Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem102 Structured version   Visualization version   GIF version

Theorem fourierdlem102 45519
Description: For a piecewise smooth function, the left and the right limits exist at any point. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem102.f (πœ‘ β†’ 𝐹:β„βŸΆβ„)
fourierdlem102.t 𝑇 = (2 Β· Ο€)
fourierdlem102.per ((πœ‘ ∧ π‘₯ ∈ ℝ) β†’ (πΉβ€˜(π‘₯ + 𝑇)) = (πΉβ€˜π‘₯))
fourierdlem102.g 𝐺 = ((ℝ D 𝐹) β†Ύ (-Ο€(,)Ο€))
fourierdlem102.dmdv (πœ‘ β†’ ((-Ο€(,)Ο€) βˆ– dom 𝐺) ∈ Fin)
fourierdlem102.gcn (πœ‘ β†’ 𝐺 ∈ (dom 𝐺–cnβ†’β„‚))
fourierdlem102.rlim ((πœ‘ ∧ π‘₯ ∈ ((-Ο€[,)Ο€) βˆ– dom 𝐺)) β†’ ((𝐺 β†Ύ (π‘₯(,)+∞)) limβ„‚ π‘₯) β‰  βˆ…)
fourierdlem102.llim ((πœ‘ ∧ π‘₯ ∈ ((-Ο€(,]Ο€) βˆ– dom 𝐺)) β†’ ((𝐺 β†Ύ (-∞(,)π‘₯)) limβ„‚ π‘₯) β‰  βˆ…)
fourierdlem102.x (πœ‘ β†’ 𝑋 ∈ ℝ)
fourierdlem102.p 𝑃 = (𝑛 ∈ β„• ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((π‘β€˜0) = -Ο€ ∧ (π‘β€˜π‘›) = Ο€) ∧ βˆ€π‘– ∈ (0..^𝑛)(π‘β€˜π‘–) < (π‘β€˜(𝑖 + 1)))})
fourierdlem102.e 𝐸 = (π‘₯ ∈ ℝ ↦ (π‘₯ + ((βŒŠβ€˜((Ο€ βˆ’ π‘₯) / 𝑇)) Β· 𝑇)))
fourierdlem102.h 𝐻 = ({-Ο€, Ο€, (πΈβ€˜π‘‹)} βˆͺ ((-Ο€[,]Ο€) βˆ– dom 𝐺))
fourierdlem102.m 𝑀 = ((β™―β€˜π») βˆ’ 1)
fourierdlem102.q 𝑄 = (℩𝑔𝑔 Isom < , < ((0...𝑀), 𝐻))
Assertion
Ref Expression
fourierdlem102 (πœ‘ β†’ (((𝐹 β†Ύ (-∞(,)𝑋)) limβ„‚ 𝑋) β‰  βˆ… ∧ ((𝐹 β†Ύ (𝑋(,)+∞)) limβ„‚ 𝑋) β‰  βˆ…))
Distinct variable groups:   π‘₯,𝐸   𝑖,𝐹,𝑛,π‘₯   𝑖,𝐺,π‘₯   𝑔,𝐻   𝑔,𝑀   𝑖,𝑀,𝑛,𝑝   π‘₯,𝑀   𝑄,𝑔   𝑄,𝑖,𝑛,𝑝   π‘₯,𝑄   𝑇,𝑖,𝑛,𝑝   π‘₯,𝑇   𝑖,𝑋,𝑛,𝑝   π‘₯,𝑋   πœ‘,𝑔   πœ‘,𝑖,𝑛,π‘₯
Allowed substitution hints:   πœ‘(𝑝)   𝑃(π‘₯,𝑔,𝑖,𝑛,𝑝)   𝑇(𝑔)   𝐸(𝑔,𝑖,𝑛,𝑝)   𝐹(𝑔,𝑝)   𝐺(𝑔,𝑛,𝑝)   𝐻(π‘₯,𝑖,𝑛,𝑝)   𝑋(𝑔)

Proof of Theorem fourierdlem102
StepHypRef Expression
1 fourierdlem102.f . 2 (πœ‘ β†’ 𝐹:β„βŸΆβ„)
2 fourierdlem102.t . 2 𝑇 = (2 Β· Ο€)
3 fourierdlem102.per . 2 ((πœ‘ ∧ π‘₯ ∈ ℝ) β†’ (πΉβ€˜(π‘₯ + 𝑇)) = (πΉβ€˜π‘₯))
4 fourierdlem102.x . 2 (πœ‘ β†’ 𝑋 ∈ ℝ)
5 fourierdlem102.p . 2 𝑃 = (𝑛 ∈ β„• ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((π‘β€˜0) = -Ο€ ∧ (π‘β€˜π‘›) = Ο€) ∧ βˆ€π‘– ∈ (0..^𝑛)(π‘β€˜π‘–) < (π‘β€˜(𝑖 + 1)))})
6 fourierdlem102.m . . 3 𝑀 = ((β™―β€˜π») βˆ’ 1)
7 2z 12616 . . . . . 6 2 ∈ β„€
87a1i 11 . . . . 5 (πœ‘ β†’ 2 ∈ β„€)
9 fourierdlem102.h . . . . . . . 8 𝐻 = ({-Ο€, Ο€, (πΈβ€˜π‘‹)} βˆͺ ((-Ο€[,]Ο€) βˆ– dom 𝐺))
10 tpfi 9339 . . . . . . . . . 10 {-Ο€, Ο€, (πΈβ€˜π‘‹)} ∈ Fin
1110a1i 11 . . . . . . . . 9 (πœ‘ β†’ {-Ο€, Ο€, (πΈβ€˜π‘‹)} ∈ Fin)
12 pire 26380 . . . . . . . . . . . . . . 15 Ο€ ∈ ℝ
1312renegcli 11543 . . . . . . . . . . . . . 14 -Ο€ ∈ ℝ
1413rexri 11294 . . . . . . . . . . . . 13 -Ο€ ∈ ℝ*
1512rexri 11294 . . . . . . . . . . . . 13 Ο€ ∈ ℝ*
16 negpilt0 44585 . . . . . . . . . . . . . . 15 -Ο€ < 0
17 pipos 26382 . . . . . . . . . . . . . . 15 0 < Ο€
18 0re 11238 . . . . . . . . . . . . . . . 16 0 ∈ ℝ
1913, 18, 12lttri 11362 . . . . . . . . . . . . . . 15 ((-Ο€ < 0 ∧ 0 < Ο€) β†’ -Ο€ < Ο€)
2016, 17, 19mp2an 691 . . . . . . . . . . . . . 14 -Ο€ < Ο€
2113, 12, 20ltleii 11359 . . . . . . . . . . . . 13 -Ο€ ≀ Ο€
22 prunioo 13482 . . . . . . . . . . . . 13 ((-Ο€ ∈ ℝ* ∧ Ο€ ∈ ℝ* ∧ -Ο€ ≀ Ο€) β†’ ((-Ο€(,)Ο€) βˆͺ {-Ο€, Ο€}) = (-Ο€[,]Ο€))
2314, 15, 21, 22mp3an 1458 . . . . . . . . . . . 12 ((-Ο€(,)Ο€) βˆͺ {-Ο€, Ο€}) = (-Ο€[,]Ο€)
2423difeq1i 4114 . . . . . . . . . . 11 (((-Ο€(,)Ο€) βˆͺ {-Ο€, Ο€}) βˆ– dom 𝐺) = ((-Ο€[,]Ο€) βˆ– dom 𝐺)
25 difundir 4276 . . . . . . . . . . 11 (((-Ο€(,)Ο€) βˆͺ {-Ο€, Ο€}) βˆ– dom 𝐺) = (((-Ο€(,)Ο€) βˆ– dom 𝐺) βˆͺ ({-Ο€, Ο€} βˆ– dom 𝐺))
2624, 25eqtr3i 2757 . . . . . . . . . 10 ((-Ο€[,]Ο€) βˆ– dom 𝐺) = (((-Ο€(,)Ο€) βˆ– dom 𝐺) βˆͺ ({-Ο€, Ο€} βˆ– dom 𝐺))
27 fourierdlem102.dmdv . . . . . . . . . . 11 (πœ‘ β†’ ((-Ο€(,)Ο€) βˆ– dom 𝐺) ∈ Fin)
28 prfi 9338 . . . . . . . . . . . 12 {-Ο€, Ο€} ∈ Fin
