Proof of Theorem fourierdlem102
Step | Hyp | Ref
| Expression |
1 | | fourierdlem102.f |
. 2
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
2 | | fourierdlem102.t |
. 2
⊢ 𝑇 = (2 ·
π) |
3 | | fourierdlem102.per |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) |
4 | | fourierdlem102.x |
. 2
⊢ (𝜑 → 𝑋 ∈ ℝ) |
5 | | fourierdlem102.p |
. 2
⊢ 𝑃 = (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m
(0...𝑛)) ∣ (((𝑝‘0) = -π ∧ (𝑝‘𝑛) = π) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) |
6 | | fourierdlem102.m |
. . 3
⊢ 𝑀 = ((♯‘𝐻) − 1) |
7 | | 2z 12352 |
. . . . . 6
⊢ 2 ∈
ℤ |
8 | 7 | a1i 11 |
. . . . 5
⊢ (𝜑 → 2 ∈
ℤ) |
9 | | fourierdlem102.h |
. . . . . . . 8
⊢ 𝐻 = ({-π, π, (𝐸‘𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺)) |
10 | | tpfi 9090 |
. . . . . . . . . 10
⊢ {-π,
π, (𝐸‘𝑋)} ∈ Fin |
11 | 10 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → {-π, π, (𝐸‘𝑋)} ∈ Fin) |
12 | | pire 25615 |
. . . . . . . . . . . . . . 15
⊢ π
∈ ℝ |
13 | 12 | renegcli 11282 |
. . . . . . . . . . . . . 14
⊢ -π
∈ ℝ |
14 | 13 | rexri 11033 |
. . . . . . . . . . . . 13
⊢ -π
∈ ℝ* |
15 | 12 | rexri 11033 |
. . . . . . . . . . . . 13
⊢ π
∈ ℝ* |
16 | | negpilt0 42819 |
. . . . . . . . . . . . . . 15
⊢ -π
< 0 |
17 | | pipos 25617 |
. . . . . . . . . . . . . . 15
⊢ 0 <
π |
18 | | 0re 10977 |
. . . . . . . . . . . . . . . 16
⊢ 0 ∈
ℝ |
19 | 13, 18, 12 | lttri 11101 |
. . . . . . . . . . . . . . 15
⊢ ((-π
< 0 ∧ 0 < π) → -π < π) |
20 | 16, 17, 19 | mp2an 689 |
. . . . . . . . . . . . . 14
⊢ -π
< π |
21 | 13, 12, 20 | ltleii 11098 |
. . . . . . . . . . . . 13
⊢ -π
≤ π |
22 | | prunioo 13213 |
. . . . . . . . . . . . 13
⊢ ((-π
∈ ℝ* ∧ π ∈ ℝ* ∧ -π
≤ π) → ((-π(,)π) ∪ {-π, π}) =
(-π[,]π)) |
23 | 14, 15, 21, 22 | mp3an 1460 |
. . . . . . . . . . . 12
⊢
((-π(,)π) ∪ {-π, π}) = (-π[,]π) |
24 | 23 | difeq1i 4053 |
. . . . . . . . . . 11
⊢
(((-π(,)π) ∪ {-π, π}) ∖ dom 𝐺) = ((-π[,]π) ∖ dom 𝐺) |
25 | | difundir 4214 |
. . . . . . . . . . 11
⊢
(((-π(,)π) ∪ {-π, π}) ∖ dom 𝐺) = (((-π(,)π) ∖ dom 𝐺) ∪ ({-π, π} ∖
dom 𝐺)) |
26 | 24, 25 | eqtr3i 2768 |
. . . . . . . . . 10
⊢
((-π[,]π) ∖ dom 𝐺) = (((-π(,)π) ∖ dom 𝐺) ∪ ({-π, π} ∖
dom 𝐺)) |
27 | | fourierdlem102.dmdv |
. . . . . . . . . . 11
⊢ (𝜑 → ((-π(,)π) ∖
dom 𝐺) ∈
Fin) |
28 | | prfi 9089 |
. . . . . . . . . . . 12
⊢ {-π,
π} ∈ Fin |
29 | | diffi 8962 |
. . . . . . . . . . . 12
⊢ ({-π,
π} ∈ Fin → ({-π, π} ∖ dom 𝐺) ∈ Fin) |
30 | 28, 29 | mp1i 13 |
. . . . . . . . . . 11
⊢ (𝜑 → ({-π, π} ∖ dom
𝐺) ∈
Fin) |
31 | | unfi 8955 |
. . . . . . . . . . 11
⊢
((((-π(,)π) ∖ dom 𝐺) ∈ Fin ∧ ({-π, π} ∖
dom 𝐺) ∈ Fin) →
(((-π(,)π) ∖ dom 𝐺) ∪ ({-π, π} ∖ dom 𝐺)) ∈ Fin) |
32 | 27, 30, 31 | syl2anc 584 |
. . . . . . . . . 10
⊢ (𝜑 → (((-π(,)π) ∖
dom 𝐺) ∪ ({-π, π}
∖ dom 𝐺)) ∈
Fin) |
33 | 26, 32 | eqeltrid 2843 |
. . . . . . . . 9
⊢ (𝜑 → ((-π[,]π) ∖
dom 𝐺) ∈
Fin) |
34 | | unfi 8955 |
. . . . . . . . 9
⊢ (({-π,
π, (𝐸‘𝑋)} ∈ Fin ∧
((-π[,]π) ∖ dom 𝐺) ∈ Fin) → ({-π, π, (𝐸‘𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺)) ∈ Fin) |
35 | 11, 33, 34 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → ({-π, π, (𝐸‘𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺)) ∈ Fin) |
