| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prss | Structured version Visualization version GIF version | ||
| Description: A pair of elements of a class is a subset of the class. Theorem 7.5 of [Quine] p. 49. (Contributed by NM, 30-May-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Proof shortened by JJ, 23-Jul-2021.) |
| Ref | Expression |
|---|---|
| prss.1 | ⊢ 𝐴 ∈ V |
| prss.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| prss | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prss.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | prss.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | prssg 4773 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶)) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 Vcvv 3438 ⊆ wss 3905 {cpr 4581 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-un 3910 df-ss 3922 df-sn 4580 df-pr 4582 |
| This theorem is referenced by: tpss 4791 uniintsn 4938 pwssun 5515 xpsspw 5756 dffv2 6922 fiint 9235 fiintOLD 9236 wunex2 10651 hashfun 14362 fun2dmnop0 14429 prdsle 17384 prdsless 17385 prdsleval 17399 pwsle 17414 acsfn2 17587 joinfval 18295 joindmss 18301 meetfval 18309 meetdmss 18315 clatl 18432 ipoval 18454 ipolerval 18456 eqgfval 19073 eqgval 19074 eqg0subg 19093 gaorb 19204 pmtrrn2 19357 efgcpbllema 19651 frgpuplem 19669 isnzr2hash 20422 thlle 21622 ltbval 21966 ltbwe 21967 opsrle 21970 opsrtoslem1 21978 isphtpc 24909 axlowdimlem4 28908 structgrssvtx 28987 structgrssiedg 28988 umgredg 29101 wlk1walk 29602 wlkonl1iedg 29627 wlkdlem2 29645 3wlkdlem6 30127 frcond2 30229 frcond3 30231 nfrgr2v 30234 frgr3vlem1 30235 frgr3vlem2 30236 2pthfrgrrn 30244 frgrncvvdeqlem2 30262 shincli 31324 chincli 31422 lsmsnorb 33341 quslsm 33355 coinfliprv 34453 altxpsspw 35953 mnurndlem1 44257 fourierdlem103 46194 fourierdlem104 46195 nnsum3primes4 47776 isubgr3stgrlem6 47959 grlimprclnbgrvtx 47987 grlimgrtrilem2 47990 gpgprismgr4cycllem8 48090 pgnbgreunbgr 48113 |
| Copyright terms: Public domain | W3C validator |