Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem102 Structured version   Visualization version   GIF version

Theorem fourierdlem102 46129
Description: For a piecewise smooth function, the left and the right limits exist at any point. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem102.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem102.t 𝑇 = (2 · π)
fourierdlem102.per ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
fourierdlem102.g 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π))
fourierdlem102.dmdv (𝜑 → ((-π(,)π) ∖ dom 𝐺) ∈ Fin)
fourierdlem102.gcn (𝜑𝐺 ∈ (dom 𝐺cn→ℂ))
fourierdlem102.rlim ((𝜑𝑥 ∈ ((-π[,)π) ∖ dom 𝐺)) → ((𝐺 ↾ (𝑥(,)+∞)) lim 𝑥) ≠ ∅)
fourierdlem102.llim ((𝜑𝑥 ∈ ((-π(,]π) ∖ dom 𝐺)) → ((𝐺 ↾ (-∞(,)𝑥)) lim 𝑥) ≠ ∅)
fourierdlem102.x (𝜑𝑋 ∈ ℝ)
fourierdlem102.p 𝑃 = (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑛) = π) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem102.e 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((π − 𝑥) / 𝑇)) · 𝑇)))
fourierdlem102.h 𝐻 = ({-π, π, (𝐸𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺))
fourierdlem102.m 𝑀 = ((♯‘𝐻) − 1)
fourierdlem102.q 𝑄 = (℩𝑔𝑔 Isom < , < ((0...𝑀), 𝐻))
Assertion
Ref Expression
fourierdlem102 (𝜑 → (((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋) ≠ ∅ ∧ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅))
Distinct variable groups:   𝑥,𝐸   𝑖,𝐹,𝑛,𝑥   𝑖,𝐺,𝑥   𝑔,𝐻   𝑔,𝑀   𝑖,𝑀,𝑛,𝑝   𝑥,𝑀   𝑄,𝑔   𝑄,𝑖,𝑛,𝑝   𝑥,𝑄   𝑇,𝑖,𝑛,𝑝   𝑥,𝑇   𝑖,𝑋,𝑛,𝑝   𝑥,𝑋   𝜑,𝑔   𝜑,𝑖,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑝)   𝑃(𝑥,𝑔,𝑖,𝑛,𝑝)   𝑇(𝑔)   𝐸(𝑔,𝑖,𝑛,𝑝)   𝐹(𝑔,𝑝)   𝐺(𝑔,𝑛,𝑝)   𝐻(𝑥,𝑖,𝑛,𝑝)   𝑋(𝑔)

Proof of Theorem fourierdlem102
StepHypRef Expression
1 fourierdlem102.f . 2 (𝜑𝐹:ℝ⟶ℝ)
2 fourierdlem102.t . 2 𝑇 = (2 · π)
3 fourierdlem102.per . 2 ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
4 fourierdlem102.x . 2 (𝜑𝑋 ∈ ℝ)
5 fourierdlem102.p . 2 𝑃 = (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑛) = π) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
6 fourierdlem102.m . . 3 𝑀 = ((♯‘𝐻) − 1)
7 2z 12675 . . . . . 6 2 ∈ ℤ
87a1i 11 . . . . 5 (𝜑 → 2 ∈ ℤ)
9 fourierdlem102.h . . . . . . . 8 𝐻 = ({-π, π, (𝐸𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺))
10 tpfi 9393 . . . . . . . . . 10 {-π, π, (𝐸𝑋)} ∈ Fin
1110a1i 11 . . . . . . . . 9 (𝜑 → {-π, π, (𝐸𝑋)} ∈ Fin)
12 pire 26518 . . . . . . . . . . . . . . 15 π ∈ ℝ
1312renegcli 11597 . . . . . . . . . . . . . 14 -π ∈ ℝ
1413rexri 11348 . . . . . . . . . . . . 13 -π ∈ ℝ*
1512rexri 11348 . . . . . . . . . . . . 13 π ∈ ℝ*
16 negpilt0 45195 . . . . . . . . . . . . . . 15 -π < 0
17 pipos 26520 . . . . . . . . . . . . . . 15 0 < π
18 0re 11292 . . . . . . . . . . . . . . . 16 0 ∈ ℝ
1913, 18, 12lttri 11416 . . . . . . . . . . . . . . 15 ((-π < 0 ∧ 0 < π) → -π < π)
2016, 17, 19mp2an 691 . . . . . . . . . . . . . 14 -π < π
2113, 12, 20ltleii 11413 . . . . . . . . . . . . 13 -π ≤ π
