Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > thincmod | Structured version Visualization version GIF version |
Description: At most one morphism in each hom-set (deduction form). (Contributed by Zhi Wang, 21-Sep-2024.) |
Ref | Expression |
---|---|
thincmo.c | ⊢ (𝜑 → 𝐶 ∈ ThinCat) |
thincmo.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
thincmo.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
thincn0eu.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) |
thincn0eu.h | ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) |
Ref | Expression |
---|---|
thincmod | ⊢ (𝜑 → ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | thincmo.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ ThinCat) | |
2 | thincmo.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
3 | thincn0eu.b | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) | |
4 | 2, 3 | eleqtrd 2836 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) |
5 | thincmo.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
6 | 5, 3 | eleqtrd 2836 | . . 3 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐶)) |
7 | eqid 2739 | . . 3 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
8 | eqid 2739 | . . 3 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
9 | 1, 4, 6, 7, 8 | thincmo 45833 | . 2 ⊢ (𝜑 → ∃*𝑓 𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌)) |
10 | thincn0eu.h | . . . . 5 ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) | |
11 | 10 | oveqd 7199 | . . . 4 ⊢ (𝜑 → (𝑋𝐻𝑌) = (𝑋(Hom ‘𝐶)𝑌)) |
12 | 11 | eleq2d 2819 | . . 3 ⊢ (𝜑 → (𝑓 ∈ (𝑋𝐻𝑌) ↔ 𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌))) |
13 | 12 | mobidv 2550 | . 2 ⊢ (𝜑 → (∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌) ↔ ∃*𝑓 𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌))) |
14 | 9, 13 | mpbird 260 | 1 ⊢ (𝜑 → ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2114 ∃*wmo 2539 ‘cfv 6349 (class class class)co 7182 Basecbs 16598 Hom chom 16691 ThinCatcthinc 45826 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-nul 5184 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ral 3059 df-rex 3060 df-rab 3063 df-v 3402 df-sbc 3686 df-csb 3801 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-nul 4222 df-sn 4527 df-pr 4529 df-op 4533 df-uni 4807 df-br 5041 df-iota 6307 df-fv 6357 df-ov 7185 df-thinc 45827 |
This theorem is referenced by: thincn0eu 45836 |
Copyright terms: Public domain | W3C validator |