36 | 9, 35 | eqeltrid 2843 |
. . . . . . 7
⊢ (𝜑 → 𝐻 ∈ Fin) |
37 | | hashcl 14071 |
. . . . . . 7
⊢ (𝐻 ∈ Fin →
(♯‘𝐻) ∈
ℕ0) |
38 | 36, 37 | syl 17 |
. . . . . 6
⊢ (𝜑 → (♯‘𝐻) ∈
ℕ0) |
39 | 38 | nn0zd 12424 |
. . . . 5
⊢ (𝜑 → (♯‘𝐻) ∈
ℤ) |
40 | 13, 20 | ltneii 11088 |
. . . . . . 7
⊢ -π
≠ π |
41 | | hashprg 14110 |
. . . . . . . 8
⊢ ((-π
∈ ℝ ∧ π ∈ ℝ) → (-π ≠ π ↔
(♯‘{-π, π}) = 2)) |
42 | 13, 12, 41 | mp2an 689 |
. . . . . . 7
⊢ (-π
≠ π ↔ (♯‘{-π, π}) = 2) |
43 | 40, 42 | mpbi 229 |
. . . . . 6
⊢
(♯‘{-π, π}) = 2 |
44 | 10 | elexi 3451 |
. . . . . . . . . 10
⊢ {-π,
π, (𝐸‘𝑋)} ∈ V |
45 | | ovex 7308 |
. . . . . . . . . . 11
⊢
(-π[,]π) ∈ V |
46 | | difexg 5251 |
. . . . . . . . . . 11
⊢
((-π[,]π) ∈ V → ((-π[,]π) ∖ dom 𝐺) ∈ V) |
47 | 45, 46 | ax-mp 5 |
. . . . . . . . . 10
⊢
((-π[,]π) ∖ dom 𝐺) ∈ V |
48 | 44, 47 | unex 7596 |
. . . . . . . . 9
⊢ ({-π,
π, (𝐸‘𝑋)} ∪ ((-π[,]π) ∖
dom 𝐺)) ∈
V |
49 | 9, 48 | eqeltri 2835 |
. . . . . . . 8
⊢ 𝐻 ∈ V |
50 | | negex 11219 |
. . . . . . . . . . 11
⊢ -π
∈ V |
51 | 50 | tpid1 4704 |
. . . . . . . . . 10
⊢ -π
∈ {-π, π, (𝐸‘𝑋)} |
52 | 12 | elexi 3451 |
. . . . . . . . . . 11
⊢ π
∈ V |
53 | 52 | tpid2 4706 |
. . . . . . . . . 10
⊢ π
∈ {-π, π, (𝐸‘𝑋)} |
54 | | prssi 4754 |
. . . . . . . . . 10
⊢ ((-π
∈ {-π, π, (𝐸‘𝑋)} ∧ π ∈ {-π, π, (𝐸‘𝑋)}) → {-π, π} ⊆ {-π,
π, (𝐸‘𝑋)}) |
55 | 51, 53, 54 | mp2an 689 |
. . . . . . . . 9
⊢ {-π,
π} ⊆ {-π, π, (𝐸‘𝑋)} |
56 | | ssun1 4106 |
. . . . . . . . . 10
⊢ {-π,
π, (𝐸‘𝑋)} ⊆ ({-π, π, (𝐸‘𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺)) |
57 | 56, 9 | sseqtrri 3958 |
. . . . . . . . 9
⊢ {-π,
π, (𝐸‘𝑋)} ⊆ 𝐻 |
58 | 55, 57 | sstri 3930 |
. . . . . . . 8
⊢ {-π,
π} ⊆ 𝐻 |
59 | | hashss 14124 |
. . . . . . . 8
⊢ ((𝐻 ∈ V ∧ {-π, π}
⊆ 𝐻) →
(♯‘{-π, π}) ≤ (♯‘𝐻)) |
60 | 49, 58, 59 | mp2an 689 |
. . . . . . 7
⊢
(♯‘{-π, π}) ≤ (♯‘𝐻) |
61 | 60 | a1i 11 |
. . . . . 6
⊢ (𝜑 → (♯‘{-π,
π}) ≤ (♯‘𝐻)) |
62 | 43, 61 | eqbrtrrid 5110 |
. . . . 5
⊢ (𝜑 → 2 ≤
(♯‘𝐻)) |
63 | | eluz2 12588 |
. . . . 5
⊢
((♯‘𝐻)
∈ (ℤ≥‘2) ↔ (2 ∈ ℤ ∧
(♯‘𝐻) ∈
ℤ ∧ 2 ≤ (♯‘𝐻))) |
64 | 8, 39, 62, 63 | syl3anbrc 1342 |
. . . 4
⊢ (𝜑 → (♯‘𝐻) ∈
(ℤ≥‘2)) |
65 | | uz2m1nn 12663 |
. . . 4
⊢
((♯‘𝐻)
∈ (ℤ≥‘2) → ((♯‘𝐻) − 1) ∈
ℕ) |
66 | 64, 65 | syl 17 |
. . 3
⊢ (𝜑 → ((♯‘𝐻) − 1) ∈
ℕ) |
67 | 6, 66 | eqeltrid 2843 |
. 2
⊢ (𝜑 → 𝑀 ∈ ℕ) |
68 | 13 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → -π ∈
ℝ) |
69 | 12 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → π ∈
ℝ) |
70 | | negpitopissre 25696 |
. . . . . . . . . . . 12
⊢
(-π(,]π) ⊆ ℝ |
71 | 20 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → -π <
π) |
72 | | picn 25616 |
. . . . . . . . . . . . . . . 16
⊢ π
∈ ℂ |
73 | 72 | 2timesi 12111 |
. . . . . . . . . . . . . . 15
⊢ (2
· π) = (π + π) |
74 | 72, 72 | subnegi 11300 |
. . . . . . . . . . . . . . 15
⊢ (π
− -π) = (π + π) |
75 | 73, 2, 74 | 3eqtr4i 2776 |
. . . . . . . . . . . . . 14
⊢ 𝑇 = (π −
-π) |
76 | | fourierdlem102.e |
. . . . . . . . . . . . . 14
⊢ 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((π − 𝑥) / 𝑇)) · 𝑇))) |
77 | 68, 69, 71, 75, 76 | fourierdlem4 43652 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐸:ℝ⟶(-π(,]π)) |
78 | 77, 4 | ffvelrnd 6962 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐸‘𝑋) ∈ (-π(,]π)) |
