Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prss | Structured version Visualization version GIF version |
Description: A pair of elements of a class is a subset of the class. Theorem 7.5 of [Quine] p. 49. (Contributed by NM, 30-May-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Proof shortened by JJ, 23-Jul-2021.) |
Ref | Expression |
---|---|
prss.1 | ⊢ 𝐴 ∈ V |
prss.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
prss | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prss.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | prss.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | prssg 4712 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶)) | |
4 | 1, 2, 3 | mp2an 691 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 ∈ wcel 2111 Vcvv 3409 ⊆ wss 3860 {cpr 4527 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-tru 1541 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-v 3411 df-un 3865 df-in 3867 df-ss 3877 df-sn 4526 df-pr 4528 |
This theorem is referenced by: tpss 4728 uniintsn 4880 pwssun 5430 xpsspw 5656 dffv2 6752 fiint 8841 wunex2 10211 hashfun 13861 fun2dmnop0 13917 prdsle 16807 prdsless 16808 prdsleval 16822 pwsle 16837 acsfn2 17006 joinfval 17691 joindmss 17697 meetfval 17705 meetdmss 17711 clatl 17806 ipoval 17844 ipolerval 17846 eqgfval 18409 eqgval 18410 gaorb 18518 pmtrrn2 18669 efgcpbllema 18961 frgpuplem 18979 isnzr2hash 20119 thlle 20476 ltbval 20817 ltbwe 20818 opsrle 20821 opsrtoslem1 20829 isphtpc 23709 axlowdimlem4 26852 structgrssvtx 26930 structgrssiedg 26931 umgredg 27044 wlk1walk 27541 wlkonl1iedg 27568 wlkdlem2 27586 3wlkdlem6 28063 frcond2 28165 frcond3 28167 nfrgr2v 28170 frgr3vlem1 28171 frgr3vlem2 28172 2pthfrgrrn 28180 frgrncvvdeqlem2 28198 shincli 29258 chincli 29356 lsmsnorb 31113 quslsm 31127 coinfliprv 31981 altxpsspw 33863 mnurndlem1 41407 fourierdlem103 43262 fourierdlem104 43263 nnsum3primes4 44732 |
Copyright terms: Public domain | W3C validator |