| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | diag2f1o.l | . . 3
⊢ 𝐿 = (𝐶Δfunc𝐷) | 
| 2 |  | diag2f1o.a | . . 3
⊢ 𝐴 = (Base‘𝐶) | 
| 3 |  | eqid 2736 | . . 3
⊢
(Base‘𝐷) =
(Base‘𝐷) | 
| 4 |  | diag2f1o.h | . . 3
⊢ 𝐻 = (Hom ‘𝐶) | 
| 5 |  | diag2f1o.c | . . 3
⊢ (𝜑 → 𝐶 ∈ Cat) | 
| 6 |  | diag2f1o.d | . . . 4
⊢ (𝜑 → 𝐷 ∈ TermCat) | 
| 7 | 6 | termccd 49151 | . . 3
⊢ (𝜑 → 𝐷 ∈ Cat) | 
| 8 |  | diag2f1o.x | . . 3
⊢ (𝜑 → 𝑋 ∈ 𝐴) | 
| 9 |  | diag2f1o.y | . . 3
⊢ (𝜑 → 𝑌 ∈ 𝐴) | 
| 10 | 3 | istermc2 49147 | . . . . . . 7
⊢ (𝐷 ∈ TermCat ↔ (𝐷 ∈ ThinCat ∧
∃!𝑧 𝑧 ∈ (Base‘𝐷))) | 
| 11 | 6, 10 | sylib 218 | . . . . . 6
⊢ (𝜑 → (𝐷 ∈ ThinCat ∧ ∃!𝑧 𝑧 ∈ (Base‘𝐷))) | 
| 12 | 11 | simprd 495 | . . . . 5
⊢ (𝜑 → ∃!𝑧 𝑧 ∈ (Base‘𝐷)) | 
| 13 |  | euex 2576 | . . . . 5
⊢
(∃!𝑧 𝑧 ∈ (Base‘𝐷) → ∃𝑧 𝑧 ∈ (Base‘𝐷)) | 
| 14 | 12, 13 | syl 17 | . . . 4
⊢ (𝜑 → ∃𝑧 𝑧 ∈ (Base‘𝐷)) | 
| 15 |  | n0 4352 | . . . 4
⊢
((Base‘𝐷) ≠
∅ ↔ ∃𝑧
𝑧 ∈ (Base‘𝐷)) | 
| 16 | 14, 15 | sylibr 234 | . . 3
⊢ (𝜑 → (Base‘𝐷) ≠ ∅) | 
| 17 |  | diag2f1o.n | . . 3
⊢ 𝑁 = (𝐷 Nat 𝐶) | 
| 18 | 1, 2, 3, 4, 5, 7, 8, 9, 16, 17 | diag2f1 49027 | . 2
⊢ (𝜑 → (𝑋(2nd ‘𝐿)𝑌):(𝑋𝐻𝑌)–1-1→(((1st ‘𝐿)‘𝑋)𝑁((1st ‘𝐿)‘𝑌))) | 
| 19 |  | f1f 6803 | . . . 4
⊢ ((𝑋(2nd ‘𝐿)𝑌):(𝑋𝐻𝑌)–1-1→(((1st ‘𝐿)‘𝑋)𝑁((1st ‘𝐿)‘𝑌)) → (𝑋(2nd ‘𝐿)𝑌):(𝑋𝐻𝑌)⟶(((1st ‘𝐿)‘𝑋)𝑁((1st ‘𝐿)‘𝑌))) | 
| 20 | 18, 19 | syl 17 | . . 3
⊢ (𝜑 → (𝑋(2nd ‘𝐿)𝑌):(𝑋𝐻𝑌)⟶(((1st ‘𝐿)‘𝑋)𝑁((1st ‘𝐿)‘𝑌))) | 
| 21 | 6, 3 | termcbas 49152 | . . . . . 6
⊢ (𝜑 → ∃𝑧(Base‘𝐷) = {𝑧}) | 
| 22 | 21 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ (((1st ‘𝐿)‘𝑋)𝑁((1st ‘𝐿)‘𝑌))) → ∃𝑧(Base‘𝐷) = {𝑧}) | 
| 23 |  | fveq2 6905 | . . . . . . 7
⊢ (𝑓 = (𝑚‘𝑧) → ((𝑋(2nd ‘𝐿)𝑌)‘𝑓) = ((𝑋(2nd ‘𝐿)𝑌)‘(𝑚‘𝑧))) | 
| 24 | 23 | eqeq2d 2747 | . . . . . 6
⊢ (𝑓 = (𝑚‘𝑧) → (𝑚 = ((𝑋(2nd ‘𝐿)𝑌)‘𝑓) ↔ 𝑚 = ((𝑋(2nd ‘𝐿)𝑌)‘(𝑚‘𝑧)))) | 
| 25 | 8 | ad2antrr 726 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ (((1st ‘𝐿)‘𝑋)𝑁((1st ‘𝐿)‘𝑌))) ∧ (Base‘𝐷) = {𝑧}) → 𝑋 ∈ 𝐴) | 
| 26 | 9 | ad2antrr 726 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ (((1st ‘𝐿)‘𝑋)𝑁((1st ‘𝐿)‘𝑌))) ∧ (Base‘𝐷) = {𝑧}) → 𝑌 ∈ 𝐴) | 
| 27 | 6 | ad2antrr 726 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ (((1st ‘𝐿)‘𝑋)𝑁((1st ‘𝐿)‘𝑌))) ∧ (Base‘𝐷) = {𝑧}) → 𝐷 ∈ TermCat) | 
