| Step | Hyp | Ref
| Expression |
| 1 | | 1cubr.r |
. . . . 5
⊢ 𝑅 = {1, ((-1 + (i ·
(√‘3))) / 2), ((-1 − (i · (√‘3))) /
2)} |
| 2 | | ax-1cn 11213 |
. . . . . . 7
⊢ 1 ∈
ℂ |
| 3 | | neg1cn 12380 |
. . . . . . . . 9
⊢ -1 ∈
ℂ |
| 4 | | ax-icn 11214 |
. . . . . . . . . 10
⊢ i ∈
ℂ |
| 5 | | 3cn 12347 |
. . . . . . . . . . 11
⊢ 3 ∈
ℂ |
| 6 | | sqrtcl 15400 |
. . . . . . . . . . 11
⊢ (3 ∈
ℂ → (√‘3) ∈ ℂ) |
| 7 | 5, 6 | ax-mp 5 |
. . . . . . . . . 10
⊢
(√‘3) ∈ ℂ |
| 8 | 4, 7 | mulcli 11268 |
. . . . . . . . 9
⊢ (i
· (√‘3)) ∈ ℂ |
| 9 | 3, 8 | addcli 11267 |
. . . . . . . 8
⊢ (-1 + (i
· (√‘3))) ∈ ℂ |
| 10 | | halfcl 12491 |
. . . . . . . 8
⊢ ((-1 + (i
· (√‘3))) ∈ ℂ → ((-1 + (i ·
(√‘3))) / 2) ∈ ℂ) |
| 11 | 9, 10 | ax-mp 5 |
. . . . . . 7
⊢ ((-1 + (i
· (√‘3))) / 2) ∈ ℂ |
| 12 | 3, 8 | subcli 11585 |
. . . . . . . 8
⊢ (-1
− (i · (√‘3))) ∈ ℂ |
| 13 | | halfcl 12491 |
. . . . . . . 8
⊢ ((-1
− (i · (√‘3))) ∈ ℂ → ((-1 − (i
· (√‘3))) / 2) ∈ ℂ) |
| 14 | 12, 13 | ax-mp 5 |
. . . . . . 7
⊢ ((-1
− (i · (√‘3))) / 2) ∈ ℂ |
| 15 | 2, 11, 14 | 3pm3.2i 1340 |
. . . . . 6
⊢ (1 ∈
ℂ ∧ ((-1 + (i · (√‘3))) / 2) ∈ ℂ ∧
((-1 − (i · (√‘3))) / 2) ∈
ℂ) |
| 16 | 2 | elexi 3503 |
. . . . . . 7
⊢ 1 ∈
V |
| 17 | | ovex 7464 |
. . . . . . 7
⊢ ((-1 + (i
· (√‘3))) / 2) ∈ V |
| 18 | | ovex 7464 |
. . . . . . 7
⊢ ((-1
− (i · (√‘3))) / 2) ∈ V |
| 19 | 16, 17, 18 | tpss 4837 |
. . . . . 6
⊢ ((1
∈ ℂ ∧ ((-1 + (i · (√‘3))) / 2) ∈ ℂ
∧ ((-1 − (i · (√‘3))) / 2) ∈ ℂ) ↔
{1, ((-1 + (i · (√‘3))) / 2), ((-1 − (i ·
(√‘3))) / 2)} ⊆ ℂ) |
| 20 | 15, 19 | mpbi 230 |
. . . . 5
⊢ {1, ((-1
+ (i · (√‘3))) / 2), ((-1 − (i ·
(√‘3))) / 2)} ⊆ ℂ |
| 21 | 1, 20 | eqsstri 4030 |
. . . 4
⊢ 𝑅 ⊆
ℂ |
| 22 | 21 | sseli 3979 |
. . 3
⊢ (𝐴 ∈ 𝑅 → 𝐴 ∈ ℂ) |
| 23 | 22 | pm4.71ri 560 |
. 2
⊢ (𝐴 ∈ 𝑅 ↔ (𝐴 ∈ ℂ ∧ 𝐴 ∈ 𝑅)) |
| 24 | | 3nn 12345 |
. . . . 5
⊢ 3 ∈
ℕ |
| 25 | | cxpeq 26800 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 3 ∈
ℕ ∧ 1 ∈ ℂ) → ((𝐴↑3) = 1 ↔ ∃𝑛 ∈ (0...(3 − 1))𝐴 =
((1↑𝑐(1 / 3)) · ((-1↑𝑐(2
/ 3))↑𝑛)))) |