29 diffi 9195 . . . . . . . . . . . 12 ({-Ο€, Ο€} ∈ Fin β†’ ({-Ο€, Ο€} βˆ– dom 𝐺) ∈ Fin)
3028, 29mp1i 13 . . . . . . . . . . 11 (πœ‘ β†’ ({-Ο€, Ο€} βˆ– dom 𝐺) ∈ Fin)
31 unfi 9188 . . . . . . . . . . 11 ((((-Ο€(,)Ο€) βˆ– dom 𝐺) ∈ Fin ∧ ({-Ο€, Ο€} βˆ– dom 𝐺) ∈ Fin) β†’ (((-Ο€(,)Ο€) βˆ– dom 𝐺) βˆͺ ({-Ο€, Ο€} βˆ– dom 𝐺)) ∈ Fin)
3227, 30, 31syl2anc 583 . . . . . . . . . 10 (πœ‘ β†’ (((-Ο€(,)Ο€) βˆ– dom 𝐺) βˆͺ ({-Ο€, Ο€} βˆ– dom 𝐺)) ∈ Fin)
3326, 32eqeltrid 2832 . . . . . . . . 9 (πœ‘ β†’ ((-Ο€[,]Ο€) βˆ– dom 𝐺) ∈ Fin)
34 unfi 9188 . . . . . . . . 9 (({-Ο€, Ο€, (πΈβ€˜π‘‹)} ∈ Fin ∧ ((-Ο€[,]Ο€) βˆ– dom 𝐺) ∈ Fin) β†’ ({-Ο€, Ο€, (πΈβ€˜π‘‹)} βˆͺ ((-Ο€[,]Ο€) βˆ– dom 𝐺)) ∈ Fin)
3511, 33, 34syl2anc 583 . . . . . . . 8 (πœ‘ β†’ ({-Ο€, Ο€, (πΈβ€˜π‘‹)} βˆͺ ((-Ο€[,]Ο€) βˆ– dom 𝐺)) ∈ Fin)
369, 35eqeltrid 2832 . . . . . . 7 (πœ‘ β†’ 𝐻 ∈ Fin)
37 hashcl 14339 . . . . . . 7 (𝐻 ∈ Fin β†’ (β™―β€˜π») ∈ β„•0)
3836, 37syl 17 . . . . . 6 (πœ‘ β†’ (β™―β€˜π») ∈ β„•0)
3938nn0zd 12606 . . . . 5 (πœ‘ β†’ (β™―β€˜π») ∈ β„€)
4013, 20ltneii 11349 . . . . . . 7 -Ο€ β‰  Ο€
41 hashprg 14378 . . . . . . . 8 ((-Ο€ ∈ ℝ ∧ Ο€ ∈ ℝ) β†’ (-Ο€ β‰  Ο€ ↔ (β™―β€˜{-Ο€, Ο€}) = 2))
4213, 12, 41mp2an 691 . . . . . . 7 (-Ο€ β‰  Ο€ ↔ (β™―β€˜{-Ο€, Ο€}) = 2)
4340, 42mpbi 229 . . . . . 6 (β™―β€˜{-Ο€, Ο€}) = 2
4410elexi 3489 . . . . . . . . . 10 {-Ο€, Ο€, (πΈβ€˜π‘‹)} ∈ V
45 ovex 7447 . . . . . . . . . . 11 (-Ο€[,]Ο€) ∈ V
46 difexg 5323 . . . . . . . . . . 11 ((-Ο€[,]Ο€) ∈ V β†’ ((-Ο€[,]Ο€) βˆ– dom 𝐺) ∈ V)
4745, 46ax-mp 5 . . . . . . . . . 10 ((-Ο€[,]Ο€) βˆ– dom 𝐺) ∈ V
4844, 47unex 7742 . . . . . . . . 9 ({-Ο€, Ο€, (πΈβ€˜π‘‹)} βˆͺ ((-Ο€[,]Ο€) βˆ– dom 𝐺)) ∈ V
499, 48eqeltri 2824 . . . . . . . 8 𝐻 ∈ V
50 negex 11480 . . . . . . . . . . 11 -Ο€ ∈ V
5150tpid1 4768 . . . . . . . . . 10 -Ο€ ∈ {-Ο€, Ο€, (πΈβ€˜π‘‹)}
5212elexi 3489 . . . . . . . . . . 11 Ο€ ∈ V
5352tpid2 4770 . . . . . . . . . 10 Ο€ ∈ {-Ο€, Ο€, (πΈβ€˜π‘‹)}
54 prssi 4820 . . . . . . . . . 10 ((-Ο€ ∈ {-Ο€, Ο€, (πΈβ€˜π‘‹)} ∧ Ο€ ∈ {-Ο€, Ο€, (πΈβ€˜π‘‹)}) β†’ {-Ο€, Ο€} βŠ† {-Ο€, Ο€, (πΈβ€˜π‘‹)})
5551, 53, 54mp2an 691 . . . . . . . . 9 {-Ο€, Ο€} βŠ† {-Ο€, Ο€, (πΈβ€˜π‘‹)}
56 ssun1 4168 . . . . . . . . . 10 {-Ο€, Ο€, (πΈβ€˜π‘‹)} βŠ† ({-Ο€, Ο€, (πΈβ€˜π‘‹)} βˆͺ ((-Ο€[,]Ο€) βˆ– dom 𝐺))
5756, 9sseqtrri 4015 . . . . . . . . 9 {-Ο€, Ο€, (πΈβ€˜π‘‹)} βŠ† 𝐻
5855, 57sstri 3987 . . . . . . . 8 {-Ο€, Ο€} βŠ† 𝐻
59 hashss 14392 . . . . . . . 8 ((𝐻 ∈ V ∧ {-Ο€, Ο€} βŠ† 𝐻) β†’ (β™―β€˜{-Ο€, Ο€}) ≀ (β™―β€˜π»))
6049, 58, 59mp2an 691 . . . . . . 7 (β™―β€˜{-Ο€, Ο€}) ≀ (β™―β€˜π»)
6160a1i 11 . . . . . 6 (πœ‘ β†’ (β™―β€˜{-Ο€, Ο€}) ≀ (β™―β€˜π»))
6243, 61eqbrtrrid 5178 . . . . 5 (πœ‘ β†’ 2 ≀ (β™―β€˜π»))
63 eluz2 12850 . . . . 5 ((β™―β€˜π») ∈ (β„€β‰₯β€˜2) ↔ (2 ∈ β„€ ∧ (β™―β€˜π») ∈ β„€ ∧ 2 ≀ (β™―β€˜π»)))
648, 39, 62, 63syl3anbrc 1341 . . . 4 (πœ‘ β†’ (β™―β€˜π») ∈ (β„€β‰₯β€˜2))
65 uz2m1nn 12929 . . . 4 ((β™―β€˜π») ∈ (β„€β‰₯β€˜2) β†’ ((β™―β€˜π») βˆ’ 1) ∈ β„•)
6664, 65syl 17 . . 3 (πœ‘ β†’ ((β™―β€˜π») βˆ’ 1) ∈ β„•)
676, 66eqeltrid 2832 . 2 (πœ‘ β†’ 𝑀 ∈ β„•)
6813a1i 11 . . . . . . . . . . 11 (πœ‘ β†’ -Ο€ ∈ ℝ)
6912a1i 11 . . . . . . . . . . 11 (πœ‘ β†’ Ο€ ∈ ℝ)
70 negpitopissre 26461 . . . . . . . . . . . 12 (-Ο€(,]Ο€) βŠ† ℝ
7120a1i 11 . . . . . . . . . . . . . 14 (πœ‘ β†’ -Ο€ < Ο€)
72 picn 26381 . . . . . . . . . . . . . . . 16 Ο€ ∈ β„‚
73722timesi 12372 . . . . . . . . . . . . . . 15 (2 Β· Ο€) = (Ο€ + Ο€)
7472, 72subnegi 11561 . . . . . . . . . . . . . . 15 (Ο€ βˆ’ -Ο€) = (Ο€ + Ο€)
7573, 2, 743eqtr4i 2765 . . . . . . . . . . . . . 14 𝑇 = (Ο€ βˆ’ -Ο€)
76 fourierdlem102.e . . . . . . . . . . . . . 14 𝐸 = (π‘₯ ∈ ℝ ↦ (π‘₯ + ((βŒŠβ€˜((Ο€ βˆ’ π‘₯) / 𝑇)) Β· 𝑇)))
7768, 69, 71, 75, 76fourierdlem4 45422 . . . . . . . . . . . . 13 (πœ‘ β†’ 𝐸:β„βŸΆ(-Ο€(,]Ο€))
7877, 4ffvelcdmd 7089 . . . . . . . . . . . 12 (πœ‘ β†’ (πΈβ€˜π‘‹) ∈ (-Ο€(,]Ο€))
