|   | Mathbox for Zhi Wang | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > thincmoALT | Structured version Visualization version GIF version | ||
| Description: Alternate proof of thincmo 49102. (Contributed by Zhi Wang, 21-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| thincmo.c | ⊢ (𝜑 → 𝐶 ∈ ThinCat) | 
| thincmo.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) | 
| thincmo.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) | 
| thincmo.b | ⊢ 𝐵 = (Base‘𝐶) | 
| thincmo.h | ⊢ 𝐻 = (Hom ‘𝐶) | 
| Ref | Expression | 
|---|---|
| thincmoALT | ⊢ (𝜑 → ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | thincmo.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ ThinCat) | |
| 2 | thincmo.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐶) | |
| 3 | thincmo.h | . . . . 5 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 4 | 2, 3 | isthinc 49093 | . . . 4 ⊢ (𝐶 ∈ ThinCat ↔ (𝐶 ∈ Cat ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦))) | 
| 5 | 4 | simprbi 496 | . . 3 ⊢ (𝐶 ∈ ThinCat → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦)) | 
| 6 | 1, 5 | syl 17 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦)) | 
| 7 | thincmo.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 8 | thincmo.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 9 | oveq12 7441 | . . . . . 6 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑥𝐻𝑦) = (𝑋𝐻𝑌)) | |
| 10 | 9 | eleq2d 2826 | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑓 ∈ (𝑥𝐻𝑦) ↔ 𝑓 ∈ (𝑋𝐻𝑌))) | 
| 11 | 10 | mobidv 2548 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦) ↔ ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌))) | 
| 12 | 11 | rspc2gv 3631 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦) → ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌))) | 
| 13 | 7, 8, 12 | syl2anc 584 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦) → ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌))) | 
| 14 | 6, 13 | mpd 15 | 1 ⊢ (𝜑 → ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∃*wmo 2537 ∀wral 3060 ‘cfv 6560 (class class class)co 7432 Basecbs 17248 Hom chom 17309 Catccat 17708 ThinCatcthinc 49091 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-nul 5305 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-mo 2539 df-clab 2714 df-cleq 2728 df-clel 2815 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-iota 6513 df-fv 6568 df-ov 7435 df-thinc 49092 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |