![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > thincmod | Structured version Visualization version GIF version |
Description: At most one morphism in each hom-set (deduction form). (Contributed by Zhi Wang, 21-Sep-2024.) |
Ref | Expression |
---|---|
thincmo.c | ⊢ (𝜑 → 𝐶 ∈ ThinCat) |
thincmo.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
thincmo.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
thincn0eu.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) |
thincn0eu.h | ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) |
Ref | Expression |
---|---|
thincmod | ⊢ (𝜑 → ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | thincmo.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ ThinCat) | |
2 | thincmo.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
3 | thincn0eu.b | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) | |
4 | 2, 3 | eleqtrd 2834 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) |
5 | thincmo.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
6 | 5, 3 | eleqtrd 2834 | . . 3 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐶)) |
7 | eqid 2731 | . . 3 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
8 | eqid 2731 | . . 3 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
9 | 1, 4, 6, 7, 8 | thincmo 47737 | . 2 ⊢ (𝜑 → ∃*𝑓 𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌)) |
10 | thincn0eu.h | . . . . 5 ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) | |
11 | 10 | oveqd 7429 | . . . 4 ⊢ (𝜑 → (𝑋𝐻𝑌) = (𝑋(Hom ‘𝐶)𝑌)) |
12 | 11 | eleq2d 2818 | . . 3 ⊢ (𝜑 → (𝑓 ∈ (𝑋𝐻𝑌) ↔ 𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌))) |
13 | 12 | mobidv 2542 | . 2 ⊢ (𝜑 → (∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌) ↔ ∃*𝑓 𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌))) |
14 | 9, 13 | mpbird 257 | 1 ⊢ (𝜑 → ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ∃*wmo 2531 ‘cfv 6543 (class class class)co 7412 Basecbs 17149 Hom chom 17213 ThinCatcthinc 47727 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-nul 5306 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-iota 6495 df-fv 6551 df-ov 7415 df-thinc 47728 |
This theorem is referenced by: thincn0eu 47740 |
Copyright terms: Public domain | W3C validator |