Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  thincmoALT Structured version   Visualization version   GIF version

Theorem thincmoALT 49282
Description: Alternate proof of thincmo 49281. (Contributed by Zhi Wang, 21-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
thincmo.c (𝜑𝐶 ∈ ThinCat)
thincmo.x (𝜑𝑋𝐵)
thincmo.y (𝜑𝑌𝐵)
thincmo.b 𝐵 = (Base‘𝐶)
thincmo.h 𝐻 = (Hom ‘𝐶)
Assertion
Ref Expression
thincmoALT (𝜑 → ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌))
Distinct variable groups:   𝐵,𝑓   𝐶,𝑓   𝑓,𝐻   𝑓,𝑋   𝑓,𝑌   𝜑,𝑓

Proof of Theorem thincmoALT
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 thincmo.c . . 3 (𝜑𝐶 ∈ ThinCat)
2 thincmo.b . . . . 5 𝐵 = (Base‘𝐶)
3 thincmo.h . . . . 5 𝐻 = (Hom ‘𝐶)
42, 3isthinc 49272 . . . 4 (𝐶 ∈ ThinCat ↔ (𝐶 ∈ Cat ∧ ∀𝑥𝐵𝑦𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦)))
54simprbi 496 . . 3 (𝐶 ∈ ThinCat → ∀𝑥𝐵𝑦𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦))
61, 5syl 17 . 2 (𝜑 → ∀𝑥𝐵𝑦𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦))
7 thincmo.x . . 3 (𝜑𝑋𝐵)
8 thincmo.y . . 3 (𝜑𝑌𝐵)
9 oveq12 7419 . . . . . 6 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑥𝐻𝑦) = (𝑋𝐻𝑌))
109eleq2d 2821 . . . . 5 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑓 ∈ (𝑥𝐻𝑦) ↔ 𝑓 ∈ (𝑋𝐻𝑌)))
1110mobidv 2549 . . . 4 ((𝑥 = 𝑋𝑦 = 𝑌) → (∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦) ↔ ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌)))
1211rspc2gv 3616 . . 3 ((𝑋𝐵𝑌𝐵) → (∀𝑥𝐵𝑦𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦) → ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌)))
137, 8, 12syl2anc 584 . 2 (𝜑 → (∀𝑥𝐵𝑦𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦) → ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌)))
146, 13mpd 15 1 (𝜑 → ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  ∃*wmo 2538  wral 3052  cfv 6536  (class class class)co 7410  Basecbs 17233  Hom chom 17287  Catccat 17681  ThinCatcthinc 49270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-nul 5281
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-mo 2540  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-iota 6489  df-fv 6544  df-ov 7413  df-thinc 49271
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator