| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > thincmoALT | Structured version Visualization version GIF version | ||
| Description: Alternate proof of thincmo 49539. (Contributed by Zhi Wang, 21-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| thincmo.c | ⊢ (𝜑 → 𝐶 ∈ ThinCat) |
| thincmo.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| thincmo.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| thincmo.b | ⊢ 𝐵 = (Base‘𝐶) |
| thincmo.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| Ref | Expression |
|---|---|
| thincmoALT | ⊢ (𝜑 → ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | thincmo.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ ThinCat) | |
| 2 | thincmo.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐶) | |
| 3 | thincmo.h | . . . . 5 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 4 | 2, 3 | isthinc 49530 | . . . 4 ⊢ (𝐶 ∈ ThinCat ↔ (𝐶 ∈ Cat ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦))) |
| 5 | 4 | simprbi 496 | . . 3 ⊢ (𝐶 ∈ ThinCat → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦)) |
| 6 | 1, 5 | syl 17 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦)) |
| 7 | thincmo.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 8 | thincmo.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 9 | oveq12 7355 | . . . . . 6 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑥𝐻𝑦) = (𝑋𝐻𝑌)) | |
| 10 | 9 | eleq2d 2817 | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑓 ∈ (𝑥𝐻𝑦) ↔ 𝑓 ∈ (𝑋𝐻𝑌))) |
| 11 | 10 | mobidv 2544 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦) ↔ ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌))) |
| 12 | 11 | rspc2gv 3582 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦) → ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌))) |
| 13 | 7, 8, 12 | syl2anc 584 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦) → ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌))) |
| 14 | 6, 13 | mpd 15 | 1 ⊢ (𝜑 → ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃*wmo 2533 ∀wral 3047 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 Hom chom 17172 Catccat 17570 ThinCatcthinc 49528 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5242 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2535 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-iota 6437 df-fv 6489 df-ov 7349 df-thinc 49529 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |