑥 = ((1st ‘𝑘)‘𝑦) → ((1st ‘𝐿)‘𝑥) = ((1st ‘𝐿)‘((1st ‘𝑘)‘𝑦))) | |
| 20 | 19 | eqeq2d 2741 | . . . . . 6 ⊢ (𝑥 = ((1st ‘𝑘)‘𝑦) → (𝑘 = ((1st ‘𝐿)‘𝑥) ↔ 𝑘 = ((1st ‘𝐿)‘((1st ‘𝑘)‘𝑦)))) |
| 21 | 3 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑘 ∈ (𝐷 Func 𝐶)) ∧ (Base‘𝐷) = {𝑦}) → 𝐷 ∈ TermCat) |
| 22 | simplr 768 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑘 ∈ (𝐷 Func 𝐶)) ∧ (Base‘𝐷) = {𝑦}) → 𝑘 ∈ (𝐷 Func 𝐶)) | |
| 23 | vsnid 4630 | . . . . . . . . 9 ⊢ 𝑦 ∈ {𝑦} | |
| 24 | simpr 484 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑘 ∈ (𝐷 Func 𝐶)) ∧ (Base‘𝐷) = {𝑦}) → (Base‘𝐷) = {𝑦}) | |
| 25 | 23, 24 | eleqtrrid 2836 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑘 ∈ (𝐷 Func 𝐶)) ∧ (Base‘𝐷) = {𝑦}) → 𝑦 ∈ (Base‘𝐷)) |
| 26 | eqid 2730 | . . . . . . . 8 ⊢ ((1st ‘𝑘)‘𝑦) = ((1st ‘𝑘)‘𝑦) | |
| 27 | 5, 21, 22, 6, 25, 26, 1 | diag1f1olem 49526 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑘 ∈ (𝐷 Func 𝐶)) ∧ (Base‘𝐷) = {𝑦}) → (((1st ‘𝑘)‘𝑦) ∈ 𝐴 ∧ 𝑘 = ((1st ‘𝐿)‘((1st ‘𝑘)‘𝑦)))) |
| 28 | 27 | simpld 494 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑘 ∈ (𝐷 Func 𝐶)) ∧ (Base‘𝐷) = {𝑦}) → ((1st ‘𝑘)‘𝑦) ∈ 𝐴) |
| 29 | 27 | simprd 495 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑘 ∈ (𝐷 Func 𝐶)) ∧ (Base‘𝐷) = {𝑦}) → 𝑘 = ((1st ‘𝐿)‘((1st ‘𝑘)‘𝑦))) |
| 30 | 20, 28, 29 | rspcedvdw 3594 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ (𝐷 Func 𝐶)) ∧ (Base‘𝐷) = {𝑦}) → ∃𝑥 ∈ 𝐴 𝑘 = ((1st ‘𝐿)‘𝑥)) |
| 31 | 18, 30 | exlimddv 1935 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷 Func 𝐶)) → ∃𝑥 ∈ 𝐴 𝑘 = ((1st ‘𝐿)‘𝑥)) |
| 32 | 31 | ralrimiva 3126 | . . 3 ⊢ (𝜑 → ∀𝑘 ∈ (𝐷 Func 𝐶)∃𝑥 ∈ 𝐴 𝑘 = ((1st ‘𝐿)‘𝑥)) |
| 33 | dffo3 7077 | . . 3 ⊢ ((1st ‘𝐿):𝐴–onto→(𝐷 Func 𝐶) ↔ ((1st ‘𝐿):𝐴⟶(𝐷 Func 𝐶) ∧ ∀𝑘 ∈ (𝐷 Func 𝐶)∃𝑥 ∈ 𝐴 𝑘 = ((1st ‘𝐿)‘𝑥))) | |
| 34 | 16, 32, 33 | sylanbrc 583 | . 2 ⊢ (𝜑 → (1st ‘𝐿):𝐴–onto→(𝐷 Func 𝐶)) |
| 35 | df-f1o 6521 | . 2 ⊢ ((1st ‘𝐿):𝐴–1-1-onto→(𝐷 Func 𝐶) ↔ ((1st ‘𝐿):𝐴–1-1→(𝐷 Func 𝐶) ∧ (1st ‘𝐿):𝐴–onto→(𝐷 Func 𝐶))) | |
| 36 | 14, 34, 35 | sylanbrc 583 | 1 ⊢ (𝜑 → (1st ‘𝐿):𝐴–1-1-onto→(𝐷 Func 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∃!weu 2562 ≠ wne 2926 ∀wral 3045 ∃wrex 3054 ∅c0 4299 {csn 4592 ⟶wf 6510 –1-1→wf1 6511 –onto→wfo 6512 –1-1-onto→wf1o 6513 ‘cfv 6514 (class class class)co 7390 1st c1st 7969 Basecbs 17186 Catccat 17632 Func cfunc 17823 Δfunccdiag 18180 ThinCatcthinc 49410 TermCatctermc 49465 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-fz 13476 df-struct 17124 df-slot 17159 df-ndx 17171 df-base 17187 df-hom 17251 df-cco 17252 df-cat 17636 df-cid 17637 df-func 17827 df-nat 17915 df-fuc 17916 df-xpc 18140 df-1stf 18141 df-curf 18182 df-diag 18184 df-thinc 49411 df-termc 49466 |
| This theorem is referenced by: diagciso 49532 lmdran 49664 cmdlan 49665 |
| Copyright terms: Public domain | W3C validator |