22 prunioo 13541 . . . . . . . . . . . . 13 ((-π ∈ ℝ* ∧ π ∈ ℝ* ∧ -π ≤ π) → ((-π(,)π) ∪ {-π, π}) = (-π[,]π))
2314, 15, 21, 22mp3an 1461 . . . . . . . . . . . 12 ((-π(,)π) ∪ {-π, π}) = (-π[,]π)
2423difeq1i 4145 . . . . . . . . . . 11 (((-π(,)π) ∪ {-π, π}) ∖ dom 𝐺) = ((-π[,]π) ∖ dom 𝐺)
25 difundir 4310 . . . . . . . . . . 11 (((-π(,)π) ∪ {-π, π}) ∖ dom 𝐺) = (((-π(,)π) ∖ dom 𝐺) ∪ ({-π, π} ∖ dom 𝐺))
2624, 25eqtr3i 2770 . . . . . . . . . 10 ((-π[,]π) ∖ dom 𝐺) = (((-π(,)π) ∖ dom 𝐺) ∪ ({-π, π} ∖ dom 𝐺))
27 fourierdlem102.dmdv . . . . . . . . . . 11 (𝜑 → ((-π(,)π) ∖ dom 𝐺) ∈ Fin)
28 prfi 9391 . . . . . . . . . . . 12 {-π, π} ∈ Fin
29 diffi 9242 . . . . . . . . . . . 12 ({-π, π} ∈ Fin → ({-π, π} ∖ dom 𝐺) ∈ Fin)
3028, 29mp1i 13 . . . . . . . . . . 11 (𝜑 → ({-π, π} ∖ dom 𝐺) ∈ Fin)
31 unfi 9238 . . . . . . . . . . 11 ((((-π(,)π) ∖ dom 𝐺) ∈ Fin ∧ ({-π, π} ∖ dom 𝐺) ∈ Fin) → (((-π(,)π) ∖ dom 𝐺) ∪ ({-π, π} ∖ dom 𝐺)) ∈ Fin)
3227, 30, 31syl2anc 583 . . . . . . . . . 10 (𝜑 → (((-π(,)π) ∖ dom 𝐺) ∪ ({-π, π} ∖ dom 𝐺)) ∈ Fin)
3326, 32eqeltrid 2848 . . . . . . . . 9 (𝜑 → ((-π[,]π) ∖ dom 𝐺) ∈ Fin)
34 unfi 9238 . . . . . . . . 9 (({-π, π, (𝐸𝑋)} ∈ Fin ∧ ((-π[,]π) ∖ dom 𝐺) ∈ Fin) → ({-π, π, (𝐸𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺)) ∈ Fin)
3511, 33, 34syl2anc 583 . . . . . . . 8 (𝜑 → ({-π, π, (𝐸𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺)) ∈ Fin)
369, 35eqeltrid 2848 . . . . . . 7 (𝜑𝐻 ∈ Fin)
37 hashcl 14405 . . . . . . 7 (𝐻 ∈ Fin → (♯‘𝐻) ∈ ℕ0)
3836, 37syl 17 . . . . . 6 (𝜑 → (♯‘𝐻) ∈ ℕ0)
3938nn0zd 12665 . . . . 5 (𝜑 → (♯‘𝐻) ∈ ℤ)
4013, 20ltneii 11403 . . . . . . 7 -π ≠ π
41 hashprg 14444 . . . . . . . 8 ((-π ∈ ℝ ∧ π ∈ ℝ) → (-π ≠ π ↔ (♯‘{-π, π}) = 2))
4213, 12, 41mp2an 691 . . . . . . 7 (-π ≠ π ↔ (♯‘{-π, π}) = 2)
4340, 42mpbi 230 . . . . . 6 (♯‘{-π, π}) = 2
4410elexi 3511 . . . . . . . . . 10 {-π, π, (𝐸𝑋)} ∈ V
45 ovex 7481 . . . . . . . . . . 11 (-π[,]π) ∈ V
46 difexg 5347 . . . . . . . . . . 11 ((-π[,]π) ∈ V → ((-π[,]π) ∖ dom 𝐺) ∈ V)
4745, 46ax-mp 5 . . . . . . . . . 10 ((-π[,]π) ∖ dom 𝐺) ∈ V
4844, 47unex 7779 . . . . . . . . 9 ({-π, π, (𝐸𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺)) ∈ V
499, 48eqeltri 2840 . . . . . . . 8 𝐻 ∈ V
50 negex 11534 . . . . . . . . . . 11 -π ∈ V
5150tpid1 4793 . . . . . . . . . 10 -π ∈ {-π, π, (𝐸𝑋)}
5212elexi 3511 . . . . . . . . . . 11 π ∈ V
5352tpid2 4795 . . . . . . . . . 10 π ∈ {-π, π, (𝐸𝑋)}
54 prssi 4846 . . . . . . . . . 10 ((-π ∈ {-π, π, (𝐸𝑋)} ∧ π ∈ {-π, π, (𝐸𝑋)}) → {-π, π} ⊆ {-π, π, (𝐸𝑋)})
5551, 53, 54mp2an 691 . . . . . . . . 9 {-π, π} ⊆ {-π, π, (𝐸𝑋)}
56 ssun1 4201 . . . . . . . . . 10 {-π, π, (𝐸𝑋)} ⊆ ({-π, π, (𝐸𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺))
5756, 9sseqtrri 4046 . . . . . . . . 9 {-π, π, (𝐸𝑋)} ⊆ 𝐻
5855, 57sstri 4018 . . . . . . . 8 {-π, π} ⊆ 𝐻
59 hashss 14458 . . . . . . . 8 ((𝐻 ∈ V ∧ {-π, π} ⊆ 𝐻) → (♯‘{-π, π}) ≤ (♯‘𝐻))
6049, 58, 59mp2an 691 . . . . . . 7 (♯‘{-π, π}) ≤ (♯‘𝐻)
6160a1i 11 . . . . . 6 (𝜑 → (♯‘{-π, π}) ≤ (♯‘𝐻))
