| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prss | Structured version Visualization version GIF version | ||
| Description: A pair of elements of a class is a subset of the class. Theorem 7.5 of [Quine] p. 49. (Contributed by NM, 30-May-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Proof shortened by JJ, 23-Jul-2021.) |
| Ref | Expression |
|---|---|
| prss.1 | ⊢ 𝐴 ∈ V |
| prss.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| prss | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prss.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | prss.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | prssg 4800 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶)) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 Vcvv 3464 ⊆ wss 3931 {cpr 4608 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-un 3936 df-ss 3948 df-sn 4607 df-pr 4609 |
| This theorem is referenced by: tpss 4818 uniintsn 4966 pwssun 5550 xpsspw 5793 dffv2 6979 fiint 9343 fiintOLD 9344 wunex2 10757 hashfun 14460 fun2dmnop0 14527 prdsle 17481 prdsless 17482 prdsleval 17496 pwsle 17511 acsfn2 17680 joinfval 18388 joindmss 18394 meetfval 18402 meetdmss 18408 clatl 18523 ipoval 18545 ipolerval 18547 eqgfval 19164 eqgval 19165 eqg0subg 19184 gaorb 19295 pmtrrn2 19446 efgcpbllema 19740 frgpuplem 19758 isnzr2hash 20484 thlle 21662 ltbval 22006 ltbwe 22007 opsrle 22010 opsrtoslem1 22018 isphtpc 24949 axlowdimlem4 28929 structgrssvtx 29008 structgrssiedg 29009 umgredg 29122 wlk1walk 29624 wlkonl1iedg 29650 wlkdlem2 29668 3wlkdlem6 30151 frcond2 30253 frcond3 30255 nfrgr2v 30258 frgr3vlem1 30259 frgr3vlem2 30260 2pthfrgrrn 30268 frgrncvvdeqlem2 30286 shincli 31348 chincli 31446 lsmsnorb 33411 quslsm 33425 coinfliprv 34520 altxpsspw 36000 mnurndlem1 44272 fourierdlem103 46205 fourierdlem104 46206 nnsum3primes4 47769 isubgr3stgrlem6 47950 grlimgrtrilem2 47974 gpgprismgr4cycllem8 48068 |
| Copyright terms: Public domain | W3C validator |