7970, 78sselid 3976 . . . . . . . . . . 11 (πœ‘ β†’ (πΈβ€˜π‘‹) ∈ ℝ)
8068, 69, 793jca 1126 . . . . . . . . . 10 (πœ‘ β†’ (-Ο€ ∈ ℝ ∧ Ο€ ∈ ℝ ∧ (πΈβ€˜π‘‹) ∈ ℝ))
81 fvex 6904 . . . . . . . . . . 11 (πΈβ€˜π‘‹) ∈ V
8250, 52, 81tpss 4834 . . . . . . . . . 10 ((-Ο€ ∈ ℝ ∧ Ο€ ∈ ℝ ∧ (πΈβ€˜π‘‹) ∈ ℝ) ↔ {-Ο€, Ο€, (πΈβ€˜π‘‹)} βŠ† ℝ)
8380, 82sylib 217 . . . . . . . . 9 (πœ‘ β†’ {-Ο€, Ο€, (πΈβ€˜π‘‹)} βŠ† ℝ)
84 iccssre 13430 . . . . . . . . . . 11 ((-Ο€ ∈ ℝ ∧ Ο€ ∈ ℝ) β†’ (-Ο€[,]Ο€) βŠ† ℝ)
8513, 12, 84mp2an 691 . . . . . . . . . 10 (-Ο€[,]Ο€) βŠ† ℝ
86 ssdifss 4131 . . . . . . . . . 10 ((-Ο€[,]Ο€) βŠ† ℝ β†’ ((-Ο€[,]Ο€) βˆ– dom 𝐺) βŠ† ℝ)
8785, 86mp1i 13 . . . . . . . . 9 (πœ‘ β†’ ((-Ο€[,]Ο€) βˆ– dom 𝐺) βŠ† ℝ)
8883, 87unssd 4182 . . . . . . . 8 (πœ‘ β†’ ({-Ο€, Ο€, (πΈβ€˜π‘‹)} βˆͺ ((-Ο€[,]Ο€) βˆ– dom 𝐺)) βŠ† ℝ)
899, 88eqsstrid 4026 . . . . . . 7 (πœ‘ β†’ 𝐻 βŠ† ℝ)
90 fourierdlem102.q . . . . . . 7 𝑄 = (℩𝑔𝑔 Isom < , < ((0...𝑀), 𝐻))
9136, 89, 90, 6fourierdlem36 45454 . . . . . 6 (πœ‘ β†’ 𝑄 Isom < , < ((0...𝑀), 𝐻))
92 isof1o 7325 . . . . . 6 (𝑄 Isom < , < ((0...𝑀), 𝐻) β†’ 𝑄:(0...𝑀)–1-1-onto→𝐻)
93 f1of 6833 . . . . . 6 (𝑄:(0...𝑀)–1-1-onto→𝐻 β†’ 𝑄:(0...𝑀)⟢𝐻)
9491, 92, 933syl 18 . . . . 5 (πœ‘ β†’ 𝑄:(0...𝑀)⟢𝐻)
9594, 89fssd 6734 . . . 4 (πœ‘ β†’ 𝑄:(0...𝑀)βŸΆβ„)
96 reex 11221 . . . . 5 ℝ ∈ V
97 ovex 7447 . . . . 5 (0...𝑀) ∈ V
9896, 97elmap 8881 . . . 4 (𝑄 ∈ (ℝ ↑m (0...𝑀)) ↔ 𝑄:(0...𝑀)βŸΆβ„)
9995, 98sylibr 233 . . 3 (πœ‘ β†’ 𝑄 ∈ (ℝ ↑m (0...𝑀)))
100 fveq2 6891 . . . . . . . . . . 11 (0 = 𝑖 β†’ (π‘„β€˜0) = (π‘„β€˜π‘–))
101100adantl 481 . . . . . . . . . 10 (((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) ∧ 0 = 𝑖) β†’ (π‘„β€˜0) = (π‘„β€˜π‘–))
10295ffvelcdmda 7088 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) β†’ (π‘„β€˜π‘–) ∈ ℝ)
103102leidd 11802 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) β†’ (π‘„β€˜π‘–) ≀ (π‘„β€˜π‘–))
104103adantr 480 . . . . . . . . . 10 (((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) ∧ 0 = 𝑖) β†’ (π‘„β€˜π‘–) ≀ (π‘„β€˜π‘–))
105101, 104eqbrtrd 5164 . . . . . . . . 9 (((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) ∧ 0 = 𝑖) β†’ (π‘„β€˜0) ≀ (π‘„β€˜π‘–))
106 elfzelz 13525 . . . . . . . . . . . . 13 (𝑖 ∈ (0...𝑀) β†’ 𝑖 ∈ β„€)
107106zred 12688 . . . . . . . . . . . 12 (𝑖 ∈ (0...𝑀) β†’ 𝑖 ∈ ℝ)
108107ad2antlr 726 . . . . . . . . . . 11 (((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) ∧ Β¬ 0 = 𝑖) β†’ 𝑖 ∈ ℝ)
109 elfzle1 13528 . . . . . . . . . . . 12 (𝑖 ∈ (0...𝑀) β†’ 0 ≀ 𝑖)
110109ad2antlr 726 . . . . . . . . . . 11 (((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) ∧ Β¬ 0 = 𝑖) β†’ 0 ≀ 𝑖)
111 neqne 2943 . . . . . . . . . . . . 13 (Β¬ 0 = 𝑖 β†’ 0 β‰  𝑖)
112111necomd 2991 . . . . . . . . . . . 12 (Β¬ 0 = 𝑖 β†’ 𝑖 β‰  0)
113112adantl 481 . . . . . . . . . . 11 (((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) ∧ Β¬ 0 = 𝑖) β†’ 𝑖 β‰  0)
114108, 110, 113ne0gt0d 11373 . . . . . . . . . 10 (((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) ∧ Β¬ 0 = 𝑖) β†’ 0 < 𝑖)
115 nnssnn0 12497 . . . . . . . . . . . . . . . . 17 β„• βŠ† β„•0
116 nn0uz 12886 . . . . . . . . . . . . . . . . 17 β„•0 = (β„€β‰₯β€˜0)
117115, 116sseqtri 4014 . . . . . . . . . . . . . . . 16 β„• βŠ† (β„€β‰₯β€˜0)
118117, 67sselid 3976 . . . . . . . . . . . . . . 15 (πœ‘ β†’ 𝑀 ∈ (β„€β‰₯β€˜0))
119 eluzfz1 13532 . . . . . . . . . . . . . . 15 (𝑀 ∈ (β„€β‰₯β€˜0) β†’ 0 ∈ (0...𝑀))
120118, 119syl 17 . . . . . . . . . . . . . 14 (πœ‘ β†’ 0 ∈ (0...𝑀))
12194, 120ffvelcdmd 7089 . . . . . . . . . . . . 13 (πœ‘ β†’ (π‘„β€˜0) ∈ 𝐻)
12289, 121sseldd 3979 . . . . . . . . . . . 12 (πœ‘ β†’ (π‘„β€˜0) ∈ ℝ)
123122ad2antrr 725 . . . . . . . . . . 11 (((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) ∧ 0 < 𝑖) β†’ (π‘„β€˜0) ∈ ℝ)