6243, 61eqbrtrrid 5202 . . . . 5 (𝜑 → 2 ≤ (♯‘𝐻))
63 eluz2 12909 . . . . 5 ((♯‘𝐻) ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ (♯‘𝐻) ∈ ℤ ∧ 2 ≤ (♯‘𝐻)))
648, 39, 62, 63syl3anbrc 1343 . . . 4 (𝜑 → (♯‘𝐻) ∈ (ℤ‘2))
65 uz2m1nn 12988 . . . 4 ((♯‘𝐻) ∈ (ℤ‘2) → ((♯‘𝐻) − 1) ∈ ℕ)
6664, 65syl 17 . . 3 (𝜑 → ((♯‘𝐻) − 1) ∈ ℕ)
676, 66eqeltrid 2848 . 2 (𝜑𝑀 ∈ ℕ)
6813a1i 11 . . . . . . . . . . 11 (𝜑 → -π ∈ ℝ)
6912a1i 11 . . . . . . . . . . 11 (𝜑 → π ∈ ℝ)
70 negpitopissre 26600 . . . . . . . . . . . 12 (-π(,]π) ⊆ ℝ
7120a1i 11 . . . . . . . . . . . . . 14 (𝜑 → -π < π)
72 picn 26519 . . . . . . . . . . . . . . . 16 π ∈ ℂ
73722timesi 12431 . . . . . . . . . . . . . . 15 (2 · π) = (π + π)
7472, 72subnegi 11615 . . . . . . . . . . . . . . 15 (π − -π) = (π + π)
7573, 2, 743eqtr4i 2778 . . . . . . . . . . . . . 14 𝑇 = (π − -π)
76 fourierdlem102.e . . . . . . . . . . . . . 14 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((π − 𝑥) / 𝑇)) · 𝑇)))
7768, 69, 71, 75, 76fourierdlem4 46032 . . . . . . . . . . . . 13 (𝜑𝐸:ℝ⟶(-π(,]π))
7877, 4ffvelcdmd 7119 . . . . . . . . . . . 12 (𝜑 → (𝐸𝑋) ∈ (-π(,]π))
7970, 78sselid 4006 . . . . . . . . . . 11 (𝜑 → (𝐸𝑋) ∈ ℝ)
8068, 69, 793jca 1128 . . . . . . . . . 10 (𝜑 → (-π ∈ ℝ ∧ π ∈ ℝ ∧ (𝐸𝑋) ∈ ℝ))
81 fvex 6933 . . . . . . . . . . 11 (𝐸𝑋) ∈ V
8250, 52, 81tpss 4862 . . . . . . . . . 10 ((-π ∈ ℝ ∧ π ∈ ℝ ∧ (𝐸𝑋) ∈ ℝ) ↔ {-π, π, (𝐸𝑋)} ⊆ ℝ)
8380, 82sylib 218 . . . . . . . . 9 (𝜑 → {-π, π, (𝐸𝑋)} ⊆ ℝ)
84 iccssre 13489 . . . . . . . . . . 11 ((-π ∈ ℝ ∧ π ∈ ℝ) → (-π[,]π) ⊆ ℝ)
8513, 12, 84mp2an 691 . . . . . . . . . 10 (-π[,]π) ⊆ ℝ
86 ssdifss 4163 . . . . . . . . . 10 ((-π[,]π) ⊆ ℝ → ((-π[,]π) ∖ dom 𝐺) ⊆ ℝ)
8785, 86mp1i 13 . . . . . . . . 9 (𝜑 → ((-π[,]π) ∖ dom 𝐺) ⊆ ℝ)
8883, 87unssd 4215 . . . . . . . 8 (𝜑 → ({-π, π, (𝐸𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺)) ⊆ ℝ)
899, 88eqsstrid 4057 . . . . . . 7 (𝜑𝐻 ⊆ ℝ)
90 fourierdlem102.q . . . . . . 7 𝑄 = (℩𝑔𝑔 Isom < , < ((0...𝑀), 𝐻))
9136, 89, 90, 6fourierdlem36 46064 . . . . . 6 (𝜑𝑄 Isom < , < ((0...𝑀), 𝐻))
92 isof1o 7359 . . . . . 6 (𝑄 Isom < , < ((0...𝑀), 𝐻) → 𝑄:(0...𝑀)–1-1-onto𝐻)
93 f1of 6862 . . . . . 6 (𝑄:(0...𝑀)–1-1-onto𝐻𝑄:(0...𝑀)⟶𝐻)
9491, 92, 933syl 18 . . . . 5 (𝜑𝑄:(0...𝑀)⟶𝐻)
9594, 89fssd 6764 . . . 4 (𝜑𝑄:(0...𝑀)⟶ℝ)
96 reex 11275 . . . . 5 ℝ ∈ V
97 ovex 7481 . . . . 5 (0...𝑀) ∈ V
9896, 97elmap 8929 . . . 4 (𝑄 ∈ (ℝ ↑m (0...𝑀)) ↔ 𝑄:(0...𝑀)⟶ℝ)
9995, 98sylibr 234 . . 3 (𝜑𝑄 ∈ (ℝ ↑m (0...𝑀)))
100 fveq2 6920 . . . . . . . . . . 11 (0 = 𝑖 → (𝑄‘0) = (𝑄𝑖))
101100adantl 481 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 0 = 𝑖) → (𝑄‘0) = (𝑄𝑖))
10295ffvelcdmda 7118 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0...𝑀)) → (𝑄𝑖) ∈ ℝ)
103102leidd 11856 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0...𝑀)) → (𝑄𝑖) ≤ (𝑄𝑖))
104103adantr 480 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 0 = 𝑖) → (𝑄𝑖) ≤ (𝑄𝑖))
105101, 104eqbrtrd 5188 . . . . . . . . 9 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 0 = 𝑖) → (𝑄‘0) ≤ (𝑄𝑖))
