Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  thincmo Structured version   Visualization version   GIF version

Theorem thincmo 46198
Description: There is at most one morphism in each hom-set. (Contributed by Zhi Wang, 21-Sep-2024.)
Hypotheses
Ref Expression
thincmo.c (𝜑𝐶 ∈ ThinCat)
thincmo.x (𝜑𝑋𝐵)
thincmo.y (𝜑𝑌𝐵)
thincmo.b 𝐵 = (Base‘𝐶)
thincmo.h 𝐻 = (Hom ‘𝐶)
Assertion
Ref Expression
thincmo (𝜑 → ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌))
Distinct variable groups:   𝐵,𝑓   𝐶,𝑓   𝑓,𝐻   𝑓,𝑋   𝑓,𝑌   𝜑,𝑓

Proof of Theorem thincmo
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 thincmo.x . . . . . 6 (𝜑𝑋𝐵)
21adantr 480 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑋𝐻𝑌))) → 𝑋𝐵)
3 thincmo.y . . . . . 6 (𝜑𝑌𝐵)
43adantr 480 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑋𝐻𝑌))) → 𝑌𝐵)
5 simprl 767 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑋𝐻𝑌))) → 𝑓 ∈ (𝑋𝐻𝑌))
6 simprr 769 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑋𝐻𝑌))) → 𝑔 ∈ (𝑋𝐻𝑌))
7 thincmo.b . . . . 5 𝐵 = (Base‘𝐶)
8 thincmo.h . . . . 5 𝐻 = (Hom ‘𝐶)
9 thincmo.c . . . . . 6 (𝜑𝐶 ∈ ThinCat)
109adantr 480 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑋𝐻𝑌))) → 𝐶 ∈ ThinCat)
112, 4, 5, 6, 7, 8, 10thincmo2 46197 . . . 4 ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑋𝐻𝑌))) → 𝑓 = 𝑔)
1211ex 412 . . 3 (𝜑 → ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑋𝐻𝑌)) → 𝑓 = 𝑔))
1312alrimivv 1932 . 2 (𝜑 → ∀𝑓𝑔((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑋𝐻𝑌)) → 𝑓 = 𝑔))
14 eleq1w 2821 . . 3 (𝑓 = 𝑔 → (𝑓 ∈ (𝑋𝐻𝑌) ↔ 𝑔 ∈ (𝑋𝐻𝑌)))
1514mo4 2566 . 2 (∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌) ↔ ∀𝑓𝑔((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑋𝐻𝑌)) → 𝑓 = 𝑔))
1613, 15sylibr 233 1 (𝜑 → ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1537   = wceq 1539  wcel 2108  ∃*wmo 2538  cfv 6418  (class class class)co 7255  Basecbs 16840  Hom chom 16899  ThinCatcthinc 46188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-nul 5225
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-ov 7258  df-thinc 46189
This theorem is referenced by:  thincmod  46200  oppcthin  46208  subthinc  46209  functhinclem1  46210  functhinclem4  46213  thincfth  46217
  Copyright terms: Public domain W3C validator