![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prss | Structured version Visualization version GIF version |
Description: A pair of elements of a class is a subset of the class. Theorem 7.5 of [Quine] p. 49. (Contributed by NM, 30-May-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Proof shortened by JJ, 23-Jul-2021.) |
Ref | Expression |
---|---|
prss.1 | ⊢ 𝐴 ∈ V |
prss.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
prss | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prss.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | prss.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | prssg 4824 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶)) | |
4 | 1, 2, 3 | mp2an 692 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2106 Vcvv 3478 ⊆ wss 3963 {cpr 4633 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-un 3968 df-ss 3980 df-sn 4632 df-pr 4634 |
This theorem is referenced by: tpss 4842 uniintsn 4990 pwssun 5580 xpsspw 5822 dffv2 7004 fiint 9364 fiintOLD 9365 wunex2 10776 hashfun 14473 fun2dmnop0 14540 prdsle 17509 prdsless 17510 prdsleval 17524 pwsle 17539 acsfn2 17708 joinfval 18431 joindmss 18437 meetfval 18445 meetdmss 18451 clatl 18566 ipoval 18588 ipolerval 18590 eqgfval 19207 eqgval 19208 eqg0subg 19227 gaorb 19338 pmtrrn2 19493 efgcpbllema 19787 frgpuplem 19805 isnzr2hash 20536 thlle 21734 thlleOLD 21735 ltbval 22079 ltbwe 22080 opsrle 22083 opsrtoslem1 22097 isphtpc 25040 axlowdimlem4 28975 structgrssvtx 29056 structgrssiedg 29057 umgredg 29170 wlk1walk 29672 wlkonl1iedg 29698 wlkdlem2 29716 3wlkdlem6 30194 frcond2 30296 frcond3 30298 nfrgr2v 30301 frgr3vlem1 30302 frgr3vlem2 30303 2pthfrgrrn 30311 frgrncvvdeqlem2 30329 shincli 31391 chincli 31489 lsmsnorb 33399 quslsm 33413 coinfliprv 34464 altxpsspw 35959 mnurndlem1 44277 fourierdlem103 46165 fourierdlem104 46166 nnsum3primes4 47713 isubgr3stgrlem6 47874 grlimgrtrilem2 47898 |
Copyright terms: Public domain | W3C validator |