Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  thincmod Structured version   Visualization version   GIF version

Theorem thincmod 45835
Description: At most one morphism in each hom-set (deduction form). (Contributed by Zhi Wang, 21-Sep-2024.)
Hypotheses
Ref Expression
thincmo.c (𝜑𝐶 ∈ ThinCat)
thincmo.x (𝜑𝑋𝐵)
thincmo.y (𝜑𝑌𝐵)
thincn0eu.b (𝜑𝐵 = (Base‘𝐶))
thincn0eu.h (𝜑𝐻 = (Hom ‘𝐶))
Assertion
Ref Expression
thincmod (𝜑 → ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌))
Distinct variable groups:   𝐵,𝑓   𝐶,𝑓   𝑓,𝐻   𝑓,𝑋   𝑓,𝑌   𝜑,𝑓

Proof of Theorem thincmod
StepHypRef Expression
1 thincmo.c . . 3 (𝜑𝐶 ∈ ThinCat)
2 thincmo.x . . . 4 (𝜑𝑋𝐵)
3 thincn0eu.b . . . 4 (𝜑𝐵 = (Base‘𝐶))
42, 3eleqtrd 2836 . . 3 (𝜑𝑋 ∈ (Base‘𝐶))
5 thincmo.y . . . 4 (𝜑𝑌𝐵)
65, 3eleqtrd 2836 . . 3 (𝜑𝑌 ∈ (Base‘𝐶))
7 eqid 2739 . . 3 (Base‘𝐶) = (Base‘𝐶)
8 eqid 2739 . . 3 (Hom ‘𝐶) = (Hom ‘𝐶)
91, 4, 6, 7, 8thincmo 45833 . 2 (𝜑 → ∃*𝑓 𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌))
10 thincn0eu.h . . . . 5 (𝜑𝐻 = (Hom ‘𝐶))
1110oveqd 7199 . . . 4 (𝜑 → (𝑋𝐻𝑌) = (𝑋(Hom ‘𝐶)𝑌))
1211eleq2d 2819 . . 3 (𝜑 → (𝑓 ∈ (𝑋𝐻𝑌) ↔ 𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌)))
1312mobidv 2550 . 2 (𝜑 → (∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌) ↔ ∃*𝑓 𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌)))
149, 13mpbird 260 1 (𝜑 → ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2114  ∃*wmo 2539  cfv 6349  (class class class)co 7182  Basecbs 16598  Hom chom 16691  ThinCatcthinc 45826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-nul 5184
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ral 3059  df-rex 3060  df-rab 3063  df-v 3402  df-sbc 3686  df-csb 3801  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4222  df-sn 4527  df-pr 4529  df-op 4533  df-uni 4807  df-br 5041  df-iota 6307  df-fv 6357  df-ov 7185  df-thinc 45827
This theorem is referenced by:  thincn0eu  45836
  Copyright terms: Public domain W3C validator