![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prss | Structured version Visualization version GIF version |
Description: A pair of elements of a class is a subset of the class. Theorem 7.5 of [Quine] p. 49. (Contributed by NM, 30-May-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Proof shortened by JJ, 23-Jul-2021.) |
Ref | Expression |
---|---|
prss.1 | ⊢ 𝐴 ∈ V |
prss.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
prss | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prss.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | prss.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | prssg 4823 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶)) | |
4 | 1, 2, 3 | mp2an 691 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 ∈ wcel 2107 Vcvv 3475 ⊆ wss 3949 {cpr 4631 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3477 df-un 3954 df-in 3956 df-ss 3966 df-sn 4630 df-pr 4632 |
This theorem is referenced by: tpss 4839 uniintsn 4992 pwssun 5572 xpsspw 5810 dffv2 6987 fiint 9324 wunex2 10733 hashfun 14397 fun2dmnop0 14455 prdsle 17408 prdsless 17409 prdsleval 17423 pwsle 17438 acsfn2 17607 joinfval 18326 joindmss 18332 meetfval 18340 meetdmss 18346 clatl 18461 ipoval 18483 ipolerval 18485 eqgfval 19056 eqgval 19057 eqg0subg 19073 gaorb 19171 pmtrrn2 19328 efgcpbllema 19622 frgpuplem 19640 isnzr2hash 20298 thlle 21251 thlleOLD 21252 ltbval 21598 ltbwe 21599 opsrle 21602 opsrtoslem1 21616 isphtpc 24510 axlowdimlem4 28203 structgrssvtx 28284 structgrssiedg 28285 umgredg 28398 wlk1walk 28896 wlkonl1iedg 28922 wlkdlem2 28940 3wlkdlem6 29418 frcond2 29520 frcond3 29522 nfrgr2v 29525 frgr3vlem1 29526 frgr3vlem2 29527 2pthfrgrrn 29535 frgrncvvdeqlem2 29553 shincli 30615 chincli 30713 lsmsnorb 32501 quslsm 32516 coinfliprv 33481 altxpsspw 34949 mnurndlem1 43040 fourierdlem103 44925 fourierdlem104 44926 nnsum3primes4 46456 |
Copyright terms: Public domain | W3C validator |