Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diag1f1o Structured version   Visualization version   GIF version

Theorem diag1f1o 49192
Description: The object part of the diagonal functor is a bijection if 𝐷 is terminal. So any functor from a terminal category is one-to-one correspondent to an object of the target base. (Contributed by Zhi Wang, 21-Oct-2025.)
Hypotheses
Ref Expression
diag1f1o.a 𝐴 = (Base‘𝐶)
diag1f1o.d (𝜑𝐷 ∈ TermCat)
diag1f1o.c (𝜑𝐶 ∈ Cat)
diag1f1o.l 𝐿 = (𝐶Δfunc𝐷)
Assertion
Ref Expression
diag1f1o (𝜑 → (1st𝐿):𝐴1-1-onto→(𝐷 Func 𝐶))

Proof of Theorem diag1f1o
Dummy variables 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 diag1f1o.l . . 3 𝐿 = (𝐶Δfunc𝐷)
2 diag1f1o.c . . 3 (𝜑𝐶 ∈ Cat)
3 diag1f1o.d . . . 4 (𝜑𝐷 ∈ TermCat)
43termccd 49151 . . 3 (𝜑𝐷 ∈ Cat)
5 diag1f1o.a . . 3 𝐴 = (Base‘𝐶)
6 eqid 2736 . . 3 (Base‘𝐷) = (Base‘𝐷)
76istermc2 49147 . . . . . . 7 (𝐷 ∈ TermCat ↔ (𝐷 ∈ ThinCat ∧ ∃!𝑦 𝑦 ∈ (Base‘𝐷)))
83, 7sylib 218 . . . . . 6 (𝜑 → (𝐷 ∈ ThinCat ∧ ∃!𝑦 𝑦 ∈ (Base‘𝐷)))
98simprd 495 . . . . 5 (𝜑 → ∃!𝑦 𝑦 ∈ (Base‘𝐷))
10 euex 2576 . . . . 5 (∃!𝑦 𝑦 ∈ (Base‘𝐷) → ∃𝑦 𝑦 ∈ (Base‘𝐷))
119, 10syl 17 . . . 4 (𝜑 → ∃𝑦 𝑦 ∈ (Base‘𝐷))
12 n0 4352 . . . 4 ((Base‘𝐷) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ (Base‘𝐷))
1311, 12sylibr 234 . . 3 (𝜑 → (Base‘𝐷) ≠ ∅)
141, 2, 4, 5, 6, 13diag1f1 49025 . 2 (𝜑 → (1st𝐿):𝐴1-1→(𝐷 Func 𝐶))
15 f1f 6803 . . . 4 ((1st𝐿):𝐴1-1→(𝐷 Func 𝐶) → (1st𝐿):𝐴⟶(𝐷 Func 𝐶))
1614, 15syl 17 . . 3 (𝜑 → (1st𝐿):𝐴⟶(𝐷 Func 𝐶))
173, 6termcbas 49152 . . . . . 6 (𝜑 → ∃𝑦(Base‘𝐷) = {𝑦})
1817adantr 480 . . . . 5 ((𝜑𝑘 ∈ (𝐷 Func 𝐶)) → ∃𝑦(Base‘𝐷) = {𝑦})
19 fveq2 6905 . . . . . . 7 (𝑥 = ((1st𝑘)‘𝑦) → ((1st𝐿)‘𝑥) = ((1st𝐿)‘((1st𝑘)‘𝑦)))
2019eqeq2d 2747 . . . . . 6 (𝑥 = ((1st𝑘)‘𝑦) → (𝑘 = ((1st𝐿)‘𝑥) ↔ 𝑘 = ((1st𝐿)‘((1st𝑘)‘𝑦))))
213ad2antrr 726 . . . . . . . 8 (((𝜑𝑘 ∈ (𝐷 Func 𝐶)) ∧ (Base‘𝐷) = {𝑦}) → 𝐷 ∈ TermCat)
22 simplr 768 . . . . . . . 8 (((𝜑𝑘 ∈ (𝐷 Func 𝐶)) ∧ (Base‘𝐷) = {𝑦}) → 𝑘 ∈ (𝐷 Func 𝐶))
23 vsnid 4662 . . . . . . . . 9 𝑦 ∈ {𝑦}