79 | 70, 78 | sselid 3919 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐸‘𝑋) ∈ ℝ) |
80 | 68, 69, 79 | 3jca 1127 |
. . . . . . . . . 10
⊢ (𝜑 → (-π ∈ ℝ
∧ π ∈ ℝ ∧ (𝐸‘𝑋) ∈ ℝ)) |
81 | | fvex 6787 |
. . . . . . . . . . 11
⊢ (𝐸‘𝑋) ∈ V |
82 | 50, 52, 81 | tpss 4768 |
. . . . . . . . . 10
⊢ ((-π
∈ ℝ ∧ π ∈ ℝ ∧ (𝐸‘𝑋) ∈ ℝ) ↔ {-π, π,
(𝐸‘𝑋)} ⊆ ℝ) |
83 | 80, 82 | sylib 217 |
. . . . . . . . 9
⊢ (𝜑 → {-π, π, (𝐸‘𝑋)} ⊆ ℝ) |
84 | | iccssre 13161 |
. . . . . . . . . . 11
⊢ ((-π
∈ ℝ ∧ π ∈ ℝ) → (-π[,]π) ⊆
ℝ) |
85 | 13, 12, 84 | mp2an 689 |
. . . . . . . . . 10
⊢
(-π[,]π) ⊆ ℝ |
86 | | ssdifss 4070 |
. . . . . . . . . 10
⊢
((-π[,]π) ⊆ ℝ → ((-π[,]π) ∖ dom 𝐺) ⊆
ℝ) |
87 | 85, 86 | mp1i 13 |
. . . . . . . . 9
⊢ (𝜑 → ((-π[,]π) ∖
dom 𝐺) ⊆
ℝ) |
88 | 83, 87 | unssd 4120 |
. . . . . . . 8
⊢ (𝜑 → ({-π, π, (𝐸‘𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺)) ⊆
ℝ) |
89 | 9, 88 | eqsstrid 3969 |
. . . . . . 7
⊢ (𝜑 → 𝐻 ⊆ ℝ) |
90 | | fourierdlem102.q |
. . . . . . 7
⊢ 𝑄 = (℩𝑔𝑔 Isom < , < ((0...𝑀), 𝐻)) |
91 | 36, 89, 90, 6 | fourierdlem36 43684 |
. . . . . 6
⊢ (𝜑 → 𝑄 Isom < , < ((0...𝑀), 𝐻)) |
92 | | isof1o 7194 |
. . . . . 6
⊢ (𝑄 Isom < , < ((0...𝑀), 𝐻) → 𝑄:(0...𝑀)–1-1-onto→𝐻) |
93 | | f1of 6716 |
. . . . . 6
⊢ (𝑄:(0...𝑀)–1-1-onto→𝐻 → 𝑄:(0...𝑀)⟶𝐻) |
94 | 91, 92, 93 | 3syl 18 |
. . . . 5
⊢ (𝜑 → 𝑄:(0...𝑀)⟶𝐻) |
95 | 94, 89 | fssd 6618 |
. . . 4
⊢ (𝜑 → 𝑄:(0...𝑀)⟶ℝ) |
96 | | reex 10962 |
. . . . 5
⊢ ℝ
∈ V |
97 | | ovex 7308 |
. . . . 5
⊢
(0...𝑀) ∈
V |
98 | 96, 97 | elmap 8659 |
. . . 4
⊢ (𝑄 ∈ (ℝ
↑m (0...𝑀))
↔ 𝑄:(0...𝑀)⟶ℝ) |
99 | 95, 98 | sylibr 233 |
. . 3
⊢ (𝜑 → 𝑄 ∈ (ℝ ↑m
(0...𝑀))) |
100 | | fveq2 6774 |
. . . . . . . . . . 11
⊢ (0 =
𝑖 → (𝑄‘0) = (𝑄‘𝑖)) |
101 | 100 | adantl 482 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 0 = 𝑖) → (𝑄‘0) = (𝑄‘𝑖)) |
102 | 95 | ffvelrnda 6961 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → (𝑄‘𝑖) ∈ ℝ) |
103 | 102 | leidd 11541 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → (𝑄‘𝑖) ≤ (𝑄‘𝑖)) |
104 | 103 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 0 = 𝑖) → (𝑄‘𝑖) ≤ (𝑄‘𝑖)) |
105 | 101, 104 | eqbrtrd 5096 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 0 = 𝑖) → (𝑄‘0) ≤ (𝑄‘𝑖)) |
106 | | elfzelz 13256 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈ (0...𝑀) → 𝑖 ∈ ℤ) |
107 | 106 | zred 12426 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈ (0...𝑀) → 𝑖 ∈ ℝ) |
108 | 107 | ad2antlr 724 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ ¬ 0 = 𝑖) → 𝑖 ∈ ℝ) |
109 | | elfzle1 13259 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈ (0...𝑀) → 0 ≤ 𝑖) |
110 | 109 | ad2antlr 724 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ ¬ 0 = 𝑖) → 0 ≤ 𝑖) |
111 | | neqne 2951 |
. . . . . . . . . . . . 13
⊢ (¬ 0
= 𝑖 → 0 ≠ 𝑖) |
112 | 111 | necomd 2999 |
. . . . . . . . . . . 12
⊢ (¬ 0
= 𝑖 → 𝑖 ≠ 0) |
113 | 112 | adantl 482 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ ¬ 0 = 𝑖) → 𝑖 ≠ 0) |
114 | 108, 110,
113 | ne0gt0d 11112 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ ¬ 0 = 𝑖) → 0 < 𝑖) |
115 | | nnssnn0 12236 |
. . . . . . . . . . . . . . . . 17
⊢ ℕ
⊆ ℕ0 |
116 | | nn0uz 12620 |
. . . . . . . . . . . . . . . . 17
