![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prss | Structured version Visualization version GIF version |
Description: A pair of elements of a class is a subset of the class. Theorem 7.5 of [Quine] p. 49. (Contributed by NM, 30-May-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Proof shortened by JJ, 23-Jul-2021.) |
Ref | Expression |
---|---|
prss.1 | ⊢ 𝐴 ∈ V |
prss.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
prss | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prss.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | prss.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | prssg 4653 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶)) | |
4 | 1, 2, 3 | mp2an 688 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 207 ∧ wa 396 ∈ wcel 2079 Vcvv 3432 ⊆ wss 3854 {cpr 4468 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1775 ax-4 1789 ax-5 1886 ax-6 1945 ax-7 1990 ax-8 2081 ax-9 2089 ax-10 2110 ax-11 2124 ax-12 2139 ax-ext 2767 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1080 df-tru 1523 df-ex 1760 df-nf 1764 df-sb 2041 df-clab 2774 df-cleq 2786 df-clel 2861 df-nfc 2933 df-v 3434 df-un 3859 df-in 3861 df-ss 3869 df-sn 4467 df-pr 4469 |
This theorem is referenced by: tpss 4669 uniintsn 4813 pwssun 5336 xpsspw 5560 dffv2 6615 fiint 8631 wunex2 9995 hashfun 13634 fun2dmnop0 13686 prdsle 16552 prdsless 16553 prdsleval 16567 pwsle 16582 acsfn2 16751 joinfval 17428 joindmss 17434 meetfval 17442 meetdmss 17448 clatl 17543 ipoval 17581 ipolerval 17583 eqgfval 18069 eqgval 18070 gaorb 18166 pmtrrn2 18307 efgcpbllema 18595 frgpuplem 18613 isnzr2hash 19714 ltbval 19927 ltbwe 19928 opsrle 19931 opsrtoslem1 19939 thlle 20511 isphtpc 23269 axlowdimlem4 26402 structgrssvtx 26480 structgrssiedg 26481 umgredg 26594 wlk1walk 27091 wlkonl1iedg 27117 wlkdlem2 27138 3wlkdlem6 27619 frcond2 27726 frcond3 27728 nfrgr2v 27731 frgr3vlem1 27732 frgr3vlem2 27733 2pthfrgrrn 27741 frgrncvvdeqlem2 27759 shincli 28818 chincli 28916 coinfliprv 31313 altxpsspw 32992 mnurndlem1 40066 fourierdlem103 41990 fourierdlem104 41991 nnsum3primes4 43389 |
Copyright terms: Public domain | W3C validator |