| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > thincmo | Structured version Visualization version GIF version | ||
| Description: There is at most one morphism in each hom-set. (Contributed by Zhi Wang, 21-Sep-2024.) |
| Ref | Expression |
|---|---|
| thincmo.c | ⊢ (𝜑 → 𝐶 ∈ ThinCat) |
| thincmo.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| thincmo.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| thincmo.b | ⊢ 𝐵 = (Base‘𝐶) |
| thincmo.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| Ref | Expression |
|---|---|
| thincmo | ⊢ (𝜑 → ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | thincmo.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 2 | 1 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑋𝐻𝑌))) → 𝑋 ∈ 𝐵) |
| 3 | thincmo.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 4 | 3 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑋𝐻𝑌))) → 𝑌 ∈ 𝐵) |
| 5 | simprl 770 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑋𝐻𝑌))) → 𝑓 ∈ (𝑋𝐻𝑌)) | |
| 6 | simprr 772 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑋𝐻𝑌))) → 𝑔 ∈ (𝑋𝐻𝑌)) | |
| 7 | thincmo.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐶) | |
| 8 | thincmo.h | . . . . 5 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 9 | thincmo.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ ThinCat) | |
| 10 | 9 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑋𝐻𝑌))) → 𝐶 ∈ ThinCat) |
| 11 | 2, 4, 5, 6, 7, 8, 10 | thincmo2 49260 | . . . 4 ⊢ ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑋𝐻𝑌))) → 𝑓 = 𝑔) |
| 12 | 11 | ex 412 | . . 3 ⊢ (𝜑 → ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑋𝐻𝑌)) → 𝑓 = 𝑔)) |
| 13 | 12 | alrimivv 1928 | . 2 ⊢ (𝜑 → ∀𝑓∀𝑔((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑋𝐻𝑌)) → 𝑓 = 𝑔)) |
| 14 | eleq1w 2817 | . . 3 ⊢ (𝑓 = 𝑔 → (𝑓 ∈ (𝑋𝐻𝑌) ↔ 𝑔 ∈ (𝑋𝐻𝑌))) | |
| 15 | 14 | mo4 2565 | . 2 ⊢ (∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌) ↔ ∀𝑓∀𝑔((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑋𝐻𝑌)) → 𝑓 = 𝑔)) |
| 16 | 13, 15 | sylibr 234 | 1 ⊢ (𝜑 → ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2108 ∃*wmo 2537 ‘cfv 6530 (class class class)co 7403 Basecbs 17226 Hom chom 17280 ThinCatcthinc 49251 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-nul 5276 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6483 df-fv 6538 df-ov 7406 df-thinc 49252 |
| This theorem is referenced by: thincmod 49264 oppcthin 49272 subthinc 49277 functhinclem1 49278 functhinclem4 49281 thincfth 49286 thincciso2 49289 |
| Copyright terms: Public domain | W3C validator |