24 simpr 484 . . . . . . . . 9 (((𝜑𝑘 ∈ (𝐷 Func 𝐶)) ∧ (Base‘𝐷) = {𝑦}) → (Base‘𝐷) = {𝑦})
2523, 24eleqtrrid 2847 . . . . . . . 8 (((𝜑𝑘 ∈ (𝐷 Func 𝐶)) ∧ (Base‘𝐷) = {𝑦}) → 𝑦 ∈ (Base‘𝐷))
26 eqid 2736 . . . . . . . 8 ((1st𝑘)‘𝑦) = ((1st𝑘)‘𝑦)
275, 21, 22, 6, 25, 26, 1diag1f1olem 49191 . . . . . . 7 (((𝜑𝑘 ∈ (𝐷 Func 𝐶)) ∧ (Base‘𝐷) = {𝑦}) → (((1st𝑘)‘𝑦) ∈ 𝐴𝑘 = ((1st𝐿)‘((1st𝑘)‘𝑦))))
2827simpld 494 . . . . . 6 (((𝜑𝑘 ∈ (𝐷 Func 𝐶)) ∧ (Base‘𝐷) = {𝑦}) → ((1st𝑘)‘𝑦) ∈ 𝐴)
2927simprd 495 . . . . . 6 (((𝜑𝑘 ∈ (𝐷 Func 𝐶)) ∧ (Base‘𝐷) = {𝑦}) → 𝑘 = ((1st𝐿)‘((1st𝑘)‘𝑦)))
3020, 28, 29rspcedvdw 3624 . . . . 5 (((𝜑𝑘 ∈ (𝐷 Func 𝐶)) ∧ (Base‘𝐷) = {𝑦}) → ∃𝑥𝐴 𝑘 = ((1st𝐿)‘𝑥))
3118, 30exlimddv 1934 . . . 4 ((𝜑𝑘 ∈ (𝐷 Func 𝐶)) → ∃𝑥𝐴 𝑘 = ((1st𝐿)‘𝑥))
3231ralrimiva 3145 . . 3 (𝜑 → ∀𝑘 ∈ (𝐷 Func 𝐶)∃𝑥𝐴 𝑘 = ((1st𝐿)‘𝑥))
33 dffo3 7121 . . 3 ((1st𝐿):𝐴onto→(𝐷 Func 𝐶) ↔ ((1st𝐿):𝐴⟶(𝐷 Func 𝐶) ∧ ∀𝑘 ∈ (𝐷 Func 𝐶)∃𝑥𝐴 𝑘 = ((1st𝐿)‘𝑥)))
3416, 32, 33sylanbrc 583 . 2 (𝜑 → (1st𝐿):𝐴onto→(𝐷 Func 𝐶))
35 df-f1o 6567 . 2 ((1st𝐿):𝐴1-1-onto→(𝐷 Func 𝐶) ↔ ((1st𝐿):𝐴1-1→(𝐷 Func 𝐶) ∧ (1st𝐿):𝐴onto→(𝐷 Func 𝐶)))
3614, 34, 35sylanbrc 583 1 (𝜑 → (1st𝐿):𝐴1-1-onto→(𝐷 Func 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wex 1778  wcel 2107  ∃!weu 2567  wne 2939  wral 3060  wrex 3069  c0 4332  {csn 4625  wf 6556  1-1wf1 6557  ontowfo 6558  1-1-ontowf1o 6559  cfv 6560  (class class class)co 7432  1st c1st 8013  Basecbs 17248  Catccat 17708   Func cfunc 17900  Δfunccdiag 18258  ThinCatcthinc 49091  TermCatctermc 49144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-er 8746  df-map 8869  df-ixp 8939  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-fz 13549  df-struct 17185  df-slot 17220  df-ndx 17232  df-base 17249  df-hom 17322  df-cco 17323  df-cat 17712  df-cid 17713  df-func 17904  df-nat 17992  df-fuc 17993  df-xpc 18218  df-1stf 18219  df-curf 18260  df-diag 18262  df-thinc 49092  df-termc 49145
This theorem is referenced by:  diagciso  49197
  Copyright terms: Public domain W3C validator