| Step | Hyp | Ref
| Expression |
| 1 | | diag2f1o.l |
. . 3
⊢ 𝐿 = (𝐶Δfunc𝐷) |
| 2 | | diag2f1o.a |
. . 3
⊢ 𝐴 = (Base‘𝐶) |
| 3 | | eqid 2736 |
. . 3
⊢
(Base‘𝐷) =
(Base‘𝐷) |
| 4 | | diag2f1o.h |
. . 3
⊢ 𝐻 = (Hom ‘𝐶) |
| 5 | | diag2f1o.c |
. . 3
⊢ (𝜑 → 𝐶 ∈ Cat) |
| 6 | | diag2f1o.d |
. . . 4
⊢ (𝜑 → 𝐷 ∈ TermCat) |
| 7 | 6 | termccd 49332 |
. . 3
⊢ (𝜑 → 𝐷 ∈ Cat) |
| 8 | | diag2f1o.x |
. . 3
⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| 9 | | diag2f1o.y |
. . 3
⊢ (𝜑 → 𝑌 ∈ 𝐴) |
| 10 | 3 | istermc2 49328 |
. . . . . . 7
⊢ (𝐷 ∈ TermCat ↔ (𝐷 ∈ ThinCat ∧
∃!𝑧 𝑧 ∈ (Base‘𝐷))) |
| 11 | 6, 10 | sylib 218 |
. . . . . 6
⊢ (𝜑 → (𝐷 ∈ ThinCat ∧ ∃!𝑧 𝑧 ∈ (Base‘𝐷))) |
| 12 | 11 | simprd 495 |
. . . . 5
⊢ (𝜑 → ∃!𝑧 𝑧 ∈ (Base‘𝐷)) |
| 13 | | euex 2577 |
. . . . 5
⊢
(∃!𝑧 𝑧 ∈ (Base‘𝐷) → ∃𝑧 𝑧 ∈ (Base‘𝐷)) |
| 14 | 12, 13 | syl 17 |
. . . 4
⊢ (𝜑 → ∃𝑧 𝑧 ∈ (Base‘𝐷)) |
| 15 | | n0 4333 |
. . . 4
⊢
((Base‘𝐷) ≠
∅ ↔ ∃𝑧
𝑧 ∈ (Base‘𝐷)) |
| 16 | 14, 15 | sylibr 234 |
. . 3
⊢ (𝜑 → (Base‘𝐷) ≠ ∅) |
| 17 | | diag2f1o.n |
. . 3
⊢ 𝑁 = (𝐷 Nat 𝐶) |
| 18 | 1, 2, 3, 4, 5, 7, 8, 9, 16, 17 | diag2f1 49187 |
. 2
⊢ (𝜑 → (𝑋(2nd ‘𝐿)𝑌):(𝑋𝐻𝑌)–1-1→(((1st ‘𝐿)‘𝑋)𝑁((1st ‘𝐿)‘𝑌))) |
| 19 | | f1f 6779 |
. . . 4
⊢ ((𝑋(2nd ‘𝐿)𝑌):(𝑋𝐻𝑌)–1-1→(((1st ‘𝐿)‘𝑋)𝑁((1st ‘𝐿)‘𝑌)) → (𝑋(2nd ‘𝐿)𝑌):(𝑋𝐻𝑌)⟶(((1st ‘𝐿)‘𝑋)𝑁((1st ‘𝐿)‘𝑌))) |
| 20 | 18, 19 | syl 17 |
. . 3
⊢ (𝜑 → (𝑋(2nd ‘𝐿)𝑌):(𝑋𝐻𝑌)⟶(((1st ‘𝐿)‘𝑋)𝑁((1st ‘𝐿)‘𝑌))) |
| 21 | 6, 3 | termcbas 49333 |
. . . . . 6
⊢ (𝜑 → ∃𝑧(Base‘𝐷) = {𝑧}) |
| 22 | 21 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ (((1st ‘𝐿)‘𝑋)𝑁((1st ‘𝐿)‘𝑌))) → ∃𝑧(Base‘𝐷) = {𝑧}) |
| 23 | | fveq2 6881 |
. . . . . . 7
⊢ (𝑓 = (𝑚‘𝑧) → ((𝑋(2nd ‘𝐿)𝑌)‘𝑓) = ((𝑋(2nd ‘𝐿)𝑌)‘(𝑚‘𝑧))) |
| 24 | 23 | eqeq2d 2747 |
. . . . . 6
⊢ (𝑓 = (𝑚‘𝑧) → (𝑚 = ((𝑋(2nd ‘𝐿)𝑌)‘𝑓) ↔ 𝑚 = ((𝑋(2nd ‘𝐿)𝑌)‘(𝑚‘𝑧)))) |
| 25 | 8 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ (((1st ‘𝐿)‘𝑋)𝑁((1st ‘𝐿)‘𝑌))) ∧ (Base‘𝐷) = {𝑧}) → 𝑋 ∈ 𝐴) |
| 26 | 9 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ (((1st ‘𝐿)‘𝑋)𝑁((1st ‘𝐿)‘𝑌))) ∧ (Base‘𝐷) = {𝑧}) → 𝑌 ∈ 𝐴) |
| 27 | 6 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ (((1st ‘𝐿)‘𝑋)𝑁((1st ‘𝐿)‘𝑌))) ∧ (Base‘𝐷) = {𝑧}) → 𝐷 ∈ TermCat) |
