| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prss | Structured version Visualization version GIF version | ||
| Description: A pair of elements of a class is a subset of the class. Theorem 7.5 of [Quine] p. 49. (Contributed by NM, 30-May-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Proof shortened by JJ, 23-Jul-2021.) |
| Ref | Expression |
|---|---|
| prss.1 | ⊢ 𝐴 ∈ V |
| prss.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| prss | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prss.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | prss.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | prssg 4783 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶)) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 Vcvv 3447 ⊆ wss 3914 {cpr 4591 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-un 3919 df-ss 3931 df-sn 4590 df-pr 4592 |
| This theorem is referenced by: tpss 4801 uniintsn 4949 pwssun 5530 xpsspw 5772 dffv2 6956 fiint 9277 fiintOLD 9278 wunex2 10691 hashfun 14402 fun2dmnop0 14469 prdsle 17425 prdsless 17426 prdsleval 17440 pwsle 17455 acsfn2 17624 joinfval 18332 joindmss 18338 meetfval 18346 meetdmss 18352 clatl 18467 ipoval 18489 ipolerval 18491 eqgfval 19108 eqgval 19109 eqg0subg 19128 gaorb 19239 pmtrrn2 19390 efgcpbllema 19684 frgpuplem 19702 isnzr2hash 20428 thlle 21606 ltbval 21950 ltbwe 21951 opsrle 21954 opsrtoslem1 21962 isphtpc 24893 axlowdimlem4 28872 structgrssvtx 28951 structgrssiedg 28952 umgredg 29065 wlk1walk 29567 wlkonl1iedg 29593 wlkdlem2 29611 3wlkdlem6 30094 frcond2 30196 frcond3 30198 nfrgr2v 30201 frgr3vlem1 30202 frgr3vlem2 30203 2pthfrgrrn 30211 frgrncvvdeqlem2 30229 shincli 31291 chincli 31389 lsmsnorb 33362 quslsm 33376 coinfliprv 34474 altxpsspw 35965 mnurndlem1 44270 fourierdlem103 46207 fourierdlem104 46208 nnsum3primes4 47789 isubgr3stgrlem6 47970 grlimgrtrilem2 47994 gpgprismgr4cycllem8 48092 pgnbgreunbgr 48115 |
| Copyright terms: Public domain | W3C validator |