124102adantr 480 . . . . . . . . . . 11 (((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) ∧ 0 < 𝑖) β†’ (π‘„β€˜π‘–) ∈ ℝ)
125 simpr 484 . . . . . . . . . . . 12 (((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) ∧ 0 < 𝑖) β†’ 0 < 𝑖)
12691ad2antrr 725 . . . . . . . . . . . . 13 (((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) ∧ 0 < 𝑖) β†’ 𝑄 Isom < , < ((0...𝑀), 𝐻))
127120anim1i 614 . . . . . . . . . . . . . 14 ((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) β†’ (0 ∈ (0...𝑀) ∧ 𝑖 ∈ (0...𝑀)))
128127adantr 480 . . . . . . . . . . . . 13 (((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) ∧ 0 < 𝑖) β†’ (0 ∈ (0...𝑀) ∧ 𝑖 ∈ (0...𝑀)))
129 isorel 7328 . . . . . . . . . . . . 13 ((𝑄 Isom < , < ((0...𝑀), 𝐻) ∧ (0 ∈ (0...𝑀) ∧ 𝑖 ∈ (0...𝑀))) β†’ (0 < 𝑖 ↔ (π‘„β€˜0) < (π‘„β€˜π‘–)))
130126, 128, 129syl2anc 583 . . . . . . . . . . . 12 (((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) ∧ 0 < 𝑖) β†’ (0 < 𝑖 ↔ (π‘„β€˜0) < (π‘„β€˜π‘–)))
131125, 130mpbid 231 . . . . . . . . . . 11 (((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) ∧ 0 < 𝑖) β†’ (π‘„β€˜0) < (π‘„β€˜π‘–))
132123, 124, 131ltled 11384 . . . . . . . . . 10 (((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) ∧ 0 < 𝑖) β†’ (π‘„β€˜0) ≀ (π‘„β€˜π‘–))
133114, 132syldan 590 . . . . . . . . 9 (((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) ∧ Β¬ 0 = 𝑖) β†’ (π‘„β€˜0) ≀ (π‘„β€˜π‘–))
134105, 133pm2.61dan 812 . . . . . . . 8 ((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) β†’ (π‘„β€˜0) ≀ (π‘„β€˜π‘–))
135134adantr 480 . . . . . . 7 (((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) ∧ (π‘„β€˜π‘–) = -Ο€) β†’ (π‘„β€˜0) ≀ (π‘„β€˜π‘–))
136 simpr 484 . . . . . . 7 (((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) ∧ (π‘„β€˜π‘–) = -Ο€) β†’ (π‘„β€˜π‘–) = -Ο€)
137135, 136breqtrd 5168 . . . . . 6 (((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) ∧ (π‘„β€˜π‘–) = -Ο€) β†’ (π‘„β€˜0) ≀ -Ο€)
13868rexrd 11286 . . . . . . . 8 (πœ‘ β†’ -Ο€ ∈ ℝ*)
13969rexrd 11286 . . . . . . . 8 (πœ‘ β†’ Ο€ ∈ ℝ*)
140 lbicc2 13465 . . . . . . . . . . . . . 14 ((-Ο€ ∈ ℝ* ∧ Ο€ ∈ ℝ* ∧ -Ο€ ≀ Ο€) β†’ -Ο€ ∈ (-Ο€[,]Ο€))
14114, 15, 21, 140mp3an 1458 . . . . . . . . . . . . 13 -Ο€ ∈ (-Ο€[,]Ο€)
142141a1i 11 . . . . . . . . . . . 12 (πœ‘ β†’ -Ο€ ∈ (-Ο€[,]Ο€))
143 ubicc2 13466 . . . . . . . . . . . . . 14 ((-Ο€ ∈ ℝ* ∧ Ο€ ∈ ℝ* ∧ -Ο€ ≀ Ο€) β†’ Ο€ ∈ (-Ο€[,]Ο€))
14414, 15, 21, 143mp3an 1458 . . . . . . . . . . . . 13 Ο€ ∈ (-Ο€[,]Ο€)
145144a1i 11 . . . . . . . . . . . 12 (πœ‘ β†’ Ο€ ∈ (-Ο€[,]Ο€))
146 iocssicc 13438 . . . . . . . . . . . . 13 (-Ο€(,]Ο€) βŠ† (-Ο€[,]Ο€)
147146, 78sselid 3976 . . . . . . . . . . . 12 (πœ‘ β†’ (πΈβ€˜π‘‹) ∈ (-Ο€[,]Ο€))
148 tpssi 4835 . . . . . . . . . . . 12 ((-Ο€ ∈ (-Ο€[,]Ο€) ∧ Ο€ ∈ (-Ο€[,]Ο€) ∧ (πΈβ€˜π‘‹) ∈ (-Ο€[,]Ο€)) β†’ {-Ο€, Ο€, (πΈβ€˜π‘‹)} βŠ† (-Ο€[,]Ο€))
149142, 145, 147, 148syl3anc 1369 . . . . . . . . . . 11 (πœ‘ β†’ {-Ο€, Ο€, (πΈβ€˜π‘‹)} βŠ† (-Ο€[,]Ο€))
150 difssd 4128 . . . . . . . . . . 11 (πœ‘ β†’ ((-Ο€[,]Ο€) βˆ– dom 𝐺) βŠ† (-Ο€[,]Ο€))
151149, 150unssd 4182 . . . . . . . . . 10 (πœ‘ β†’ ({-Ο€, Ο€, (πΈβ€˜π‘‹)} βˆͺ ((-Ο€[,]Ο€) βˆ– dom 𝐺)) βŠ† (-Ο€[,]Ο€))
1529, 151eqsstrid 4026 . . . . . . . . 9 (πœ‘ β†’ 𝐻 βŠ† (-Ο€[,]Ο€))
153152, 121sseldd 3979 . . . . . . . 8 (πœ‘ β†’ (π‘„β€˜0) ∈ (-Ο€[,]Ο€))
154 iccgelb 13404 . . . . . . . 8 ((-Ο€ ∈ ℝ* ∧ Ο€ ∈ ℝ* ∧ (π‘„β€˜0) ∈ (-Ο€[,]Ο€)) β†’ -Ο€ ≀ (π‘„β€˜0))
155138, 139, 153, 154syl3anc 1369 . . . . . . 7 (πœ‘ β†’ -Ο€ ≀ (π‘„β€˜0))
156155ad2antrr 725 . . . . . 6 (((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) ∧ (π‘„β€˜π‘–) = -Ο€) β†’ -Ο€ ≀ (π‘„β€˜0))
157122ad2antrr 725 . . . . . . 7 (((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) ∧ (π‘„β€˜π‘–) = -Ο€) β†’ (π‘„β€˜0) ∈ ℝ)
