![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prss | Structured version Visualization version GIF version |
Description: A pair of elements of a class is a subset of the class. Theorem 7.5 of [Quine] p. 49. (Contributed by NM, 30-May-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Proof shortened by JJ, 23-Jul-2021.) |
Ref | Expression |
---|---|
prss.1 | ⊢ 𝐴 ∈ V |
prss.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
prss | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prss.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | prss.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | prssg 4844 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶)) | |
4 | 1, 2, 3 | mp2an 691 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 {cpr 4650 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-un 3981 df-ss 3993 df-sn 4649 df-pr 4651 |
This theorem is referenced by: tpss 4862 uniintsn 5009 pwssun 5590 xpsspw 5833 dffv2 7017 fiint 9394 fiintOLD 9395 wunex2 10807 hashfun 14486 fun2dmnop0 14553 prdsle 17522 prdsless 17523 prdsleval 17537 pwsle 17552 acsfn2 17721 joinfval 18443 joindmss 18449 meetfval 18457 meetdmss 18463 clatl 18578 ipoval 18600 ipolerval 18602 eqgfval 19216 eqgval 19217 eqg0subg 19236 gaorb 19347 pmtrrn2 19502 efgcpbllema 19796 frgpuplem 19814 isnzr2hash 20545 thlle 21739 thlleOLD 21740 ltbval 22084 ltbwe 22085 opsrle 22088 opsrtoslem1 22102 isphtpc 25045 axlowdimlem4 28978 structgrssvtx 29059 structgrssiedg 29060 umgredg 29173 wlk1walk 29675 wlkonl1iedg 29701 wlkdlem2 29719 3wlkdlem6 30197 frcond2 30299 frcond3 30301 nfrgr2v 30304 frgr3vlem1 30305 frgr3vlem2 30306 2pthfrgrrn 30314 frgrncvvdeqlem2 30332 shincli 31394 chincli 31492 lsmsnorb 33384 quslsm 33398 coinfliprv 34447 altxpsspw 35941 mnurndlem1 44250 fourierdlem103 46130 fourierdlem104 46131 nnsum3primes4 47662 grlimgrtrilem2 47819 |
Copyright terms: Public domain | W3C validator |