| 28 |  | simplr 768 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ (((1st ‘𝐿)‘𝑋)𝑁((1st ‘𝐿)‘𝑌))) ∧ (Base‘𝐷) = {𝑧}) → 𝑚 ∈ (((1st ‘𝐿)‘𝑋)𝑁((1st ‘𝐿)‘𝑌))) | 
| 29 |  | vsnid 4662 | . . . . . . . . 9
⊢ 𝑧 ∈ {𝑧} | 
| 30 |  | simpr 484 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ (((1st ‘𝐿)‘𝑋)𝑁((1st ‘𝐿)‘𝑌))) ∧ (Base‘𝐷) = {𝑧}) → (Base‘𝐷) = {𝑧}) | 
| 31 | 29, 30 | eleqtrrid 2847 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ (((1st ‘𝐿)‘𝑋)𝑁((1st ‘𝐿)‘𝑌))) ∧ (Base‘𝐷) = {𝑧}) → 𝑧 ∈ (Base‘𝐷)) | 
| 32 |  | eqid 2736 | . . . . . . . 8
⊢ (𝑚‘𝑧) = (𝑚‘𝑧) | 
| 33 | 1, 2, 4, 25, 26, 17, 27, 28, 3, 31, 32 | diag2f1olem 49194 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ (((1st ‘𝐿)‘𝑋)𝑁((1st ‘𝐿)‘𝑌))) ∧ (Base‘𝐷) = {𝑧}) → ((𝑚‘𝑧) ∈ (𝑋𝐻𝑌) ∧ 𝑚 = ((𝑋(2nd ‘𝐿)𝑌)‘(𝑚‘𝑧)))) | 
| 34 | 33 | simpld 494 | . . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ (((1st ‘𝐿)‘𝑋)𝑁((1st ‘𝐿)‘𝑌))) ∧ (Base‘𝐷) = {𝑧}) → (𝑚‘𝑧) ∈ (𝑋𝐻𝑌)) | 
| 35 | 33 | simprd 495 | . . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ (((1st ‘𝐿)‘𝑋)𝑁((1st ‘𝐿)‘𝑌))) ∧ (Base‘𝐷) = {𝑧}) → 𝑚 = ((𝑋(2nd ‘𝐿)𝑌)‘(𝑚‘𝑧))) | 
| 36 | 24, 34, 35 | rspcedvdw 3624 | . . . . 5
⊢ (((𝜑 ∧ 𝑚 ∈ (((1st ‘𝐿)‘𝑋)𝑁((1st ‘𝐿)‘𝑌))) ∧ (Base‘𝐷) = {𝑧}) → ∃𝑓 ∈ (𝑋𝐻𝑌)𝑚 = ((𝑋(2nd ‘𝐿)𝑌)‘𝑓)) | 
| 37 | 22, 36 | exlimddv 1934 | . . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ (((1st ‘𝐿)‘𝑋)𝑁((1st ‘𝐿)‘𝑌))) → ∃𝑓 ∈ (𝑋𝐻𝑌)𝑚 = ((𝑋(2nd ‘𝐿)𝑌)‘𝑓)) | 
| 38 | 37 | ralrimiva 3145 | . . 3
⊢ (𝜑 → ∀𝑚 ∈ (((1st ‘𝐿)‘𝑋)𝑁((1st ‘𝐿)‘𝑌))∃𝑓 ∈ (𝑋𝐻𝑌)𝑚 = ((𝑋(2nd ‘𝐿)𝑌)‘𝑓)) | 
| 39 |  | dffo3 7121 | . . 3
⊢ ((𝑋(2nd ‘𝐿)𝑌):(𝑋𝐻𝑌)–onto→(((1st ‘𝐿)‘𝑋)𝑁((1st ‘𝐿)‘𝑌)) ↔ ((𝑋(2nd ‘𝐿)𝑌):(𝑋𝐻𝑌)⟶(((1st ‘𝐿)‘𝑋)𝑁((1st ‘𝐿)‘𝑌)) ∧ ∀𝑚 ∈ (((1st ‘𝐿)‘𝑋)𝑁((1st ‘𝐿)‘𝑌))∃𝑓 ∈ (𝑋𝐻𝑌)𝑚 = ((𝑋(2nd ‘𝐿)𝑌)‘𝑓))) | 
| 40 | 20, 38, 39 | sylanbrc 583 | . 2
⊢ (𝜑 → (𝑋(2nd ‘𝐿)𝑌):(𝑋𝐻𝑌)–onto→(((1st ‘𝐿)‘𝑋)𝑁((1st ‘𝐿)‘𝑌))) | 
| 41 |  | df-f1o 6567 | . 2
⊢ ((𝑋(2nd ‘𝐿)𝑌):(𝑋𝐻𝑌)–1-1-onto→(((1st ‘𝐿)‘𝑋)𝑁((1st ‘𝐿)‘𝑌)) ↔ ((𝑋(2nd ‘𝐿)𝑌):(𝑋𝐻𝑌)–1-1→(((1st ‘𝐿)‘𝑋)𝑁((1st ‘𝐿)‘𝑌)) ∧ (𝑋(2nd ‘𝐿)𝑌):(𝑋𝐻𝑌)–onto→(((1st ‘𝐿)‘𝑋)𝑁((1st ‘𝐿)‘𝑌)))) | 
| 42 | 18, 40, 41 | sylanbrc 583 | 1
⊢ (𝜑 → (𝑋(2nd ‘𝐿)𝑌):(𝑋𝐻𝑌)–1-1-onto→(((1st ‘𝐿)‘𝑋)𝑁((1st ‘𝐿)‘𝑌))) |