15813a1i 11 . . . . . . 7 (((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) ∧ (π‘„β€˜π‘–) = -Ο€) β†’ -Ο€ ∈ ℝ)
159157, 158letri3d 11378 . . . . . 6 (((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) ∧ (π‘„β€˜π‘–) = -Ο€) β†’ ((π‘„β€˜0) = -Ο€ ↔ ((π‘„β€˜0) ≀ -Ο€ ∧ -Ο€ ≀ (π‘„β€˜0))))
160137, 156, 159mpbir2and 712 . . . . 5 (((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) ∧ (π‘„β€˜π‘–) = -Ο€) β†’ (π‘„β€˜0) = -Ο€)
16157, 51sselii 3975 . . . . . . 7 -Ο€ ∈ 𝐻
162 f1ofo 6840 . . . . . . . . 9 (𝑄:(0...𝑀)–1-1-onto→𝐻 β†’ 𝑄:(0...𝑀)–onto→𝐻)
16392, 162syl 17 . . . . . . . 8 (𝑄 Isom < , < ((0...𝑀), 𝐻) β†’ 𝑄:(0...𝑀)–onto→𝐻)
164 forn 6808 . . . . . . . 8 (𝑄:(0...𝑀)–onto→𝐻 β†’ ran 𝑄 = 𝐻)
16591, 163, 1643syl 18 . . . . . . 7 (πœ‘ β†’ ran 𝑄 = 𝐻)
166161, 165eleqtrrid 2835 . . . . . 6 (πœ‘ β†’ -Ο€ ∈ ran 𝑄)
167 ffn 6716 . . . . . . 7 (𝑄:(0...𝑀)⟢𝐻 β†’ 𝑄 Fn (0...𝑀))
168 fvelrnb 6953 . . . . . . 7 (𝑄 Fn (0...𝑀) β†’ (-Ο€ ∈ ran 𝑄 ↔ βˆƒπ‘– ∈ (0...𝑀)(π‘„β€˜π‘–) = -Ο€))
16994, 167, 1683syl 18 . . . . . 6 (πœ‘ β†’ (-Ο€ ∈ ran 𝑄 ↔ βˆƒπ‘– ∈ (0...𝑀)(π‘„β€˜π‘–) = -Ο€))
170166, 169mpbid 231 . . . . 5 (πœ‘ β†’ βˆƒπ‘– ∈ (0...𝑀)(π‘„β€˜π‘–) = -Ο€)
171160, 170r19.29a 3157 . . . 4 (πœ‘ β†’ (π‘„β€˜0) = -Ο€)
17257, 53sselii 3975 . . . . . . 7 Ο€ ∈ 𝐻
173172, 165eleqtrrid 2835 . . . . . 6 (πœ‘ β†’ Ο€ ∈ ran 𝑄)
174 fvelrnb 6953 . . . . . . 7 (𝑄 Fn (0...𝑀) β†’ (Ο€ ∈ ran 𝑄 ↔ βˆƒπ‘– ∈ (0...𝑀)(π‘„β€˜π‘–) = Ο€))
17594, 167, 1743syl 18 . . . . . 6 (πœ‘ β†’ (Ο€ ∈ ran 𝑄 ↔ βˆƒπ‘– ∈ (0...𝑀)(π‘„β€˜π‘–) = Ο€))
176173, 175mpbid 231 . . . . 5 (πœ‘ β†’ βˆƒπ‘– ∈ (0...𝑀)(π‘„β€˜π‘–) = Ο€)
17794, 152fssd 6734 . . . . . . . . . 10 (πœ‘ β†’ 𝑄:(0...𝑀)⟢(-Ο€[,]Ο€))
178 eluzfz2 13533 . . . . . . . . . . 11 (𝑀 ∈ (β„€β‰₯β€˜0) β†’ 𝑀 ∈ (0...𝑀))
179118, 178syl 17 . . . . . . . . . 10 (πœ‘ β†’ 𝑀 ∈ (0...𝑀))
180177, 179ffvelcdmd 7089 . . . . . . . . 9 (πœ‘ β†’ (π‘„β€˜π‘€) ∈ (-Ο€[,]Ο€))
181 iccleub 13403 . . . . . . . . 9 ((-Ο€ ∈ ℝ* ∧ Ο€ ∈ ℝ* ∧ (π‘„β€˜π‘€) ∈ (-Ο€[,]Ο€)) β†’ (π‘„β€˜π‘€) ≀ Ο€)
182138, 139, 180, 181syl3anc 1369 . . . . . . . 8 (πœ‘ β†’ (π‘„β€˜π‘€) ≀ Ο€)
1831823ad2ant1 1131 . . . . . . 7 ((πœ‘ ∧ 𝑖 ∈ (0...𝑀) ∧ (π‘„β€˜π‘–) = Ο€) β†’ (π‘„β€˜π‘€) ≀ Ο€)
184 id 22 . . . . . . . . . 10 ((π‘„β€˜π‘–) = Ο€ β†’ (π‘„β€˜π‘–) = Ο€)
185184eqcomd 2733 . . . . . . . . 9 ((π‘„β€˜π‘–) = Ο€ β†’ Ο€ = (π‘„β€˜π‘–))
1861853ad2ant3 1133 . . . . . . . 8 ((πœ‘ ∧ 𝑖 ∈ (0...𝑀) ∧ (π‘„β€˜π‘–) = Ο€) β†’ Ο€ = (π‘„β€˜π‘–))
187103adantr 480 . . . . . . . . . . 11 (((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑖 = 𝑀) β†’ (π‘„β€˜π‘–) ≀ (π‘„β€˜π‘–))
188 fveq2 6891 . . . . . . . . . . . 12 (𝑖 = 𝑀 β†’ (π‘„β€˜π‘–) = (π‘„β€˜π‘€))
189188adantl 481 . . . . . . . . . . 11 (((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑖 = 𝑀) β†’ (π‘„β€˜π‘–) = (π‘„β€˜π‘€))
190187, 189breqtrd 5168 . . . . . . . . . 10 (((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑖 = 𝑀) β†’ (π‘„β€˜π‘–) ≀ (π‘„β€˜π‘€))
191107ad2antlr 726 . . . . . . . . . . . 12 (((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) ∧ Β¬ 𝑖 = 𝑀) β†’ 𝑖 ∈ ℝ)
192 elfzel2 13523 . . . . . . . . . . . . . 14 (𝑖 ∈ (0...𝑀) β†’ 𝑀 ∈ β„€)
193192zred 12688 . . . . . . . . . . . . 13 (𝑖 ∈ (0...𝑀) β†’ 𝑀 ∈ ℝ)
194193ad2antlr 726 . . . . . . . . . . . 12 (((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) ∧ Β¬ 𝑖 = 𝑀) β†’ 𝑀 ∈ ℝ)
195 elfzle2 13529 . . . . . . . . . . . . 13 (𝑖 ∈ (0...𝑀) β†’ 𝑖 ≀ 𝑀)
196195ad2antlr 726 . . . . . . . . . . . 12 (((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) ∧ Β¬ 𝑖 = 𝑀) β†’ 𝑖 ≀ 𝑀)
197 neqne 2943 . . . . . . . . . . . . . 14 (Β¬ 𝑖 = 𝑀 β†’ 𝑖 β‰  𝑀)
198197necomd 2991 . . . . . . . . . . . . 13 (Β¬ 𝑖 = 𝑀 β†’ 𝑀 β‰  𝑖)
199198adantl 481 . . . . . . . . . . . 12 (((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) ∧ Β¬ 𝑖 = 𝑀) β†’ 𝑀 β‰  𝑖)