⊢
ℕ0 = (ℤ≥‘0) |
117 | 115, 116 | sseqtri 3957 |
. . . . . . . . . . . . . . . 16
⊢ ℕ
⊆ (ℤ≥‘0) |
118 | 117, 67 | sselid 3919 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑀 ∈
(ℤ≥‘0)) |
119 | | eluzfz1 13263 |
. . . . . . . . . . . . . . 15
⊢ (𝑀 ∈
(ℤ≥‘0) → 0 ∈ (0...𝑀)) |
120 | 118, 119 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 0 ∈ (0...𝑀)) |
121 | 94, 120 | ffvelrnd 6962 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑄‘0) ∈ 𝐻) |
122 | 89, 121 | sseldd 3922 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑄‘0) ∈ ℝ) |
123 | 122 | ad2antrr 723 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 0 < 𝑖) → (𝑄‘0) ∈ ℝ) |
124 | 102 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 0 < 𝑖) → (𝑄‘𝑖) ∈ ℝ) |
125 | | simpr 485 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 0 < 𝑖) → 0 < 𝑖) |
126 | 91 | ad2antrr 723 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 0 < 𝑖) → 𝑄 Isom < , < ((0...𝑀), 𝐻)) |
127 | 120 | anim1i 615 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → (0 ∈ (0...𝑀) ∧ 𝑖 ∈ (0...𝑀))) |
128 | 127 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 0 < 𝑖) → (0 ∈ (0...𝑀) ∧ 𝑖 ∈ (0...𝑀))) |
129 | | isorel 7197 |
. . . . . . . . . . . . 13
⊢ ((𝑄 Isom < , < ((0...𝑀), 𝐻) ∧ (0 ∈ (0...𝑀) ∧ 𝑖 ∈ (0...𝑀))) → (0 < 𝑖 ↔ (𝑄‘0) < (𝑄‘𝑖))) |
130 | 126, 128,
129 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 0 < 𝑖) → (0 < 𝑖 ↔ (𝑄‘0) < (𝑄‘𝑖))) |
131 | 125, 130 | mpbid 231 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 0 < 𝑖) → (𝑄‘0) < (𝑄‘𝑖)) |
132 | 123, 124,
131 | ltled 11123 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 0 < 𝑖) → (𝑄‘0) ≤ (𝑄‘𝑖)) |
133 | 114, 132 | syldan 591 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ ¬ 0 = 𝑖) → (𝑄‘0) ≤ (𝑄‘𝑖)) |
134 | 105, 133 | pm2.61dan 810 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → (𝑄‘0) ≤ (𝑄‘𝑖)) |
135 | 134 | adantr 481 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ (𝑄‘𝑖) = -π) → (𝑄‘0) ≤ (𝑄‘𝑖)) |
136 | | simpr 485 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ (𝑄‘𝑖) = -π) → (𝑄‘𝑖) = -π) |
137 | 135, 136 | breqtrd 5100 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ (𝑄‘𝑖) = -π) → (𝑄‘0) ≤ -π) |
138 | 68 | rexrd 11025 |
. . . . . . . 8
⊢ (𝜑 → -π ∈
ℝ*) |
139 | 69 | rexrd 11025 |
. . . . . . . 8
⊢ (𝜑 → π ∈
ℝ*) |
140 | | lbicc2 13196 |
. . . . . . . . . . . . . 14
⊢ ((-π
∈ ℝ* ∧ π ∈ ℝ* ∧ -π
≤ π) → -π ∈ (-π[,]π)) |
141 | 14, 15, 21, 140 | mp3an 1460 |
. . . . . . . . . . . . 13
⊢ -π
∈ (-π[,]π) |
142 | 141 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → -π ∈
(-π[,]π)) |
143 | | ubicc2 13197 |
. . . . . . . . . . . . . 14
⊢ ((-π
∈ ℝ* ∧ π ∈ ℝ* ∧ -π
≤ π) → π ∈ (-π[,]π)) |
144 | 14, 15, 21, 143 | mp3an 1460 |
. . . . . . . . . . . . 13
⊢ π
∈ (-π[,]π) |
145 | 144 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → π ∈
(-π[,]π)) |
146 | | iocssicc 13169 |
. . . . . . . . . . . . 13
⊢
(-π(,]π) ⊆ (-π[,]π) |
147 | 146, 78 | sselid 3919 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐸‘𝑋) ∈ (-π[,]π)) |
148 | | tpssi 4769 |
. . . . . . . . . . . 12
⊢ ((-π
∈ (-π[,]π) ∧ π ∈ (-π[,]π) ∧ (𝐸‘𝑋) ∈ (-π[,]π)) → {-π,
π, (𝐸‘𝑋)} ⊆
(-π[,]π)) |
149 | 142, 145,
