| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prss | Structured version Visualization version GIF version | ||
| Description: A pair of elements of a class is a subset of the class. Theorem 7.5 of [Quine] p. 49. (Contributed by NM, 30-May-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Proof shortened by JJ, 23-Jul-2021.) |
| Ref | Expression |
|---|---|
| prss.1 | ⊢ 𝐴 ∈ V |
| prss.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| prss | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prss.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | prss.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | prssg 4771 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶)) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3902 {cpr 4578 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3907 df-ss 3919 df-sn 4577 df-pr 4579 |
| This theorem is referenced by: tpss 4789 uniintsn 4935 pwssun 5508 xpsspw 5749 dffv2 6917 fiint 9211 wunex2 10629 hashfun 14344 fun2dmnop0 14411 prdsle 17366 prdsless 17367 prdsleval 17381 pwsle 17396 acsfn2 17569 joinfval 18277 joindmss 18283 meetfval 18291 meetdmss 18297 clatl 18414 ipoval 18436 ipolerval 18438 eqgfval 19089 eqgval 19090 eqg0subg 19109 gaorb 19220 pmtrrn2 19373 efgcpbllema 19667 frgpuplem 19685 isnzr2hash 20435 thlle 21635 ltbval 21979 ltbwe 21980 opsrle 21983 opsrtoslem1 21991 isphtpc 24921 axlowdimlem4 28924 structgrssvtx 29003 structgrssiedg 29004 umgredg 29117 wlk1walk 29618 wlkonl1iedg 29643 wlkdlem2 29661 3wlkdlem6 30143 frcond2 30245 frcond3 30247 nfrgr2v 30250 frgr3vlem1 30251 frgr3vlem2 30252 2pthfrgrrn 30260 frgrncvvdeqlem2 30278 shincli 31340 chincli 31438 lsmsnorb 33354 quslsm 33368 coinfliprv 34494 altxpsspw 36017 mnurndlem1 44320 fourierdlem103 46253 fourierdlem104 46254 nnsum3primes4 47825 isubgr3stgrlem6 48008 grlimprclnbgrvtx 48036 grlimgrtrilem2 48039 gpgprismgr4cycllem8 48139 pgnbgreunbgr 48162 |
| Copyright terms: Public domain | W3C validator |