200191, 194, 196, 199leneltd 11390 . . . . . . . . . . 11 (((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) ∧ Β¬ 𝑖 = 𝑀) β†’ 𝑖 < 𝑀)
201102adantr 480 . . . . . . . . . . . 12 (((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑖 < 𝑀) β†’ (π‘„β€˜π‘–) ∈ ℝ)
20285, 180sselid 3976 . . . . . . . . . . . . 13 (πœ‘ β†’ (π‘„β€˜π‘€) ∈ ℝ)
203202ad2antrr 725 . . . . . . . . . . . 12 (((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑖 < 𝑀) β†’ (π‘„β€˜π‘€) ∈ ℝ)
204 simpr 484 . . . . . . . . . . . . 13 (((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑖 < 𝑀) β†’ 𝑖 < 𝑀)
20591ad2antrr 725 . . . . . . . . . . . . . 14 (((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑖 < 𝑀) β†’ 𝑄 Isom < , < ((0...𝑀), 𝐻))
206 simpr 484 . . . . . . . . . . . . . . . 16 ((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) β†’ 𝑖 ∈ (0...𝑀))
207179adantr 480 . . . . . . . . . . . . . . . 16 ((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) β†’ 𝑀 ∈ (0...𝑀))
208206, 207jca 511 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) β†’ (𝑖 ∈ (0...𝑀) ∧ 𝑀 ∈ (0...𝑀)))
209208adantr 480 . . . . . . . . . . . . . 14 (((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑖 < 𝑀) β†’ (𝑖 ∈ (0...𝑀) ∧ 𝑀 ∈ (0...𝑀)))
210 isorel 7328 . . . . . . . . . . . . . 14 ((𝑄 Isom < , < ((0...𝑀), 𝐻) ∧ (𝑖 ∈ (0...𝑀) ∧ 𝑀 ∈ (0...𝑀))) β†’ (𝑖 < 𝑀 ↔ (π‘„β€˜π‘–) < (π‘„β€˜π‘€)))
211205, 209, 210syl2anc 583 . . . . . . . . . . . . 13 (((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑖 < 𝑀) β†’ (𝑖 < 𝑀 ↔ (π‘„β€˜π‘–) < (π‘„β€˜π‘€)))
212204, 211mpbid 231 . . . . . . . . . . . 12 (((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑖 < 𝑀) β†’ (π‘„β€˜π‘–) < (π‘„β€˜π‘€))
213201, 203, 212ltled 11384 . . . . . . . . . . 11 (((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑖 < 𝑀) β†’ (π‘„β€˜π‘–) ≀ (π‘„β€˜π‘€))
214200, 213syldan 590 . . . . . . . . . 10 (((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) ∧ Β¬ 𝑖 = 𝑀) β†’ (π‘„β€˜π‘–) ≀ (π‘„β€˜π‘€))
215190, 214pm2.61dan 812 . . . . . . . . 9 ((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) β†’ (π‘„β€˜π‘–) ≀ (π‘„β€˜π‘€))
2162153adant3 1130 . . . . . . . 8 ((πœ‘ ∧ 𝑖 ∈ (0...𝑀) ∧ (π‘„β€˜π‘–) = Ο€) β†’ (π‘„β€˜π‘–) ≀ (π‘„β€˜π‘€))
217186, 216eqbrtrd 5164 . . . . . . 7 ((πœ‘ ∧ 𝑖 ∈ (0...𝑀) ∧ (π‘„β€˜π‘–) = Ο€) β†’ Ο€ ≀ (π‘„β€˜π‘€))
2182023ad2ant1 1131 . . . . . . . 8 ((πœ‘ ∧ 𝑖 ∈ (0...𝑀) ∧ (π‘„β€˜π‘–) = Ο€) β†’ (π‘„β€˜π‘€) ∈ ℝ)
21912a1i 11 . . . . . . . 8 ((πœ‘ ∧ 𝑖 ∈ (0...𝑀) ∧ (π‘„β€˜π‘–) = Ο€) β†’ Ο€ ∈ ℝ)
220218, 219letri3d 11378 . . . . . . 7 ((πœ‘ ∧ 𝑖 ∈ (0...𝑀) ∧ (π‘„β€˜π‘–) = Ο€) β†’ ((π‘„β€˜π‘€) = Ο€ ↔ ((π‘„β€˜π‘€) ≀ Ο€ ∧ Ο€ ≀ (π‘„β€˜π‘€))))
221183, 217, 220mpbir2and 712 . . . . . 6 ((πœ‘ ∧ 𝑖 ∈ (0...𝑀) ∧ (π‘„β€˜π‘–) = Ο€) β†’ (π‘„β€˜π‘€) = Ο€)
222221rexlimdv3a 3154 . . . . 5 (πœ‘ β†’ (βˆƒπ‘– ∈ (0...𝑀)(π‘„β€˜π‘–) = Ο€ β†’ (π‘„β€˜π‘€) = Ο€))
223176, 222mpd 15 . . . 4 (πœ‘ β†’ (π‘„β€˜π‘€) = Ο€)
224 elfzoelz 13656 . . . . . . . . 9 (𝑖 ∈ (0..^𝑀) β†’ 𝑖 ∈ β„€)
225224zred 12688 . . . . . . . 8 (𝑖 ∈ (0..^𝑀) β†’ 𝑖 ∈ ℝ)
226225ltp1d 12166 . . . . . . 7 (𝑖 ∈ (0..^𝑀) β†’ 𝑖 < (𝑖 + 1))
227226adantl 481 . . . . . 6 ((πœ‘ ∧ 𝑖 ∈ (0..^𝑀)) β†’ 𝑖 < (𝑖 + 1))
228 elfzofz 13672 . . . . . . . 8 (𝑖 ∈ (0..^𝑀) β†’ 𝑖 ∈ (0...𝑀))
229 fzofzp1 13753 . . . . . . . 8 (𝑖 ∈ (0..^𝑀) β†’ (𝑖 + 1) ∈ (0...𝑀))
230228, 229jca 511 . . . . . . 7 (𝑖 ∈ (0..^𝑀) β†’ (𝑖 ∈ (0...𝑀) ∧ (𝑖 + 1) ∈ (0...𝑀)))
231 isorel 7328 . . . . . . 7 ((𝑄 Isom < , < ((0...𝑀), 𝐻) ∧ (𝑖 ∈ (0...𝑀) ∧ (𝑖 + 1) ∈ (0...𝑀))) β†’ (𝑖 < (𝑖 + 1) ↔ (π‘„β€˜π‘–) < (π‘„β€˜(𝑖 + 1))))
23291, 230, 231syl2an 595 . . . . . 6 ((πœ‘ ∧ 𝑖 ∈ (0..^𝑀)) β†’ (𝑖 < (𝑖 + 1) ↔ (π‘„β€˜π‘–) < (π‘„β€˜(𝑖 + 1))))
233227, 232mpbid 231 . . . . 5 ((πœ‘ ∧ 𝑖 ∈ (0..^𝑀)) β†’ (π‘„β€˜π‘–) < (π‘„β€˜(𝑖 + 1)))
