Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  thincmod Structured version   Visualization version   GIF version

Theorem thincmod 47739
Description: At most one morphism in each hom-set (deduction form). (Contributed by Zhi Wang, 21-Sep-2024.)
Hypotheses
Ref Expression
thincmo.c (𝜑𝐶 ∈ ThinCat)
thincmo.x (𝜑𝑋𝐵)
thincmo.y (𝜑𝑌𝐵)
thincn0eu.b (𝜑𝐵 = (Base‘𝐶))
thincn0eu.h (𝜑𝐻 = (Hom ‘𝐶))
Assertion
Ref Expression
thincmod (𝜑 → ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌))
Distinct variable groups:   𝐵,𝑓   𝐶,𝑓   𝑓,𝐻   𝑓,𝑋   𝑓,𝑌   𝜑,𝑓

Proof of Theorem thincmod
StepHypRef Expression
1 thincmo.c . . 3 (𝜑𝐶 ∈ ThinCat)
2 thincmo.x . . . 4 (𝜑𝑋𝐵)
3 thincn0eu.b . . . 4 (𝜑𝐵 = (Base‘𝐶))
42, 3eleqtrd 2834 . . 3 (𝜑𝑋 ∈ (Base‘𝐶))
5 thincmo.y . . . 4 (𝜑𝑌𝐵)
65, 3eleqtrd 2834 . . 3 (𝜑𝑌 ∈ (Base‘𝐶))
7 eqid 2731 . . 3 (Base‘𝐶) = (Base‘𝐶)
8 eqid 2731 . . 3 (Hom ‘𝐶) = (Hom ‘𝐶)
91, 4, 6, 7, 8thincmo 47737 . 2 (𝜑 → ∃*𝑓 𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌))
10 thincn0eu.h . . . . 5 (𝜑𝐻 = (Hom ‘𝐶))
1110oveqd 7429 . . . 4 (𝜑 → (𝑋𝐻𝑌) = (𝑋(Hom ‘𝐶)𝑌))
1211eleq2d 2818 . . 3 (𝜑 → (𝑓 ∈ (𝑋𝐻𝑌) ↔ 𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌)))
1312mobidv 2542 . 2 (𝜑 → (∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌) ↔ ∃*𝑓 𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌)))
149, 13mpbird 257 1 (𝜑 → ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  ∃*wmo 2531  cfv 6543  (class class class)co 7412  Basecbs 17149  Hom chom 17213  ThinCatcthinc 47727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-nul 5306
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-iota 6495  df-fv 6551  df-ov 7415  df-thinc 47728
This theorem is referenced by:  thincn0eu  47740
  Copyright terms: Public domain W3C validator