Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  thincmod Structured version   Visualization version   GIF version

Theorem thincmod 49423
Description: At most one morphism in each hom-set (deduction form). (Contributed by Zhi Wang, 21-Sep-2024.)
Hypotheses
Ref Expression
thincmo.c (𝜑𝐶 ∈ ThinCat)
thincmo.x (𝜑𝑋𝐵)
thincmo.y (𝜑𝑌𝐵)
thincn0eu.b (𝜑𝐵 = (Base‘𝐶))
thincn0eu.h (𝜑𝐻 = (Hom ‘𝐶))
Assertion
Ref Expression
thincmod (𝜑 → ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌))
Distinct variable groups:   𝐵,𝑓   𝐶,𝑓   𝑓,𝐻   𝑓,𝑋   𝑓,𝑌   𝜑,𝑓

Proof of Theorem thincmod
StepHypRef Expression
1 thincmo.c . . 3 (𝜑𝐶 ∈ ThinCat)
2 thincmo.x . . . 4 (𝜑𝑋𝐵)
3 thincn0eu.b . . . 4 (𝜑𝐵 = (Base‘𝐶))
42, 3eleqtrd 2831 . . 3 (𝜑𝑋 ∈ (Base‘𝐶))
5 thincmo.y . . . 4 (𝜑𝑌𝐵)
65, 3eleqtrd 2831 . . 3 (𝜑𝑌 ∈ (Base‘𝐶))
7 eqid 2730 . . 3 (Base‘𝐶) = (Base‘𝐶)
8 eqid 2730 . . 3 (Hom ‘𝐶) = (Hom ‘𝐶)
91, 4, 6, 7, 8thincmo 49421 . 2 (𝜑 → ∃*𝑓 𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌))
10 thincn0eu.h . . . . 5 (𝜑𝐻 = (Hom ‘𝐶))
1110oveqd 7407 . . . 4 (𝜑 → (𝑋𝐻𝑌) = (𝑋(Hom ‘𝐶)𝑌))
1211eleq2d 2815 . . 3 (𝜑 → (𝑓 ∈ (𝑋𝐻𝑌) ↔ 𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌)))
1312mobidv 2543 . 2 (𝜑 → (∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌) ↔ ∃*𝑓 𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌)))
149, 13mpbird 257 1 (𝜑 → ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  ∃*wmo 2532  cfv 6514  (class class class)co 7390  Basecbs 17186  Hom chom 17238  ThinCatcthinc 49410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-nul 5264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-iota 6467  df-fv 6522  df-ov 7393  df-thinc 49411
This theorem is referenced by:  thincn0eu  49424
  Copyright terms: Public domain W3C validator