234233ralrimiva 3141 . . . 4 (πœ‘ β†’ βˆ€π‘– ∈ (0..^𝑀)(π‘„β€˜π‘–) < (π‘„β€˜(𝑖 + 1)))
235171, 223, 234jca31 514 . . 3 (πœ‘ β†’ (((π‘„β€˜0) = -Ο€ ∧ (π‘„β€˜π‘€) = Ο€) ∧ βˆ€π‘– ∈ (0..^𝑀)(π‘„β€˜π‘–) < (π‘„β€˜(𝑖 + 1))))
2365fourierdlem2 45420 . . . 4 (𝑀 ∈ β„• β†’ (𝑄 ∈ (π‘ƒβ€˜π‘€) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((π‘„β€˜0) = -Ο€ ∧ (π‘„β€˜π‘€) = Ο€) ∧ βˆ€π‘– ∈ (0..^𝑀)(π‘„β€˜π‘–) < (π‘„β€˜(𝑖 + 1))))))
23767, 236syl 17 . . 3 (πœ‘ β†’ (𝑄 ∈ (π‘ƒβ€˜π‘€) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((π‘„β€˜0) = -Ο€ ∧ (π‘„β€˜π‘€) = Ο€) ∧ βˆ€π‘– ∈ (0..^𝑀)(π‘„β€˜π‘–) < (π‘„β€˜(𝑖 + 1))))))
23899, 235, 237mpbir2and 712 . 2 (πœ‘ β†’ 𝑄 ∈ (π‘ƒβ€˜π‘€))
239 fourierdlem102.g . . . . 5 𝐺 = ((ℝ D 𝐹) β†Ύ (-Ο€(,)Ο€))
240239reseq1i 5975 . . . 4 (𝐺 β†Ύ ((π‘„β€˜π‘–)(,)(π‘„β€˜(𝑖 + 1)))) = (((ℝ D 𝐹) β†Ύ (-Ο€(,)Ο€)) β†Ύ ((π‘„β€˜π‘–)(,)(π‘„β€˜(𝑖 + 1))))
24114a1i 11 . . . . . 6 ((πœ‘ ∧ 𝑖 ∈ (0..^𝑀)) β†’ -Ο€ ∈ ℝ*)
24215a1i 11 . . . . . 6 ((πœ‘ ∧ 𝑖 ∈ (0..^𝑀)) β†’ Ο€ ∈ ℝ*)
243177adantr 480 . . . . . 6 ((πœ‘ ∧ 𝑖 ∈ (0..^𝑀)) β†’ 𝑄:(0...𝑀)⟢(-Ο€[,]Ο€))
244 simpr 484 . . . . . 6 ((πœ‘ ∧ 𝑖 ∈ (0..^𝑀)) β†’ 𝑖 ∈ (0..^𝑀))
245241, 242, 243, 244fourierdlem27 45445 . . . . 5 ((πœ‘ ∧ 𝑖 ∈ (0..^𝑀)) β†’ ((π‘„β€˜π‘–)(,)(π‘„β€˜(𝑖 + 1))) βŠ† (-Ο€(,)Ο€))
246245resabs1d 6010 . . . 4 ((πœ‘ ∧ 𝑖 ∈ (0..^𝑀)) β†’ (((ℝ D 𝐹) β†Ύ (-Ο€(,)Ο€)) β†Ύ ((π‘„β€˜π‘–)(,)(π‘„β€˜(𝑖 + 1)))) = ((ℝ D 𝐹) β†Ύ ((π‘„β€˜π‘–)(,)(π‘„β€˜(𝑖 + 1)))))
247240, 246eqtr2id 2780 . . 3 ((πœ‘ ∧ 𝑖 ∈ (0..^𝑀)) β†’ ((ℝ D 𝐹) β†Ύ ((π‘„β€˜π‘–)(,)(π‘„β€˜(𝑖 + 1)))) = (𝐺 β†Ύ ((π‘„β€˜π‘–)(,)(π‘„β€˜(𝑖 + 1)))))
248 fourierdlem102.gcn . . . 4 (πœ‘ β†’ 𝐺 ∈ (dom 𝐺–cnβ†’β„‚))
249248, 5, 67, 238, 9, 165fourierdlem38 45456 . . 3 ((πœ‘ ∧ 𝑖 ∈ (0..^𝑀)) β†’ (𝐺 β†Ύ ((π‘„β€˜π‘–)(,)(π‘„β€˜(𝑖 + 1)))) ∈ (((π‘„β€˜π‘–)(,)(π‘„β€˜(𝑖 + 1)))–cnβ†’β„‚))
250247, 249eqeltrd 2828 . 2 ((πœ‘ ∧ 𝑖 ∈ (0..^𝑀)) β†’ ((ℝ D 𝐹) β†Ύ ((π‘„β€˜π‘–)(,)(π‘„β€˜(𝑖 + 1)))) ∈ (((π‘„β€˜π‘–)(,)(π‘„β€˜(𝑖 + 1)))–cnβ†’β„‚))
251247oveq1d 7429 . . 3 ((πœ‘ ∧ 𝑖 ∈ (0..^𝑀)) β†’ (((ℝ D 𝐹) β†Ύ ((π‘„β€˜π‘–)(,)(π‘„β€˜(𝑖 + 1)))) limβ„‚ (π‘„β€˜π‘–)) = ((𝐺 β†Ύ ((π‘„β€˜π‘–)(,)(π‘„β€˜(𝑖 + 1)))) limβ„‚ (π‘„β€˜π‘–)))
252248adantr 480 . . . . 5 ((πœ‘ ∧ 𝑖 ∈ (0..^𝑀)) β†’ 𝐺 ∈ (dom 𝐺–cnβ†’β„‚))
253 fourierdlem102.rlim . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ ((-Ο€[,)Ο€) βˆ– dom 𝐺)) β†’ ((𝐺 β†Ύ (π‘₯(,)+∞)) limβ„‚ π‘₯) β‰  βˆ…)
254253adantlr 714 . . . . 5 (((πœ‘ ∧ 𝑖 ∈ (0..^𝑀)) ∧ π‘₯ ∈ ((-Ο€[,)Ο€) βˆ– dom 𝐺)) β†’ ((𝐺 β†Ύ (π‘₯(,)+∞)) limβ„‚ π‘₯) β‰  βˆ…)
255 fourierdlem102.llim . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ ((-Ο€(,]Ο€) βˆ– dom 𝐺)) β†’ ((𝐺 β†Ύ (-∞(,)π‘₯)) limβ„‚ π‘₯) β‰  βˆ…)
256255adantlr 714 . . . . 5 (((πœ‘ ∧ 𝑖 ∈ (0..^𝑀)) ∧ π‘₯ ∈ ((-Ο€(,]Ο€) βˆ– dom 𝐺)) β†’ ((𝐺 β†Ύ (-∞(,)π‘₯)) limβ„‚ π‘₯) β‰  βˆ…)
25791adantr 480 . . . . 5 ((πœ‘ ∧ 𝑖 ∈ (0..^𝑀)) β†’ 𝑄 Isom < , < ((0...𝑀), 𝐻))
258257, 92, 933syl 18 . . . . 5 ((πœ‘ ∧ 𝑖 ∈ (0..^𝑀)) β†’ 𝑄:(0...𝑀)⟢𝐻)
25979adantr 480 . . . . 5 ((πœ‘ ∧ 𝑖 ∈ (0..^𝑀)) β†’ (πΈβ€˜π‘‹) ∈ ℝ)
260257, 163, 1643syl 18 . . . . 5 ((πœ‘ ∧ 𝑖 ∈ (0..^𝑀)) β†’ ran 𝑄 = 𝐻)
261252, 254, 256, 257, 258, 244, 233, 245, 259, 9, 260fourierdlem46 45463 . . . 4 ((πœ‘ ∧ 𝑖 ∈ (0..^𝑀)) β†’ (((𝐺 β†Ύ ((π‘„β€˜π‘–)(,)(π‘„β€˜(𝑖 + 1)))) limβ„‚ (π‘„β€˜π‘–)) β‰  βˆ… ∧ ((𝐺 β†Ύ ((π‘„β€˜π‘–)(,)(π‘„β€˜(𝑖 + 1)))) limβ„‚ (π‘„β€˜(𝑖 + 1))) β‰  βˆ…))
262261simpld 494 . . 3 ((πœ‘ ∧ 𝑖 ∈ (0..^𝑀)) β†’ ((𝐺 β†Ύ ((π‘„β€˜π‘–)(,)(π‘„β€˜(𝑖 + 1)))) limβ„‚ (π‘„β€˜π‘–)) β‰  βˆ…)
263251, 262eqnetrd 3003 . 2 ((πœ‘ ∧ 𝑖 ∈ (0..^𝑀)) β†’ (((ℝ D 𝐹) β†Ύ ((π‘„β€˜π‘–)(,)(π‘„β€˜(𝑖 + 1)))) limβ„‚ (π‘„β€˜π‘–)) β‰  βˆ…)
264247oveq1d 7429 . . 3 ((πœ‘ ∧ 𝑖 ∈ (0..^𝑀)) β†’ (((ℝ D 𝐹) β†Ύ ((π‘„β€˜π‘–)(,)(π‘„β€˜(𝑖 + 1)))) limβ„‚ (π‘„β€˜(𝑖 + 1))) = ((𝐺 β†Ύ ((π‘„β€˜π‘–)(,)(π‘„β€˜(𝑖 + 1)))) limβ„‚ (π‘„β€˜(𝑖 + 1))))