| 26 | 24, 2, 25 | mp3an23 1455 |
. . . 4
⊢ (𝐴 ∈ ℂ → ((𝐴↑3) = 1 ↔ ∃𝑛 ∈ (0...(3 − 1))𝐴 =
((1↑𝑐(1 / 3)) · ((-1↑𝑐(2
/ 3))↑𝑛)))) |
| 27 | | eltpg 4686 |
. . . . 5
⊢ (𝐴 ∈ ℂ → (𝐴 ∈ {1, ((-1 + (i ·
(√‘3))) / 2), ((-1 − (i · (√‘3))) / 2)}
↔ (𝐴 = 1 ∨ 𝐴 = ((-1 + (i ·
(√‘3))) / 2) ∨ 𝐴 = ((-1 − (i ·
(√‘3))) / 2)))) |
| 28 | 1 | eleq2i 2833 |
. . . . 5
⊢ (𝐴 ∈ 𝑅 ↔ 𝐴 ∈ {1, ((-1 + (i ·
(√‘3))) / 2), ((-1 − (i · (√‘3))) /
2)}) |
| 29 | | 3m1e2 12394 |
. . . . . . . . . 10
⊢ (3
− 1) = 2 |
| 30 | | 2cn 12341 |
. . . . . . . . . . 11
⊢ 2 ∈
ℂ |
| 31 | 30 | addlidi 11449 |
. . . . . . . . . 10
⊢ (0 + 2) =
2 |
| 32 | 29, 31 | eqtr4i 2768 |
. . . . . . . . 9
⊢ (3
− 1) = (0 + 2) |
| 33 | 32 | oveq2i 7442 |
. . . . . . . 8
⊢ (0...(3
− 1)) = (0...(0 + 2)) |
| 34 | | 0z 12624 |
. . . . . . . . 9
⊢ 0 ∈
ℤ |
| 35 | | fztp 13620 |
. . . . . . . . 9
⊢ (0 ∈
ℤ → (0...(0 + 2)) = {0, (0 + 1), (0 + 2)}) |
| 36 | 34, 35 | ax-mp 5 |
. . . . . . . 8
⊢ (0...(0 +
2)) = {0, (0 + 1), (0 + 2)} |
| 37 | 33, 36 | eqtri 2765 |
. . . . . . 7
⊢ (0...(3
− 1)) = {0, (0 + 1), (0 + 2)} |
| 38 | 37 | rexeqi 3325 |
. . . . . 6
⊢
(∃𝑛 ∈
(0...(3 − 1))𝐴 =
((1↑𝑐(1 / 3)) · ((-1↑𝑐(2
/ 3))↑𝑛)) ↔
∃𝑛 ∈ {0, (0 +
1), (0 + 2)}𝐴 =
((1↑𝑐(1 / 3)) · ((-1↑𝑐(2
/ 3))↑𝑛))) |
| 39 | | 3ne0 12372 |
. . . . . . . . . . 11
⊢ 3 ≠
0 |
| 40 | 5, 39 | reccli 11997 |
. . . . . . . . . 10
⊢ (1 / 3)
∈ ℂ |
| 41 | | 1cxp 26714 |
. . . . . . . . . 10
⊢ ((1 / 3)
∈ ℂ → (1↑𝑐(1 / 3)) =
1) |
| 42 | 40, 41 | ax-mp 5 |
. . . . . . . . 9
⊢
(1↑𝑐(1 / 3)) = 1 |
| 43 | 42 | oveq1i 7441 |
. . . . . . . 8
⊢
((1↑𝑐(1 / 3)) ·
((-1↑𝑐(2 / 3))↑𝑛)) = (1 ·
((-1↑𝑐(2 / 3))↑𝑛)) |
| 44 | 43 | eqeq2i 2750 |
. . . . . . 7
⊢ (𝐴 =
((1↑𝑐(1 / 3)) · ((-1↑𝑐(2
/ 3))↑𝑛)) ↔ 𝐴 = (1 ·
((-1↑𝑐(2 / 3))↑𝑛))) |
| 45 | 44 | rexbii 3094 |
. . . . . 6
⊢
(∃𝑛 ∈ {0,
(0 + 1), (0 + 2)}𝐴 =
((1↑𝑐(1 / 3)) · ((-1↑𝑐(2
/ 3))↑𝑛)) ↔
∃𝑛 ∈ {0, (0 +
1), (0 + 2)}𝐴 = (1 ·
((-1↑𝑐(2 / 3))↑𝑛))) |
| 46 | 34 | elexi 3503 |
. . . . . . 7
⊢ 0 ∈
V |
| 47 | | ovex 7464 |
. . . . . . 7
⊢ (0 + 1)
∈ V |