| 28 | | simplr 768 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ (((1st ‘𝐿)‘𝑋)𝑁((1st ‘𝐿)‘𝑌))) ∧ (Base‘𝐷) = {𝑧}) → 𝑚 ∈ (((1st ‘𝐿)‘𝑋)𝑁((1st ‘𝐿)‘𝑌))) |
| 29 | | vsnid 4644 |
. . . . . . . . 9
⊢ 𝑧 ∈ {𝑧} |
| 30 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ (((1st ‘𝐿)‘𝑋)𝑁((1st ‘𝐿)‘𝑌))) ∧ (Base‘𝐷) = {𝑧}) → (Base‘𝐷) = {𝑧}) |
| 31 | 29, 30 | eleqtrrid 2842 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ (((1st ‘𝐿)‘𝑋)𝑁((1st ‘𝐿)‘𝑌))) ∧ (Base‘𝐷) = {𝑧}) → 𝑧 ∈ (Base‘𝐷)) |
| 32 | | eqid 2736 |
. . . . . . . 8
⊢ (𝑚‘𝑧) = (𝑚‘𝑧) |
| 33 | 1, 2, 4, 25, 26, 17, 27, 28, 3, 31, 32 | diag2f1olem 49388 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ (((1st ‘𝐿)‘𝑋)𝑁((1st ‘𝐿)‘𝑌))) ∧ (Base‘𝐷) = {𝑧}) → ((𝑚‘𝑧) ∈ (𝑋𝐻𝑌) ∧ 𝑚 = ((𝑋(2nd ‘𝐿)𝑌)‘(𝑚‘𝑧)))) |
| 34 | 33 | simpld 494 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ (((1st ‘𝐿)‘𝑋)𝑁((1st ‘𝐿)‘𝑌))) ∧ (Base‘𝐷) = {𝑧}) → (𝑚‘𝑧) ∈ (𝑋𝐻𝑌)) |
| 35 | 33 | simprd 495 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ (((1st ‘𝐿)‘𝑋)𝑁((1st ‘𝐿)‘𝑌))) ∧ (Base‘𝐷) = {𝑧}) → 𝑚 = ((𝑋(2nd ‘𝐿)𝑌)‘(𝑚‘𝑧))) |
| 36 | 24, 34, 35 | rspcedvdw 3609 |
. . . . 5
⊢ (((𝜑 ∧ 𝑚 ∈ (((1st ‘𝐿)‘𝑋)𝑁((1st ‘𝐿)‘𝑌))) ∧ (Base‘𝐷) = {𝑧}) → ∃𝑓 ∈ (𝑋𝐻𝑌)𝑚 = ((𝑋(2nd ‘𝐿)𝑌)‘𝑓)) |
| 37 | 22, 36 | exlimddv 1935 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ (((1st ‘𝐿)‘𝑋)𝑁((1st ‘𝐿)‘𝑌))) → ∃𝑓 ∈ (𝑋𝐻𝑌)𝑚 = ((𝑋(2nd ‘𝐿)𝑌)‘𝑓)) |
| 38 | 37 | ralrimiva 3133 |
. . 3
⊢ (𝜑 → ∀𝑚 ∈ (((1st ‘𝐿)‘𝑋)𝑁((1st ‘𝐿)‘𝑌))∃𝑓 ∈ (𝑋𝐻𝑌)𝑚 = ((𝑋(2nd ‘𝐿)𝑌)‘𝑓)) |
| 39 | | dffo3 7097 |
. . 3
⊢ ((𝑋(2nd ‘𝐿)𝑌):(𝑋𝐻𝑌)–onto→(((1st ‘𝐿)‘𝑋)𝑁((1st ‘𝐿)‘𝑌)) ↔ ((𝑋(2nd ‘𝐿)𝑌):(𝑋𝐻𝑌)⟶(((1st ‘𝐿)‘𝑋)𝑁((1st ‘𝐿)‘𝑌)) ∧ ∀𝑚 ∈ (((1st ‘𝐿)‘𝑋)𝑁((1st ‘𝐿)‘𝑌))∃𝑓 ∈ (𝑋𝐻𝑌)𝑚 = ((𝑋(2nd ‘𝐿)𝑌)‘𝑓))) |
| 40 | 20, 38, 39 | sylanbrc 583 |
. 2
⊢ (𝜑 → (𝑋(2nd ‘𝐿)𝑌):(𝑋𝐻𝑌)–onto→(((1st ‘𝐿)‘𝑋)𝑁((1st ‘𝐿)‘𝑌))) |
| 41 | | df-f1o 6543 |
. 2
⊢ ((𝑋(2nd ‘𝐿)𝑌):(𝑋𝐻𝑌)–1-1-onto→(((1st ‘𝐿)‘𝑋)𝑁((1st ‘𝐿)‘𝑌)) ↔ ((𝑋(2nd ‘𝐿)𝑌):(𝑋𝐻𝑌)–1-1→(((1st ‘𝐿)‘𝑋)𝑁((1st ‘𝐿)‘𝑌)) ∧ (𝑋(2nd ‘𝐿)𝑌):(𝑋𝐻𝑌)–onto→(((1st ‘𝐿)‘𝑋)𝑁((1st ‘𝐿)‘𝑌)))) |
| 42 | 18, 40, 41 | sylanbrc 583 |
1
⊢ (𝜑 → (𝑋(2nd ‘𝐿)𝑌):(𝑋𝐻𝑌)–1-1-onto→(((1st ‘𝐿)‘𝑋)𝑁((1st ‘𝐿)‘𝑌))) |