Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  thincmod Structured version   Visualization version   GIF version

Theorem thincmod 46264
Description: At most one morphism in each hom-set (deduction form). (Contributed by Zhi Wang, 21-Sep-2024.)
Hypotheses
Ref Expression
thincmo.c (𝜑𝐶 ∈ ThinCat)
thincmo.x (𝜑𝑋𝐵)
thincmo.y (𝜑𝑌𝐵)
thincn0eu.b (𝜑𝐵 = (Base‘𝐶))
thincn0eu.h (𝜑𝐻 = (Hom ‘𝐶))
Assertion
Ref Expression
thincmod (𝜑 → ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌))
Distinct variable groups:   𝐵,𝑓   𝐶,𝑓   𝑓,𝐻   𝑓,𝑋   𝑓,𝑌   𝜑,𝑓

Proof of Theorem thincmod
StepHypRef Expression
1 thincmo.c . . 3 (𝜑𝐶 ∈ ThinCat)
2 thincmo.x . . . 4 (𝜑𝑋𝐵)
3 thincn0eu.b . . . 4 (𝜑𝐵 = (Base‘𝐶))
42, 3eleqtrd 2842 . . 3 (𝜑𝑋 ∈ (Base‘𝐶))
5 thincmo.y . . . 4 (𝜑𝑌𝐵)
65, 3eleqtrd 2842 . . 3 (𝜑𝑌 ∈ (Base‘𝐶))
7 eqid 2739 . . 3 (Base‘𝐶) = (Base‘𝐶)
8 eqid 2739 . . 3 (Hom ‘𝐶) = (Hom ‘𝐶)
91, 4, 6, 7, 8thincmo 46262 . 2 (𝜑 → ∃*𝑓 𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌))
10 thincn0eu.h . . . . 5 (𝜑𝐻 = (Hom ‘𝐶))
1110oveqd 7285 . . . 4 (𝜑 → (𝑋𝐻𝑌) = (𝑋(Hom ‘𝐶)𝑌))
1211eleq2d 2825 . . 3 (𝜑 → (𝑓 ∈ (𝑋𝐻𝑌) ↔ 𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌)))
1312mobidv 2550 . 2 (𝜑 → (∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌) ↔ ∃*𝑓 𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌)))
149, 13mpbird 256 1 (𝜑 → ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2109  ∃*wmo 2539  cfv 6430  (class class class)co 7268  Basecbs 16893  Hom chom 16954  ThinCatcthinc 46252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-nul 5233
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-iota 6388  df-fv 6438  df-ov 7271  df-thinc 46253
This theorem is referenced by:  thincn0eu  46265
  Copyright terms: Public domain W3C validator