![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > thincmo | Structured version Visualization version GIF version |
Description: There is at most one morphism in each hom-set. (Contributed by Zhi Wang, 21-Sep-2024.) |
Ref | Expression |
---|---|
thincmo.c | ⊢ (𝜑 → 𝐶 ∈ ThinCat) |
thincmo.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
thincmo.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
thincmo.b | ⊢ 𝐵 = (Base‘𝐶) |
thincmo.h | ⊢ 𝐻 = (Hom ‘𝐶) |
Ref | Expression |
---|---|
thincmo | ⊢ (𝜑 → ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | thincmo.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
2 | 1 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑋𝐻𝑌))) → 𝑋 ∈ 𝐵) |
3 | thincmo.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
4 | 3 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑋𝐻𝑌))) → 𝑌 ∈ 𝐵) |
5 | simprl 768 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑋𝐻𝑌))) → 𝑓 ∈ (𝑋𝐻𝑌)) | |
6 | simprr 770 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑋𝐻𝑌))) → 𝑔 ∈ (𝑋𝐻𝑌)) | |
7 | thincmo.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐶) | |
8 | thincmo.h | . . . . 5 ⊢ 𝐻 = (Hom ‘𝐶) | |
9 | thincmo.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ ThinCat) | |
10 | 9 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑋𝐻𝑌))) → 𝐶 ∈ ThinCat) |
11 | 2, 4, 5, 6, 7, 8, 10 | thincmo2 47736 | . . . 4 ⊢ ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑋𝐻𝑌))) → 𝑓 = 𝑔) |
12 | 11 | ex 412 | . . 3 ⊢ (𝜑 → ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑋𝐻𝑌)) → 𝑓 = 𝑔)) |
13 | 12 | alrimivv 1930 | . 2 ⊢ (𝜑 → ∀𝑓∀𝑔((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑋𝐻𝑌)) → 𝑓 = 𝑔)) |
14 | eleq1w 2815 | . . 3 ⊢ (𝑓 = 𝑔 → (𝑓 ∈ (𝑋𝐻𝑌) ↔ 𝑔 ∈ (𝑋𝐻𝑌))) | |
15 | 14 | mo4 2559 | . 2 ⊢ (∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌) ↔ ∀𝑓∀𝑔((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑋𝐻𝑌)) → 𝑓 = 𝑔)) |
16 | 13, 15 | sylibr 233 | 1 ⊢ (𝜑 → ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2105 ∃*wmo 2531 ‘cfv 6543 (class class class)co 7412 Basecbs 17149 Hom chom 17213 ThinCatcthinc 47727 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-nul 5306 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-iota 6495 df-fv 6551 df-ov 7415 df-thinc 47728 |
This theorem is referenced by: thincmod 47739 oppcthin 47747 subthinc 47748 functhinclem1 47749 functhinclem4 47752 thincfth 47756 |
Copyright terms: Public domain | W3C validator |