106 elfzelz 13584 . . . . . . . . . . . . 13 (𝑖 ∈ (0...𝑀) → 𝑖 ∈ ℤ)
107106zred 12747 . . . . . . . . . . . 12 (𝑖 ∈ (0...𝑀) → 𝑖 ∈ ℝ)
108107ad2antlr 726 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0...𝑀)) ∧ ¬ 0 = 𝑖) → 𝑖 ∈ ℝ)
109 elfzle1 13587 . . . . . . . . . . . 12 (𝑖 ∈ (0...𝑀) → 0 ≤ 𝑖)
110109ad2antlr 726 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0...𝑀)) ∧ ¬ 0 = 𝑖) → 0 ≤ 𝑖)
111 neqne 2954 . . . . . . . . . . . . 13 (¬ 0 = 𝑖 → 0 ≠ 𝑖)
112111necomd 3002 . . . . . . . . . . . 12 (¬ 0 = 𝑖𝑖 ≠ 0)
113112adantl 481 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0...𝑀)) ∧ ¬ 0 = 𝑖) → 𝑖 ≠ 0)
114108, 110, 113ne0gt0d 11427 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0...𝑀)) ∧ ¬ 0 = 𝑖) → 0 < 𝑖)
115 nnssnn0 12556 . . . . . . . . . . . . . . . . 17 ℕ ⊆ ℕ0
116 nn0uz 12945 . . . . . . . . . . . . . . . . 17 0 = (ℤ‘0)
117115, 116sseqtri 4045 . . . . . . . . . . . . . . . 16 ℕ ⊆ (ℤ‘0)
118117, 67sselid 4006 . . . . . . . . . . . . . . 15 (𝜑𝑀 ∈ (ℤ‘0))
119 eluzfz1 13591 . . . . . . . . . . . . . . 15 (𝑀 ∈ (ℤ‘0) → 0 ∈ (0...𝑀))
120118, 119syl 17 . . . . . . . . . . . . . 14 (𝜑 → 0 ∈ (0...𝑀))
12194, 120ffvelcdmd 7119 . . . . . . . . . . . . 13 (𝜑 → (𝑄‘0) ∈ 𝐻)
12289, 121sseldd 4009 . . . . . . . . . . . 12 (𝜑 → (𝑄‘0) ∈ ℝ)
123122ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 0 < 𝑖) → (𝑄‘0) ∈ ℝ)
124102adantr 480 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 0 < 𝑖) → (𝑄𝑖) ∈ ℝ)
125 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 0 < 𝑖) → 0 < 𝑖)
12691ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 0 < 𝑖) → 𝑄 Isom < , < ((0...𝑀), 𝐻))
127120anim1i 614 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0...𝑀)) → (0 ∈ (0...𝑀) ∧ 𝑖 ∈ (0...𝑀)))
128127adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 0 < 𝑖) → (0 ∈ (0...𝑀) ∧ 𝑖 ∈ (0...𝑀)))
129 isorel 7362 . . . . . . . . . . . . 13 ((𝑄 Isom < , < ((0...𝑀), 𝐻) ∧ (0 ∈ (0...𝑀) ∧ 𝑖 ∈ (0...𝑀))) → (0 < 𝑖 ↔ (𝑄‘0) < (𝑄𝑖)))
130126, 128, 129syl2anc 583 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 0 < 𝑖) → (0 < 𝑖 ↔ (𝑄‘0) < (𝑄𝑖)))
131125, 130mpbid 232 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 0 < 𝑖) → (𝑄‘0) < (𝑄𝑖))
132123, 124, 131ltled 11438 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 0 < 𝑖) → (𝑄‘0) ≤ (𝑄𝑖))
133114, 132syldan 590 . . . . . . . . 9 (((𝜑𝑖 ∈ (0...𝑀)) ∧ ¬ 0 = 𝑖) → (𝑄‘0) ≤ (𝑄𝑖))
134105, 133pm2.61dan 812 . . . . . . . 8 ((𝜑𝑖 ∈ (0...𝑀)) → (𝑄‘0) ≤ (𝑄𝑖))
135134adantr 480 . . . . . . 7 (((𝜑𝑖 ∈ (0...𝑀)) ∧ (𝑄𝑖) = -π) → (𝑄‘0) ≤ (𝑄𝑖))
136 simpr 484 . . . . . . 7 (((𝜑𝑖 ∈ (0...𝑀)) ∧ (𝑄𝑖) = -π) → (𝑄𝑖) = -π)
137135, 136breqtrd 5192 . . . . . 6 (((𝜑𝑖 ∈ (0...𝑀)) ∧ (𝑄𝑖) = -π) → (𝑄‘0) ≤ -π)
13868rexrd 11340 . . . . . . . 8 (𝜑 → -π ∈ ℝ*)
13969rexrd 11340 . . . . . . . 8 (𝜑 → π ∈ ℝ*)
140 lbicc2 13524 . . . . . . . . . . . . . 14 ((-π ∈ ℝ* ∧ π ∈ ℝ* ∧ -π ≤ π) → -π ∈ (-π[,]π))
14114, 15, 21, 140mp3an 1461 . . . . . . . . . . . . 13 -π ∈ (-π[,]π)
142141a1i 11 . . . . . . . . . . . 12 (𝜑 → -π ∈ (-π[,]π))
