| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prss | Structured version Visualization version GIF version | ||
| Description: A pair of elements of a class is a subset of the class. Theorem 7.5 of [Quine] p. 49. (Contributed by NM, 30-May-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Proof shortened by JJ, 23-Jul-2021.) |
| Ref | Expression |
|---|---|
| prss.1 | ⊢ 𝐴 ∈ V |
| prss.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| prss | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prss.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | prss.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | prssg 4772 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶)) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2113 Vcvv 3437 ⊆ wss 3898 {cpr 4579 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-un 3903 df-ss 3915 df-sn 4578 df-pr 4580 |
| This theorem is referenced by: tpss 4790 uniintsn 4937 pwssun 5513 xpsspw 5755 dffv2 6925 fiint 9220 wunex2 10638 hashfun 14348 fun2dmnop0 14415 prdsle 17370 prdsless 17371 prdsleval 17385 pwsle 17400 acsfn2 17573 joinfval 18281 joindmss 18287 meetfval 18295 meetdmss 18301 clatl 18418 ipoval 18440 ipolerval 18442 eqgfval 19092 eqgval 19093 eqg0subg 19112 gaorb 19223 pmtrrn2 19376 efgcpbllema 19670 frgpuplem 19688 isnzr2hash 20438 thlle 21638 ltbval 21981 ltbwe 21982 opsrle 21985 opsrtoslem1 21993 isphtpc 24923 axlowdimlem4 28927 structgrssvtx 29006 structgrssiedg 29007 umgredg 29120 wlk1walk 29621 wlkonl1iedg 29646 wlkdlem2 29664 3wlkdlem6 30149 frcond2 30251 frcond3 30253 nfrgr2v 30256 frgr3vlem1 30257 frgr3vlem2 30258 2pthfrgrrn 30266 frgrncvvdeqlem2 30284 shincli 31346 chincli 31444 lsmsnorb 33365 quslsm 33379 coinfliprv 34519 altxpsspw 36044 mnurndlem1 44401 fourierdlem103 46334 fourierdlem104 46335 nnsum3primes4 47915 isubgr3stgrlem6 48098 grlimprclnbgrvtx 48126 grlimgrtrilem2 48129 gpgprismgr4cycllem8 48229 pgnbgreunbgr 48252 |
| Copyright terms: Public domain | W3C validator |