265261simprd 495 . . 3 ((πœ‘ ∧ 𝑖 ∈ (0..^𝑀)) β†’ ((𝐺 β†Ύ ((π‘„β€˜π‘–)(,)(π‘„β€˜(𝑖 + 1)))) limβ„‚ (π‘„β€˜(𝑖 + 1))) β‰  βˆ…)
266264, 265eqnetrd 3003 . 2 ((πœ‘ ∧ 𝑖 ∈ (0..^𝑀)) β†’ (((ℝ D 𝐹) β†Ύ ((π‘„β€˜π‘–)(,)(π‘„β€˜(𝑖 + 1)))) limβ„‚ (π‘„β€˜(𝑖 + 1))) β‰  βˆ…)
2671, 2, 3, 4, 5, 67, 238, 250, 263, 266fourierdlem94 45511 1 (πœ‘ β†’ (((𝐹 β†Ύ (-∞(,)𝑋)) limβ„‚ 𝑋) β‰  βˆ… ∧ ((𝐹 β†Ύ (𝑋(,)+∞)) limβ„‚ 𝑋) β‰  βˆ…))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1085   = wceq 1534   ∈ wcel 2099   β‰  wne 2935  βˆ€wral 3056  βˆƒwrex 3065  {crab 3427  Vcvv 3469   βˆ– cdif 3941   βˆͺ cun 3942   βŠ† wss 3944  βˆ…c0 4318  {cpr 4626  {ctp 4628   class class class wbr 5142   ↦ cmpt 5225  dom cdm 5672  ran crn 5673   β†Ύ cres 5674  β„©cio 6492   Fn wfn 6537  βŸΆwf 6538  β€“ontoβ†’wfo 6540  β€“1-1-ontoβ†’wf1o 6541  β€˜cfv 6542   Isom wiso 6543  (class class class)co 7414   ↑m cmap 8836  Fincfn 8955  β„‚cc 11128  β„cr 11129  0cc0 11130  1c1 11131   + caddc 11133   Β· cmul 11135  +∞cpnf 11267  -∞cmnf 11268  β„*cxr 11269   < clt 11270   ≀ cle 11271   βˆ’ cmin 11466  -cneg 11467   / cdiv 11893  β„•cn 12234  2c2 12289  β„•0cn0 12494  β„€cz 12580  β„€β‰₯cuz 12844  (,)cioo 13348  (,]cioc 13349  [,)cico 13350  [,]cicc 13351  ...cfz 13508  ..^cfzo 13651  βŒŠcfl 13779  β™―chash 14313  Ο€cpi 16034  β€“cnβ†’ccncf 24783   limβ„‚ climc 25778   D cdv 25779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-inf2 9656  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207  ax-pre-sup 11208  ax-addf 11209
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7679  df-om 7865  df-1st 7987  df-2nd 7988  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-er 8718  df-map 8838  df-pm 8839  df-ixp 8908  df-en 8956  df-dom 8957  df-sdom 8958  df-fin 8959  df-fsupp 9378  df-fi 9426  df-sup 9457  df-inf 9458  df-oi 9525  df-dju 9916  df-card 9954  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-div 11894  df-nn 12235  df-2 12297  df-3 12298  df-4 12299  df-5 12300  df-6 12301  df-7 12302  df-8 12303  df-9 12304  df-n0 12495  df-xnn0 12567  df-z 12581  df-dec 12700  df-uz 12845  df-q 12955  df-rp 12999  df-xneg 13116  df-xadd 13117  df-xmul 13118  df-ioo 13352  df-ioc 13353  df-ico 13354  df-icc 13355  df-fz 13509  df-fzo 13652  df-fl 13781  df-seq 13991  df-exp 14051  df-fac 14257  df-bc 14286  df-hash 14314  df-shft 15038  df-cj 15070  df-re 15071  df-im 15072  df-sqrt 15206  df-abs 15207  df-limsup 15439  df-clim 15456  df-rlim 15457  df-sum 15657  df-ef 16035  df-sin 16037  df-cos 16038  df-pi 16040  df-struct 17107  df-sets 17124  df-slot 17142  df-ndx 17154  df-base 17172  df-ress 17201  df-plusg 17237  df-mulr 17238  df-starv 17239  df-sca 17240  df-vsca 17241  df-ip 17242  df-tset 17243  df-ple 17244  df-ds 17246  df-unif 17247  df-hom 17248  df-cco 17249  df-rest 17395  df-topn 17396  df-0g 17414  df-gsum 17415  df-topgen 17416  df-pt 17417  df-prds 17420  df-xrs 17475  df-qtop 17480  df-imas 17481  df-xps 17483  df-mre 17557  df-mrc 17558  df-acs 17560  df-mgm 18591  df-sgrp 18670  df-mnd 18686  df-submnd 18732  df-mulg 19015  df-cntz 19259  df-cmn 19728  df-psmet 21258  df-xmet 21259  df-met 21260  df-bl 21261  df-mopn 21262  df-fbas 21263  df-fg 21264  df-cnfld 21267  df-top 22783  df-topon 22800  df-topsp 22822  df-bases 22836  df-cld 22910  df-ntr 22911  df-cls 22912  df-nei 22989  df-lp 23027  df-perf 23028  df-cn 23118  df-cnp 23119  df-haus 23206  df-cmp 23278  df-tx 23453  df-hmeo 23646  df-fil 23737  df-fm 23829  df-flim 23830  df-flf 23831  df-xms 24213  df-ms 24214  df-tms 24215  df-cncf 24785  df-limc 25782  df-dv 25783
This theorem is referenced by:  fourierdlem106  45523
  Copyright terms: Public domain W3C validator