| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prss | Structured version Visualization version GIF version | ||
| Description: A pair of elements of a class is a subset of the class. Theorem 7.5 of [Quine] p. 49. (Contributed by NM, 30-May-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Proof shortened by JJ, 23-Jul-2021.) |
| Ref | Expression |
|---|---|
| prss.1 | ⊢ 𝐴 ∈ V |
| prss.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| prss | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prss.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | prss.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | prssg 4779 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶)) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 Vcvv 3444 ⊆ wss 3911 {cpr 4587 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-un 3916 df-ss 3928 df-sn 4586 df-pr 4588 |
| This theorem is referenced by: tpss 4797 uniintsn 4945 pwssun 5523 xpsspw 5763 dffv2 6938 fiint 9253 fiintOLD 9254 wunex2 10667 hashfun 14378 fun2dmnop0 14445 prdsle 17401 prdsless 17402 prdsleval 17416 pwsle 17431 acsfn2 17600 joinfval 18308 joindmss 18314 meetfval 18322 meetdmss 18328 clatl 18443 ipoval 18465 ipolerval 18467 eqgfval 19084 eqgval 19085 eqg0subg 19104 gaorb 19215 pmtrrn2 19366 efgcpbllema 19660 frgpuplem 19678 isnzr2hash 20404 thlle 21582 ltbval 21926 ltbwe 21927 opsrle 21930 opsrtoslem1 21938 isphtpc 24869 axlowdimlem4 28848 structgrssvtx 28927 structgrssiedg 28928 umgredg 29041 wlk1walk 29542 wlkonl1iedg 29567 wlkdlem2 29585 3wlkdlem6 30067 frcond2 30169 frcond3 30171 nfrgr2v 30174 frgr3vlem1 30175 frgr3vlem2 30176 2pthfrgrrn 30184 frgrncvvdeqlem2 30202 shincli 31264 chincli 31362 lsmsnorb 33335 quslsm 33349 coinfliprv 34447 altxpsspw 35938 mnurndlem1 44243 fourierdlem103 46180 fourierdlem104 46181 nnsum3primes4 47762 isubgr3stgrlem6 47943 grlimgrtrilem2 47967 gpgprismgr4cycllem8 48065 pgnbgreunbgr 48088 |
| Copyright terms: Public domain | W3C validator |