| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prss | Structured version Visualization version GIF version | ||
| Description: A pair of elements of a class is a subset of the class. Theorem 7.5 of [Quine] p. 49. (Contributed by NM, 30-May-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Proof shortened by JJ, 23-Jul-2021.) |
| Ref | Expression |
|---|---|
| prss.1 | ⊢ 𝐴 ∈ V |
| prss.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| prss | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prss.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | prss.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | prssg 4786 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶)) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 Vcvv 3450 ⊆ wss 3917 {cpr 4594 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-un 3922 df-ss 3934 df-sn 4593 df-pr 4595 |
| This theorem is referenced by: tpss 4804 uniintsn 4952 pwssun 5533 xpsspw 5775 dffv2 6959 fiint 9284 fiintOLD 9285 wunex2 10698 hashfun 14409 fun2dmnop0 14476 prdsle 17432 prdsless 17433 prdsleval 17447 pwsle 17462 acsfn2 17631 joinfval 18339 joindmss 18345 meetfval 18353 meetdmss 18359 clatl 18474 ipoval 18496 ipolerval 18498 eqgfval 19115 eqgval 19116 eqg0subg 19135 gaorb 19246 pmtrrn2 19397 efgcpbllema 19691 frgpuplem 19709 isnzr2hash 20435 thlle 21613 ltbval 21957 ltbwe 21958 opsrle 21961 opsrtoslem1 21969 isphtpc 24900 axlowdimlem4 28879 structgrssvtx 28958 structgrssiedg 28959 umgredg 29072 wlk1walk 29574 wlkonl1iedg 29600 wlkdlem2 29618 3wlkdlem6 30101 frcond2 30203 frcond3 30205 nfrgr2v 30208 frgr3vlem1 30209 frgr3vlem2 30210 2pthfrgrrn 30218 frgrncvvdeqlem2 30236 shincli 31298 chincli 31396 lsmsnorb 33369 quslsm 33383 coinfliprv 34481 altxpsspw 35972 mnurndlem1 44277 fourierdlem103 46214 fourierdlem104 46215 nnsum3primes4 47793 isubgr3stgrlem6 47974 grlimgrtrilem2 47998 gpgprismgr4cycllem8 48096 pgnbgreunbgr 48119 |
| Copyright terms: Public domain | W3C validator |