143 ubicc2 13525 . . . . . . . . . . . . . 14 ((-π ∈ ℝ* ∧ π ∈ ℝ* ∧ -π ≤ π) → π ∈ (-π[,]π))
14414, 15, 21, 143mp3an 1461 . . . . . . . . . . . . 13 π ∈ (-π[,]π)
145144a1i 11 . . . . . . . . . . . 12 (𝜑 → π ∈ (-π[,]π))
146 iocssicc 13497 . . . . . . . . . . . . 13 (-π(,]π) ⊆ (-π[,]π)
147146, 78sselid 4006 . . . . . . . . . . . 12 (𝜑 → (𝐸𝑋) ∈ (-π[,]π))
148 tpssi 4863 . . . . . . . . . . . 12 ((-π ∈ (-π[,]π) ∧ π ∈ (-π[,]π) ∧ (𝐸𝑋) ∈ (-π[,]π)) → {-π, π, (𝐸𝑋)} ⊆ (-π[,]π))
149142, 145, 147, 148syl3anc 1371 . . . . . . . . . . 11 (𝜑 → {-π, π, (𝐸𝑋)} ⊆ (-π[,]π))
150 difssd 4160 . . . . . . . . . . 11 (𝜑 → ((-π[,]π) ∖ dom 𝐺) ⊆ (-π[,]π))
151149, 150unssd 4215 . . . . . . . . . 10 (𝜑 → ({-π, π, (𝐸𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺)) ⊆ (-π[,]π))
1529, 151eqsstrid 4057 . . . . . . . . 9 (𝜑𝐻 ⊆ (-π[,]π))
153152, 121sseldd 4009 . . . . . . . 8 (𝜑 → (𝑄‘0) ∈ (-π[,]π))
154 iccgelb 13463 . . . . . . . 8 ((-π ∈ ℝ* ∧ π ∈ ℝ* ∧ (𝑄‘0) ∈ (-π[,]π)) → -π ≤ (𝑄‘0))
155138, 139, 153, 154syl3anc 1371 . . . . . . 7 (𝜑 → -π ≤ (𝑄‘0))
156155ad2antrr 725 . . . . . 6 (((𝜑𝑖 ∈ (0...𝑀)) ∧ (𝑄𝑖) = -π) → -π ≤ (𝑄‘0))
157122ad2antrr 725 . . . . . . 7 (((𝜑𝑖 ∈ (0...𝑀)) ∧ (𝑄𝑖) = -π) → (𝑄‘0) ∈ ℝ)
15813a1i 11 . . . . . . 7 (((𝜑𝑖 ∈ (0...𝑀)) ∧ (𝑄𝑖) = -π) → -π ∈ ℝ)
159157, 158letri3d 11432 . . . . . 6 (((𝜑𝑖 ∈ (0...𝑀)) ∧ (𝑄𝑖) = -π) → ((𝑄‘0) = -π ↔ ((𝑄‘0) ≤ -π ∧ -π ≤ (𝑄‘0))))
160137, 156, 159mpbir2and 712 . . . . 5 (((𝜑𝑖 ∈ (0...𝑀)) ∧ (𝑄𝑖) = -π) → (𝑄‘0) = -π)
16157, 51sselii 4005 . . . . . . 7 -π ∈ 𝐻
162 f1ofo 6869 . . . . . . . . 9 (𝑄:(0...𝑀)–1-1-onto𝐻𝑄:(0...𝑀)–onto𝐻)
16392, 162syl 17 . . . . . . . 8 (𝑄 Isom < , < ((0...𝑀), 𝐻) → 𝑄:(0...𝑀)–onto𝐻)
164 forn 6837 . . . . . . . 8 (𝑄:(0...𝑀)–onto𝐻 → ran 𝑄 = 𝐻)
16591, 163, 1643syl 18 . . . . . . 7 (𝜑 → ran 𝑄 = 𝐻)
166161, 165eleqtrrid 2851 . . . . . 6 (𝜑 → -π ∈ ran 𝑄)
167 ffn 6747 . . . . . . 7 (𝑄:(0...𝑀)⟶𝐻𝑄 Fn (0...𝑀))
168 fvelrnb 6982 . . . . . . 7 (𝑄 Fn (0...𝑀) → (-π ∈ ran 𝑄 ↔ ∃𝑖 ∈ (0...𝑀)(𝑄𝑖) = -π))
16994, 167, 1683syl 18 . . . . . 6 (𝜑 → (-π ∈ ran 𝑄 ↔ ∃𝑖 ∈ (0...𝑀)(𝑄𝑖) = -π))
170166, 169mpbid 232 . . . . 5 (𝜑 → ∃𝑖 ∈ (0...𝑀)(𝑄𝑖) = -π)
171160, 170r19.29a 3168 . . . 4 (𝜑 → (𝑄‘0) = -π)
17257, 53sselii 4005 . . . . . . 7 π ∈ 𝐻
173172, 165eleqtrrid 2851 . . . . . 6 (𝜑 → π ∈ ran 𝑄)
174 fvelrnb 6982 . . . . . . 7 (𝑄 Fn (0...𝑀) → (π ∈ ran 𝑄 ↔ ∃𝑖 ∈ (0...𝑀)(𝑄𝑖) = π))
17594, 167, 1743syl 18 . . . . . 6 (𝜑 → (π ∈ ran 𝑄 ↔ ∃𝑖 ∈ (0...𝑀)(𝑄𝑖) = π))
176173, 175mpbid 232 . . . . 5 (𝜑 → ∃𝑖 ∈ (0...𝑀)(𝑄𝑖) = π)
17794, 152fssd 6764 . . . . . . . . . 10 (𝜑𝑄:(0...𝑀)⟶(-π[,]π))
178 eluzfz2 13592 . . . . . . . . . . 11 (𝑀 ∈ (ℤ‘0) → 𝑀 ∈ (0...𝑀))
179118, 178syl 17 . . . . . . . . . 10 (𝜑𝑀 ∈ (0...𝑀))
180177, 179ffvelcdmd 7119 . . . . . . . . 9 (𝜑 → (𝑄𝑀) ∈ (-π[,]π))
181 iccleub 13462 . . . . . . . . 9 ((-π ∈ ℝ* ∧ π ∈ ℝ* ∧ (𝑄𝑀) ∈ (-π[,]π)) → (𝑄𝑀) ≤ π)
182138, 139, 180, 181syl3anc 1371 . . . . . . . 8 (𝜑 → (𝑄𝑀) ≤ π)
1831823ad2ant1 1133 . . . . . . 7 ((𝜑𝑖 ∈ (0...𝑀) ∧ (𝑄𝑖) = π) → (𝑄𝑀) ≤ π)
