Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prss | Structured version Visualization version GIF version |
Description: A pair of elements of a class is a subset of the class. Theorem 7.5 of [Quine] p. 49. (Contributed by NM, 30-May-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Proof shortened by JJ, 23-Jul-2021.) |
Ref | Expression |
---|---|
prss.1 | ⊢ 𝐴 ∈ V |
prss.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
prss | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prss.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | prss.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | prssg 4752 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶)) | |
4 | 1, 2, 3 | mp2an 689 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∈ wcel 2106 Vcvv 3432 ⊆ wss 3887 {cpr 4563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-un 3892 df-in 3894 df-ss 3904 df-sn 4562 df-pr 4564 |
This theorem is referenced by: tpss 4768 uniintsn 4918 pwssun 5485 xpsspw 5719 dffv2 6863 fiint 9091 wunex2 10494 hashfun 14152 fun2dmnop0 14208 prdsle 17173 prdsless 17174 prdsleval 17188 pwsle 17203 acsfn2 17372 joinfval 18091 joindmss 18097 meetfval 18105 meetdmss 18111 clatl 18226 ipoval 18248 ipolerval 18250 eqgfval 18804 eqgval 18805 gaorb 18913 pmtrrn2 19068 efgcpbllema 19360 frgpuplem 19378 isnzr2hash 20535 thlle 20903 thlleOLD 20904 ltbval 21244 ltbwe 21245 opsrle 21248 opsrtoslem1 21262 isphtpc 24157 axlowdimlem4 27313 structgrssvtx 27394 structgrssiedg 27395 umgredg 27508 wlk1walk 28006 wlkonl1iedg 28033 wlkdlem2 28051 3wlkdlem6 28529 frcond2 28631 frcond3 28633 nfrgr2v 28636 frgr3vlem1 28637 frgr3vlem2 28638 2pthfrgrrn 28646 frgrncvvdeqlem2 28664 shincli 29724 chincli 29822 lsmsnorb 31579 quslsm 31593 coinfliprv 32449 altxpsspw 34279 mnurndlem1 41899 fourierdlem103 43750 fourierdlem104 43751 nnsum3primes4 45240 |
Copyright terms: Public domain | W3C validator |