Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > thincmod | Structured version Visualization version GIF version |
Description: At most one morphism in each hom-set (deduction form). (Contributed by Zhi Wang, 21-Sep-2024.) |
Ref | Expression |
---|---|
thincmo.c | ⊢ (𝜑 → 𝐶 ∈ ThinCat) |
thincmo.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
thincmo.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
thincn0eu.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) |
thincn0eu.h | ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) |
Ref | Expression |
---|---|
thincmod | ⊢ (𝜑 → ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | thincmo.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ ThinCat) | |
2 | thincmo.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
3 | thincn0eu.b | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) | |
4 | 2, 3 | eleqtrd 2842 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) |
5 | thincmo.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
6 | 5, 3 | eleqtrd 2842 | . . 3 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐶)) |
7 | eqid 2739 | . . 3 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
8 | eqid 2739 | . . 3 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
9 | 1, 4, 6, 7, 8 | thincmo 46262 | . 2 ⊢ (𝜑 → ∃*𝑓 𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌)) |
10 | thincn0eu.h | . . . . 5 ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) | |
11 | 10 | oveqd 7285 | . . . 4 ⊢ (𝜑 → (𝑋𝐻𝑌) = (𝑋(Hom ‘𝐶)𝑌)) |
12 | 11 | eleq2d 2825 | . . 3 ⊢ (𝜑 → (𝑓 ∈ (𝑋𝐻𝑌) ↔ 𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌))) |
13 | 12 | mobidv 2550 | . 2 ⊢ (𝜑 → (∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌) ↔ ∃*𝑓 𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌))) |
14 | 9, 13 | mpbird 256 | 1 ⊢ (𝜑 → ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2109 ∃*wmo 2539 ‘cfv 6430 (class class class)co 7268 Basecbs 16893 Hom chom 16954 ThinCatcthinc 46252 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-nul 5233 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-iota 6388 df-fv 6438 df-ov 7271 df-thinc 46253 |
This theorem is referenced by: thincn0eu 46265 |
Copyright terms: Public domain | W3C validator |