147, 148 | syl3anc 1370 |
. . . . . . . . . . 11
⊢ (𝜑 → {-π, π, (𝐸‘𝑋)} ⊆ (-π[,]π)) |
150 | | difssd 4067 |
. . . . . . . . . . 11
⊢ (𝜑 → ((-π[,]π) ∖
dom 𝐺) ⊆
(-π[,]π)) |
151 | 149, 150 | unssd 4120 |
. . . . . . . . . 10
⊢ (𝜑 → ({-π, π, (𝐸‘𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺)) ⊆
(-π[,]π)) |
152 | 9, 151 | eqsstrid 3969 |
. . . . . . . . 9
⊢ (𝜑 → 𝐻 ⊆ (-π[,]π)) |
153 | 152, 121 | sseldd 3922 |
. . . . . . . 8
⊢ (𝜑 → (𝑄‘0) ∈
(-π[,]π)) |
154 | | iccgelb 13135 |
. . . . . . . 8
⊢ ((-π
∈ ℝ* ∧ π ∈ ℝ* ∧ (𝑄‘0) ∈ (-π[,]π))
→ -π ≤ (𝑄‘0)) |
155 | 138, 139,
153, 154 | syl3anc 1370 |
. . . . . . 7
⊢ (𝜑 → -π ≤ (𝑄‘0)) |
156 | 155 | ad2antrr 723 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ (𝑄‘𝑖) = -π) → -π ≤ (𝑄‘0)) |
157 | 122 | ad2antrr 723 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ (𝑄‘𝑖) = -π) → (𝑄‘0) ∈ ℝ) |
158 | 13 | a1i 11 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ (𝑄‘𝑖) = -π) → -π ∈
ℝ) |
159 | 157, 158 | letri3d 11117 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ (𝑄‘𝑖) = -π) → ((𝑄‘0) = -π ↔ ((𝑄‘0) ≤ -π ∧ -π ≤ (𝑄‘0)))) |
160 | 137, 156,
159 | mpbir2and 710 |
. . . . 5
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ (𝑄‘𝑖) = -π) → (𝑄‘0) = -π) |
161 | 57, 51 | sselii 3918 |
. . . . . . 7
⊢ -π
∈ 𝐻 |
162 | | f1ofo 6723 |
. . . . . . . . 9
⊢ (𝑄:(0...𝑀)–1-1-onto→𝐻 → 𝑄:(0...𝑀)–onto→𝐻) |
163 | 92, 162 | syl 17 |
. . . . . . . 8
⊢ (𝑄 Isom < , < ((0...𝑀), 𝐻) → 𝑄:(0...𝑀)–onto→𝐻) |
164 | | forn 6691 |
. . . . . . . 8
⊢ (𝑄:(0...𝑀)–onto→𝐻 → ran 𝑄 = 𝐻) |
165 | 91, 163, 164 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → ran 𝑄 = 𝐻) |
166 | 161, 165 | eleqtrrid 2846 |
. . . . . 6
⊢ (𝜑 → -π ∈ ran 𝑄) |
167 | | ffn 6600 |
. . . . . . 7
⊢ (𝑄:(0...𝑀)⟶𝐻 → 𝑄 Fn (0...𝑀)) |
168 | | fvelrnb 6830 |
. . . . . . 7
⊢ (𝑄 Fn (0...𝑀) → (-π ∈ ran 𝑄 ↔ ∃𝑖 ∈ (0...𝑀)(𝑄‘𝑖) = -π)) |
169 | 94, 167, 168 | 3syl 18 |
. . . . . 6
⊢ (𝜑 → (-π ∈ ran 𝑄 ↔ ∃𝑖 ∈ (0...𝑀)(𝑄‘𝑖) = -π)) |
170 | 166, 169 | mpbid 231 |
. . . . 5
⊢ (𝜑 → ∃𝑖 ∈ (0...𝑀)(𝑄‘𝑖) = -π) |
171 | 160, 170 | r19.29a 3218 |
. . . 4
⊢ (𝜑 → (𝑄‘0) = -π) |
172 | 57, 53 | sselii 3918 |
. . . . . . 7
⊢ π
∈ 𝐻 |
173 | 172, 165 | eleqtrrid 2846 |
. . . . . 6
⊢ (𝜑 → π ∈ ran 𝑄) |
174 | | fvelrnb 6830 |
. . . . . . 7
⊢ (𝑄 Fn (0...𝑀) → (π ∈ ran 𝑄 ↔ ∃𝑖 ∈ (0...𝑀)(𝑄‘𝑖) = π)) |
175 | 94, 167, 174 | 3syl 18 |
. . . . . 6
⊢ (𝜑 → (π ∈ ran 𝑄 ↔ ∃𝑖 ∈ (0...𝑀)(𝑄‘𝑖) = π)) |
176 | 173, 175 | mpbid 231 |
. . . . 5
⊢ (𝜑 → ∃𝑖 ∈ (0...𝑀)(𝑄‘𝑖) = π) |
177 | 94, 152 | fssd 6618 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑄:(0...𝑀)⟶(-π[,]π)) |
178 | | eluzfz2 13264 |
. . . . . . . . . . 11
⊢ (𝑀 ∈
(ℤ≥‘0) → 𝑀 ∈ (0...𝑀)) |
179 | 118, 178 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 ∈ (0...𝑀)) |
180 | 177, 179 | ffvelrnd 6962 |
. . . . . . . . 9
⊢ (𝜑 → (𝑄‘𝑀) ∈ (-π[,]π)) |
181 | | iccleub 13134 |
. . . . . . . . 9
⊢ ((-π
∈ ℝ* ∧ π ∈ ℝ* ∧ (𝑄‘𝑀) ∈ (-π[,]π)) → (𝑄‘𝑀) ≤ π) |
182 | 138, 139,
180, 181 | syl3anc 1370 |
. . . . . . . 8
⊢ (𝜑 → (𝑄‘𝑀) ≤ π) |
183 | 182 | 3ad2ant1 1132 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀) ∧ (𝑄‘𝑖) = π) → (𝑄‘𝑀) ≤ π) |
184 | | id 22 |
. . . . . . . . . 10
⊢ ((𝑄‘𝑖) = π → (𝑄‘𝑖) = π) |
185 | 184 | eqcomd 2744 |
