![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > thincmo | Structured version Visualization version GIF version |
Description: There is at most one morphism in each hom-set. (Contributed by Zhi Wang, 21-Sep-2024.) |
Ref | Expression |
---|---|
thincmo.c | ⊢ (𝜑 → 𝐶 ∈ ThinCat) |
thincmo.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
thincmo.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
thincmo.b | ⊢ 𝐵 = (Base‘𝐶) |
thincmo.h | ⊢ 𝐻 = (Hom ‘𝐶) |
Ref | Expression |
---|---|
thincmo | ⊢ (𝜑 → ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | thincmo.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
2 | 1 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑋𝐻𝑌))) → 𝑋 ∈ 𝐵) |
3 | thincmo.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
4 | 3 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑋𝐻𝑌))) → 𝑌 ∈ 𝐵) |
5 | simprl 770 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑋𝐻𝑌))) → 𝑓 ∈ (𝑋𝐻𝑌)) | |
6 | simprr 772 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑋𝐻𝑌))) → 𝑔 ∈ (𝑋𝐻𝑌)) | |
7 | thincmo.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐶) | |
8 | thincmo.h | . . . . 5 ⊢ 𝐻 = (Hom ‘𝐶) | |
9 | thincmo.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ ThinCat) | |
10 | 9 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑋𝐻𝑌))) → 𝐶 ∈ ThinCat) |
11 | 2, 4, 5, 6, 7, 8, 10 | thincmo2 48695 | . . . 4 ⊢ ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑋𝐻𝑌))) → 𝑓 = 𝑔) |
12 | 11 | ex 412 | . . 3 ⊢ (𝜑 → ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑋𝐻𝑌)) → 𝑓 = 𝑔)) |
13 | 12 | alrimivv 1927 | . 2 ⊢ (𝜑 → ∀𝑓∀𝑔((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑋𝐻𝑌)) → 𝑓 = 𝑔)) |
14 | eleq1w 2827 | . . 3 ⊢ (𝑓 = 𝑔 → (𝑓 ∈ (𝑋𝐻𝑌) ↔ 𝑔 ∈ (𝑋𝐻𝑌))) | |
15 | 14 | mo4 2569 | . 2 ⊢ (∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌) ↔ ∀𝑓∀𝑔((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑋𝐻𝑌)) → 𝑓 = 𝑔)) |
16 | 13, 15 | sylibr 234 | 1 ⊢ (𝜑 → ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1535 = wceq 1537 ∈ wcel 2108 ∃*wmo 2541 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 Hom chom 17322 ThinCatcthinc 48686 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-thinc 48687 |
This theorem is referenced by: thincmod 48698 oppcthin 48706 subthinc 48707 functhinclem1 48708 functhinclem4 48711 thincfth 48715 |
Copyright terms: Public domain | W3C validator |