184 id 22 . . . . . . . . . 10 ((𝑄𝑖) = π → (𝑄𝑖) = π)
185184eqcomd 2746 . . . . . . . . 9 ((𝑄𝑖) = π → π = (𝑄𝑖))
1861853ad2ant3 1135 . . . . . . . 8 ((𝜑𝑖 ∈ (0...𝑀) ∧ (𝑄𝑖) = π) → π = (𝑄𝑖))
187103adantr 480 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑖 = 𝑀) → (𝑄𝑖) ≤ (𝑄𝑖))
188 fveq2 6920 . . . . . . . . . . . 12 (𝑖 = 𝑀 → (𝑄𝑖) = (𝑄𝑀))
189188adantl 481 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑖 = 𝑀) → (𝑄𝑖) = (𝑄𝑀))
190187, 189breqtrd 5192 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑖 = 𝑀) → (𝑄𝑖) ≤ (𝑄𝑀))
191107ad2antlr 726 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0...𝑀)) ∧ ¬ 𝑖 = 𝑀) → 𝑖 ∈ ℝ)
192 elfzel2 13582 . . . . . . . . . . . . . 14 (𝑖 ∈ (0...𝑀) → 𝑀 ∈ ℤ)
193192zred 12747 . . . . . . . . . . . . 13 (𝑖 ∈ (0...𝑀) → 𝑀 ∈ ℝ)
194193ad2antlr 726 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0...𝑀)) ∧ ¬ 𝑖 = 𝑀) → 𝑀 ∈ ℝ)
195 elfzle2 13588 . . . . . . . . . . . . 13 (𝑖 ∈ (0...𝑀) → 𝑖𝑀)
196195ad2antlr 726 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0...𝑀)) ∧ ¬ 𝑖 = 𝑀) → 𝑖𝑀)
197 neqne 2954 . . . . . . . . . . . . . 14 𝑖 = 𝑀𝑖𝑀)
198197necomd 3002 . . . . . . . . . . . . 13 𝑖 = 𝑀𝑀𝑖)
199198adantl 481 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0...𝑀)) ∧ ¬ 𝑖 = 𝑀) → 𝑀𝑖)
200191, 194, 196, 199leneltd 11444 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0...𝑀)) ∧ ¬ 𝑖 = 𝑀) → 𝑖 < 𝑀)
201102adantr 480 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑖 < 𝑀) → (𝑄𝑖) ∈ ℝ)
20285, 180sselid 4006 . . . . . . . . . . . . 13 (𝜑 → (𝑄𝑀) ∈ ℝ)
203202ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑖 < 𝑀) → (𝑄𝑀) ∈ ℝ)
204 simpr 484 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑖 < 𝑀) → 𝑖 < 𝑀)
20591ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑖 < 𝑀) → 𝑄 Isom < , < ((0...𝑀), 𝐻))
206 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0...𝑀)) → 𝑖 ∈ (0...𝑀))
207179adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0...𝑀)) → 𝑀 ∈ (0...𝑀))
208206, 207jca 511 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0...𝑀)) → (𝑖 ∈ (0...𝑀) ∧ 𝑀 ∈ (0...𝑀)))
209208adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑖 < 𝑀) → (𝑖 ∈ (0...𝑀) ∧ 𝑀 ∈ (0...𝑀)))
210 isorel 7362 . . . . . . . . . . . . . 14 ((𝑄 Isom < , < ((0...𝑀), 𝐻) ∧ (𝑖 ∈ (0...𝑀) ∧ 𝑀 ∈ (0...𝑀))) → (𝑖 < 𝑀 ↔ (𝑄𝑖) < (𝑄𝑀)))
211205, 209, 210syl2anc 583 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑖 < 𝑀) → (𝑖 < 𝑀 ↔ (𝑄𝑖) < (𝑄𝑀)))
212204, 211mpbid 232 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑖 < 𝑀) → (𝑄𝑖) < (𝑄𝑀))
213201, 203, 212ltled 11438 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑖 < 𝑀) → (𝑄𝑖) ≤ (𝑄𝑀))
214200, 213syldan 590 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0...𝑀)) ∧ ¬ 𝑖 = 𝑀) → (𝑄𝑖) ≤ (𝑄𝑀))
215190, 214pm2.61dan 812 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...𝑀)) → (𝑄𝑖) ≤ (𝑄𝑀))
2162153adant3 1132 . . . . . . . 8 ((𝜑𝑖 ∈ (0...𝑀) ∧ (𝑄𝑖) = π) → (𝑄𝑖) ≤ (𝑄𝑀))
217186, 216eqbrtrd 5188 . . . . . . 7 ((𝜑𝑖 ∈ (0...𝑀) ∧ (𝑄𝑖) = π) → π ≤ (𝑄𝑀))
