Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  thincmoALT Structured version   Visualization version   GIF version

Theorem thincmoALT 46199
Description: Alternate proof for thincmo 46198. (Contributed by Zhi Wang, 21-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
thincmo.c (𝜑𝐶 ∈ ThinCat)
thincmo.x (𝜑𝑋𝐵)
thincmo.y (𝜑𝑌𝐵)
thincmo.b 𝐵 = (Base‘𝐶)
thincmo.h 𝐻 = (Hom ‘𝐶)
Assertion
Ref Expression
thincmoALT (𝜑 → ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌))
Distinct variable groups:   𝐵,𝑓   𝐶,𝑓   𝑓,𝐻   𝑓,𝑋   𝑓,𝑌   𝜑,𝑓

Proof of Theorem thincmoALT
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 thincmo.c . . 3 (𝜑𝐶 ∈ ThinCat)
2 thincmo.b . . . . 5 𝐵 = (Base‘𝐶)
3 thincmo.h . . . . 5 𝐻 = (Hom ‘𝐶)
42, 3isthinc 46190 . . . 4 (𝐶 ∈ ThinCat ↔ (𝐶 ∈ Cat ∧ ∀𝑥𝐵𝑦𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦)))
54simprbi 496 . . 3 (𝐶 ∈ ThinCat → ∀𝑥𝐵𝑦𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦))
61, 5syl 17 . 2 (𝜑 → ∀𝑥𝐵𝑦𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦))
7 thincmo.x . . 3 (𝜑𝑋𝐵)
8 thincmo.y . . 3 (𝜑𝑌𝐵)
9 oveq12 7264 . . . . . 6 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑥𝐻𝑦) = (𝑋𝐻𝑌))
109eleq2d 2824 . . . . 5 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑓 ∈ (𝑥𝐻𝑦) ↔ 𝑓 ∈ (𝑋𝐻𝑌)))
1110mobidv 2549 . . . 4 ((𝑥 = 𝑋𝑦 = 𝑌) → (∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦) ↔ ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌)))
1211rspc2gv 3561 . . 3 ((𝑋𝐵𝑌𝐵) → (∀𝑥𝐵𝑦𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦) → ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌)))
137, 8, 12syl2anc 583 . 2 (𝜑 → (∀𝑥𝐵𝑦𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦) → ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌)))
146, 13mpd 15 1 (𝜑 → ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  ∃*wmo 2538  wral 3063  cfv 6418  (class class class)co 7255  Basecbs 16840  Hom chom 16899  Catccat 17290  ThinCatcthinc 46188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-nul 5225
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-ov 7258  df-thinc 46189
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator