Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prss | Structured version Visualization version GIF version |
Description: A pair of elements of a class is a subset of the class. Theorem 7.5 of [Quine] p. 49. (Contributed by NM, 30-May-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Proof shortened by JJ, 23-Jul-2021.) |
Ref | Expression |
---|---|
prss.1 | ⊢ 𝐴 ∈ V |
prss.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
prss | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prss.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | prss.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | prssg 4749 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶)) | |
4 | 1, 2, 3 | mp2an 688 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∈ wcel 2108 Vcvv 3422 ⊆ wss 3883 {cpr 4560 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-un 3888 df-in 3890 df-ss 3900 df-sn 4559 df-pr 4561 |
This theorem is referenced by: tpss 4765 uniintsn 4915 pwssun 5476 xpsspw 5708 dffv2 6845 fiint 9021 wunex2 10425 hashfun 14080 fun2dmnop0 14136 prdsle 17090 prdsless 17091 prdsleval 17105 pwsle 17120 acsfn2 17289 joinfval 18006 joindmss 18012 meetfval 18020 meetdmss 18026 clatl 18141 ipoval 18163 ipolerval 18165 eqgfval 18719 eqgval 18720 gaorb 18828 pmtrrn2 18983 efgcpbllema 19275 frgpuplem 19293 isnzr2hash 20448 thlle 20814 ltbval 21154 ltbwe 21155 opsrle 21158 opsrtoslem1 21172 isphtpc 24063 axlowdimlem4 27216 structgrssvtx 27297 structgrssiedg 27298 umgredg 27411 wlk1walk 27908 wlkonl1iedg 27935 wlkdlem2 27953 3wlkdlem6 28430 frcond2 28532 frcond3 28534 nfrgr2v 28537 frgr3vlem1 28538 frgr3vlem2 28539 2pthfrgrrn 28547 frgrncvvdeqlem2 28565 shincli 29625 chincli 29723 lsmsnorb 31481 quslsm 31495 coinfliprv 32349 altxpsspw 34206 mnurndlem1 41788 fourierdlem103 43640 fourierdlem104 43641 nnsum3primes4 45128 |
Copyright terms: Public domain | W3C validator |