2182023ad2ant1 1133 . . . . . . . 8 ((𝜑𝑖 ∈ (0...𝑀) ∧ (𝑄𝑖) = π) → (𝑄𝑀) ∈ ℝ)
21912a1i 11 . . . . . . . 8 ((𝜑𝑖 ∈ (0...𝑀) ∧ (𝑄𝑖) = π) → π ∈ ℝ)
220218, 219letri3d 11432 . . . . . . 7 ((𝜑𝑖 ∈ (0...𝑀) ∧ (𝑄𝑖) = π) → ((𝑄𝑀) = π ↔ ((𝑄𝑀) ≤ π ∧ π ≤ (𝑄𝑀))))
221183, 217, 220mpbir2and 712 . . . . . 6 ((𝜑𝑖 ∈ (0...𝑀) ∧ (𝑄𝑖) = π) → (𝑄𝑀) = π)
222221rexlimdv3a 3165 . . . . 5 (𝜑 → (∃𝑖 ∈ (0...𝑀)(𝑄𝑖) = π → (𝑄𝑀) = π))
223176, 222mpd 15 . . . 4 (𝜑 → (𝑄𝑀) = π)
224 elfzoelz 13716 . . . . . . . . 9 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ ℤ)
225224zred 12747 . . . . . . . 8 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ ℝ)
226225ltp1d 12225 . . . . . . 7 (𝑖 ∈ (0..^𝑀) → 𝑖 < (𝑖 + 1))
227226adantl 481 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 < (𝑖 + 1))
228 elfzofz 13732 . . . . . . . 8 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀))
229 fzofzp1 13814 . . . . . . . 8 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀))
230228, 229jca 511 . . . . . . 7 (𝑖 ∈ (0..^𝑀) → (𝑖 ∈ (0...𝑀) ∧ (𝑖 + 1) ∈ (0...𝑀)))
231 isorel 7362 . . . . . . 7 ((𝑄 Isom < , < ((0...𝑀), 𝐻) ∧ (𝑖 ∈ (0...𝑀) ∧ (𝑖 + 1) ∈ (0...𝑀))) → (𝑖 < (𝑖 + 1) ↔ (𝑄𝑖) < (𝑄‘(𝑖 + 1))))
23291, 230, 231syl2an 595 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑖 < (𝑖 + 1) ↔ (𝑄𝑖) < (𝑄‘(𝑖 + 1))))
233227, 232mpbid 232 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
234233ralrimiva 3152 . . . 4 (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))
235171, 223, 234jca31 514 . . 3 (𝜑 → (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))
2365fourierdlem2 46030 . . . 4 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
23767, 236syl 17 . . 3 (𝜑 → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
23899, 235, 237mpbir2and 712 . 2 (𝜑𝑄 ∈ (𝑃𝑀))
239 fourierdlem102.g . . . . 5 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π))
240239reseq1i 6005 . . . 4 (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (((ℝ D 𝐹) ↾ (-π(,)π)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
24114a1i 11 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → -π ∈ ℝ*)
24215a1i 11 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → π ∈ ℝ*)
243177adantr 480 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶(-π[,]π))
244 simpr 484 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0..^𝑀))
245241, 242, 243, 244fourierdlem27 46055 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ (-π(,)π))
246245resabs1d 6037 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (((ℝ D 𝐹) ↾ (-π(,)π)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
247240, 246eqtr2id 2793 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
248 fourierdlem102.gcn . . . 4 (𝜑𝐺 ∈ (dom 𝐺cn→ℂ))
249248, 5, 67, 238, 9, 165fourierdlem38 46066 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
250247, 249eqeltrd 2844 . 2 ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
251247oveq1d 7463 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) = ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