. . . . . . . . 9
⊢ ((𝑄‘𝑖) = π → π = (𝑄‘𝑖)) |
186 | 185 | 3ad2ant3 1134 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀) ∧ (𝑄‘𝑖) = π) → π = (𝑄‘𝑖)) |
187 | 103 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑖 = 𝑀) → (𝑄‘𝑖) ≤ (𝑄‘𝑖)) |
188 | | fveq2 6774 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑀 → (𝑄‘𝑖) = (𝑄‘𝑀)) |
189 | 188 | adantl 482 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑖 = 𝑀) → (𝑄‘𝑖) = (𝑄‘𝑀)) |
190 | 187, 189 | breqtrd 5100 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑖 = 𝑀) → (𝑄‘𝑖) ≤ (𝑄‘𝑀)) |
191 | 107 | ad2antlr 724 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ ¬ 𝑖 = 𝑀) → 𝑖 ∈ ℝ) |
192 | | elfzel2 13254 |
. . . . . . . . . . . . . 14
⊢ (𝑖 ∈ (0...𝑀) → 𝑀 ∈ ℤ) |
193 | 192 | zred 12426 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈ (0...𝑀) → 𝑀 ∈ ℝ) |
194 | 193 | ad2antlr 724 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ ¬ 𝑖 = 𝑀) → 𝑀 ∈ ℝ) |
195 | | elfzle2 13260 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈ (0...𝑀) → 𝑖 ≤ 𝑀) |
196 | 195 | ad2antlr 724 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ ¬ 𝑖 = 𝑀) → 𝑖 ≤ 𝑀) |
197 | | neqne 2951 |
. . . . . . . . . . . . . 14
⊢ (¬
𝑖 = 𝑀 → 𝑖 ≠ 𝑀) |
198 | 197 | necomd 2999 |
. . . . . . . . . . . . 13
⊢ (¬
𝑖 = 𝑀 → 𝑀 ≠ 𝑖) |
199 | 198 | adantl 482 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ ¬ 𝑖 = 𝑀) → 𝑀 ≠ 𝑖) |
200 | 191, 194,
196, 199 | leneltd 11129 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ ¬ 𝑖 = 𝑀) → 𝑖 < 𝑀) |
201 | 102 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑖 < 𝑀) → (𝑄‘𝑖) ∈ ℝ) |
202 | 85, 180 | sselid 3919 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑄‘𝑀) ∈ ℝ) |
203 | 202 | ad2antrr 723 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑖 < 𝑀) → (𝑄‘𝑀) ∈ ℝ) |
204 | | simpr 485 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑖 < 𝑀) → 𝑖 < 𝑀) |
205 | 91 | ad2antrr 723 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑖 < 𝑀) → 𝑄 Isom < , < ((0...𝑀), 𝐻)) |
206 | | simpr 485 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → 𝑖 ∈ (0...𝑀)) |
207 | 179 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → 𝑀 ∈ (0...𝑀)) |
208 | 206, 207 | jca 512 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → (𝑖 ∈ (0...𝑀) ∧ 𝑀 ∈ (0...𝑀))) |
209 | 208 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑖 < 𝑀) → (𝑖 ∈ (0...𝑀) ∧ 𝑀 ∈ (0...𝑀))) |
210 | | isorel 7197 |
. . . . . . . . . . . . . 14
⊢ ((𝑄 Isom < , < ((0...𝑀), 𝐻) ∧ (𝑖 ∈ (0...𝑀) ∧ 𝑀 ∈ (0...𝑀))) → (𝑖 < 𝑀 ↔ (𝑄‘𝑖) < (𝑄‘𝑀))) |
211 | 205, 209,
210 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑖 < 𝑀) → (𝑖 < 𝑀 ↔ (𝑄‘𝑖) < (𝑄‘𝑀))) |
212 | 204, 211 | mpbid 231 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑖 < 𝑀) → (𝑄‘𝑖) < (𝑄‘𝑀)) |
213 | 201, 203,
212 | ltled 11123 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑖 < 𝑀) → (𝑄‘𝑖) ≤ (𝑄‘𝑀)) |
214 | 200, 213 | syldan 591 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ ¬ 𝑖 = 𝑀) → (𝑄‘𝑖) ≤ (𝑄‘𝑀)) |
215 | 190, 214 | pm2.61dan 810 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → (𝑄‘𝑖) ≤ (𝑄‘𝑀)) |
216 | 215 | 3adant3 1131 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀) ∧ (𝑄‘𝑖) = π) → (𝑄‘𝑖) ≤ (𝑄‘𝑀)) |