252248adantr 480 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐺 ∈ (dom 𝐺cn→ℂ))
253 fourierdlem102.rlim . . . . . 6 ((𝜑𝑥 ∈ ((-π[,)π) ∖ dom 𝐺)) → ((𝐺 ↾ (𝑥(,)+∞)) lim 𝑥) ≠ ∅)
254253adantlr 714 . . . . 5 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((-π[,)π) ∖ dom 𝐺)) → ((𝐺 ↾ (𝑥(,)+∞)) lim 𝑥) ≠ ∅)
255 fourierdlem102.llim . . . . . 6 ((𝜑𝑥 ∈ ((-π(,]π) ∖ dom 𝐺)) → ((𝐺 ↾ (-∞(,)𝑥)) lim 𝑥) ≠ ∅)
256255adantlr 714 . . . . 5 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((-π(,]π) ∖ dom 𝐺)) → ((𝐺 ↾ (-∞(,)𝑥)) lim 𝑥) ≠ ∅)
25791adantr 480 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄 Isom < , < ((0...𝑀), 𝐻))
258257, 92, 933syl 18 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶𝐻)
25979adantr 480 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐸𝑋) ∈ ℝ)
260257, 163, 1643syl 18 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → ran 𝑄 = 𝐻)
261252, 254, 256, 257, 258, 244, 233, 245, 259, 9, 260fourierdlem46 46073 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) ≠ ∅ ∧ ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) ≠ ∅))
262261simpld 494 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) ≠ ∅)
263251, 262eqnetrd 3014 . 2 ((𝜑𝑖 ∈ (0..^𝑀)) → (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) ≠ ∅)
264247oveq1d 7463 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) = ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
265261simprd 495 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) ≠ ∅)
266264, 265eqnetrd 3014 . 2 ((𝜑𝑖 ∈ (0..^𝑀)) → (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) ≠ ∅)
2671, 2, 3, 4, 5, 67, 238, 250, 263, 266fourierdlem94 46121 1 (𝜑 → (((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋) ≠ ∅ ∧ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  {crab 3443  Vcvv 3488  cdif 3973  cun 3974  wss 3976  c0 4352  {cpr 4650  {ctp 4652   class class class wbr 5166  cmpt 5249  dom cdm 5700  ran crn 5701  cres 5702  cio 6523   Fn wfn 6568  wf 6569  ontowfo 6571  1-1-ontowf1o 6572  cfv 6573   Isom wiso 6574  (class class class)co 7448  m cmap 8884  Fincfn 9003  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  +∞cpnf 11321  -∞cmnf 11322  *cxr 11323   < clt 11324  cle 11325  cmin 11520  -cneg 11521   / cdiv 11947  cn 12293  2c2 12348  0cn0 12553  cz 12639  cuz 12903  (,)cioo 13407  (,]cioc 13408  [,)cico 13409  [,]cicc 13410  ...cfz 13567  ..^cfzo 13711  cfl 13841  chash 14379  πcpi 16114  cnccncf 24921   lim climc 25917   D cdv 25918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-xnn0 12626  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-ef 16115  df-sin 16117  df-cos 16118  df-pi 16120  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-cmp 23416  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-limc 25921  df-dv 25922
This theorem is referenced by:  fourierdlem106  46133
  Copyright terms: Public domain W3C validator