217 | 186, 216 | eqbrtrd 5096 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀) ∧ (𝑄‘𝑖) = π) → π ≤ (𝑄‘𝑀)) |
218 | 202 | 3ad2ant1 1132 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀) ∧ (𝑄‘𝑖) = π) → (𝑄‘𝑀) ∈ ℝ) |
219 | 12 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀) ∧ (𝑄‘𝑖) = π) → π ∈
ℝ) |
220 | 218, 219 | letri3d 11117 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀) ∧ (𝑄‘𝑖) = π) → ((𝑄‘𝑀) = π ↔ ((𝑄‘𝑀) ≤ π ∧ π ≤ (𝑄‘𝑀)))) |
221 | 183, 217,
220 | mpbir2and 710 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀) ∧ (𝑄‘𝑖) = π) → (𝑄‘𝑀) = π) |
222 | 221 | rexlimdv3a 3215 |
. . . . 5
⊢ (𝜑 → (∃𝑖 ∈ (0...𝑀)(𝑄‘𝑖) = π → (𝑄‘𝑀) = π)) |
223 | 176, 222 | mpd 15 |
. . . 4
⊢ (𝜑 → (𝑄‘𝑀) = π) |
224 | | elfzoelz 13387 |
. . . . . . . . 9
⊢ (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ ℤ) |
225 | 224 | zred 12426 |
. . . . . . . 8
⊢ (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ ℝ) |
226 | 225 | ltp1d 11905 |
. . . . . . 7
⊢ (𝑖 ∈ (0..^𝑀) → 𝑖 < (𝑖 + 1)) |
227 | 226 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑖 < (𝑖 + 1)) |
228 | | elfzofz 13403 |
. . . . . . . 8
⊢ (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀)) |
229 | | fzofzp1 13484 |
. . . . . . . 8
⊢ (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀)) |
230 | 228, 229 | jca 512 |
. . . . . . 7
⊢ (𝑖 ∈ (0..^𝑀) → (𝑖 ∈ (0...𝑀) ∧ (𝑖 + 1) ∈ (0...𝑀))) |
231 | | isorel 7197 |
. . . . . . 7
⊢ ((𝑄 Isom < , < ((0...𝑀), 𝐻) ∧ (𝑖 ∈ (0...𝑀) ∧ (𝑖 + 1) ∈ (0...𝑀))) → (𝑖 < (𝑖 + 1) ↔ (𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))) |
232 | 91, 230, 231 | syl2an 596 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑖 < (𝑖 + 1) ↔ (𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))) |
233 | 227, 232 | mpbid 231 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) |
234 | 233 | ralrimiva 3103 |
. . . 4
⊢ (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) |
235 | 171, 223,
234 | jca31 515 |
. . 3
⊢ (𝜑 → (((𝑄‘0) = -π ∧ (𝑄‘𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))) |
236 | 5 | fourierdlem2 43650 |
. . . 4
⊢ (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃‘𝑀) ↔ (𝑄 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄‘𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))))) |
237 | 67, 236 | syl 17 |
. . 3
⊢ (𝜑 → (𝑄 ∈ (𝑃‘𝑀) ↔ (𝑄 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄‘𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))))) |
238 | 99, 235, 237 | mpbir2and 710 |
. 2
⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) |
239 | | fourierdlem102.g |
. . . . 5
⊢ 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π)) |
240 | 239 | reseq1i 5887 |
. . . 4
⊢ (𝐺 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = (((ℝ D 𝐹) ↾ (-π(,)π)) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
241 | 14 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → -π ∈
ℝ*) |
242 | 15 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → π ∈
ℝ*) |
243 | 177 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶(-π[,]π)) |
244 | | simpr 485 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0..^𝑀)) |
245 | 241, 242,
243, 244 | fourierdlem27 43675 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆
(-π(,)π)) |
246 | 245 | resabs1d 5922 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((ℝ D 𝐹) ↾ (-π(,)π)) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((ℝ D 𝐹) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) |
247 | 240, 246 | eqtr2id 2791 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝐺 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) |
248 | | fourierdlem102.gcn |
. . . 4
⊢ (𝜑 → 𝐺 ∈ (dom 𝐺–cn→ℂ)) |
249 | 248, 5, 67, 238, 9, 165 | fourierdlem38 43686 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) |
250 | 247, 249 | eqeltrd 2839 |
. 2
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) |
251 | 247 | oveq1d 7290 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((ℝ D 𝐹) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖)) = ((𝐺 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) |
252 | 248 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐺 ∈ (dom 𝐺–cn→ℂ)) |
253 | | fourierdlem102.rlim |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ((-π[,)π) ∖ dom 𝐺)) → ((𝐺 ↾ (𝑥(,)+∞)) limℂ 𝑥) ≠ ∅) |
254 | 253 | adantlr 712 |
. . . . 5
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((-π[,)π) ∖ dom 𝐺)) → ((𝐺 ↾ (𝑥(,)+∞)) limℂ 𝑥) ≠ ∅) |
255 | | fourierdlem102.llim |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ((-π(,]π) ∖ dom 𝐺)) → ((𝐺 ↾ (-∞(,)𝑥)) limℂ 𝑥) ≠ ∅) |
256 | 255 | adantlr 712 |
. . . . 5
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((-π(,]π) ∖ dom 𝐺)) → ((𝐺 ↾ (-∞(,)𝑥)) limℂ 𝑥) ≠ ∅) |
257 | 91 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑄 Isom < , < ((0...𝑀), 𝐻)) |
258 | 257, 92, 93 | 3syl 18 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶𝐻) |
259 | 79 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐸‘𝑋) ∈ ℝ) |
260 | 257, 163,
164 | 3syl 18 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ran 𝑄 = 𝐻) |
261 | 252, 254,
256, 257, 258, 244, 233, 245, 259, 9, 260 | fourierdlem46 43693 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((𝐺 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖)) ≠ ∅ ∧ ((𝐺 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1))) ≠ ∅)) |
262 | 261 | simpld 495 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐺 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖)) ≠ ∅) |
263 | 251, 262 | eqnetrd 3011 |
. 2
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((ℝ D 𝐹) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖)) ≠ ∅) |
264 | 247 | oveq1d 7290 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((ℝ D 𝐹) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1))) = ((𝐺 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) |
265 | 261 | simprd 496 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐺 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1))) ≠ ∅) |
266 | 264, 265 | eqnetrd 3011 |
. 2
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((ℝ D 𝐹) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1))) ≠ ∅) |
267 | 1, 2, 3, 4, 5, 67,
238, 250, 263, 266 | fourierdlem94 43741 |
1
⊢ (𝜑 → (((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋) ≠ ∅ ∧ ((𝐹 ↾ (𝑋(,)+∞)) limℂ 𝑋) ≠
∅)) |