| 48 | | ovex 7464 |
. . . . . . 7
⊢ (0 + 2)
∈ V |
| 49 | | oveq2 7439 |
. . . . . . . . . . 11
⊢ (𝑛 = 0 →
((-1↑𝑐(2 / 3))↑𝑛) = ((-1↑𝑐(2 /
3))↑0)) |
| 50 | 30, 5, 39 | divcli 12009 |
. . . . . . . . . . . . 13
⊢ (2 / 3)
∈ ℂ |
| 51 | | cxpcl 26716 |
. . . . . . . . . . . . 13
⊢ ((-1
∈ ℂ ∧ (2 / 3) ∈ ℂ) →
(-1↑𝑐(2 / 3)) ∈ ℂ) |
| 52 | 3, 50, 51 | mp2an 692 |
. . . . . . . . . . . 12
⊢
(-1↑𝑐(2 / 3)) ∈ ℂ |
| 53 | | exp0 14106 |
. . . . . . . . . . . 12
⊢
((-1↑𝑐(2 / 3)) ∈ ℂ →
((-1↑𝑐(2 / 3))↑0) = 1) |
| 54 | 52, 53 | ax-mp 5 |
. . . . . . . . . . 11
⊢
((-1↑𝑐(2 / 3))↑0) = 1 |
| 55 | 49, 54 | eqtrdi 2793 |
. . . . . . . . . 10
⊢ (𝑛 = 0 →
((-1↑𝑐(2 / 3))↑𝑛) = 1) |
| 56 | 55 | oveq2d 7447 |
. . . . . . . . 9
⊢ (𝑛 = 0 → (1 ·
((-1↑𝑐(2 / 3))↑𝑛)) = (1 · 1)) |
| 57 | | 1t1e1 12428 |
. . . . . . . . 9
⊢ (1
· 1) = 1 |
| 58 | 56, 57 | eqtrdi 2793 |
. . . . . . . 8
⊢ (𝑛 = 0 → (1 ·
((-1↑𝑐(2 / 3))↑𝑛)) = 1) |
| 59 | 58 | eqeq2d 2748 |
. . . . . . 7
⊢ (𝑛 = 0 → (𝐴 = (1 ·
((-1↑𝑐(2 / 3))↑𝑛)) ↔ 𝐴 = 1)) |
| 60 | | id 22 |
. . . . . . . . . . . . 13
⊢ (𝑛 = (0 + 1) → 𝑛 = (0 + 1)) |
| 61 | 2 | addlidi 11449 |
. . . . . . . . . . . . 13
⊢ (0 + 1) =
1 |
| 62 | 60, 61 | eqtrdi 2793 |
. . . . . . . . . . . 12
⊢ (𝑛 = (0 + 1) → 𝑛 = 1) |
| 63 | 62 | oveq2d 7447 |
. . . . . . . . . . 11
⊢ (𝑛 = (0 + 1) →
((-1↑𝑐(2 / 3))↑𝑛) = ((-1↑𝑐(2 /
3))↑1)) |
| 64 | | exp1 14108 |
. . . . . . . . . . . 12
⊢
((-1↑𝑐(2 / 3)) ∈ ℂ →
((-1↑𝑐(2 / 3))↑1) =
(-1↑𝑐(2 / 3))) |
| 65 | 52, 64 | ax-mp 5 |
. . . . . . . . . . 11
⊢
((-1↑𝑐(2 / 3))↑1) =
(-1↑𝑐(2 / 3)) |
| 66 | 63, 65 | eqtrdi 2793 |
. . . . . . . . . 10
⊢ (𝑛 = (0 + 1) →
((-1↑𝑐(2 / 3))↑𝑛) = (-1↑𝑐(2 /
3))) |
| 67 | 66 | oveq2d 7447 |
. . . . . . . . 9
⊢ (𝑛 = (0 + 1) → (1 ·
((-1↑𝑐(2 / 3))↑𝑛)) = (1 ·
(-1↑𝑐(2 / 3)))) |
| 68 | 52 | mullidi 11266 |
. . . . . . . . . 10
⊢ (1
· (-1↑𝑐(2 / 3))) =
(-1↑𝑐(2 / 3)) |
| 69 | | 1cubrlem 26884 |
. . . . . . . . . . 11
⊢
((-1↑𝑐(2 / 3)) = ((-1 + (i ·
(√‘3))) / 2) ∧ ((-1↑𝑐(2 / 3))↑2) =
((-1 − (i · (√‘3))) / 2)) |
| 70 | 69 | simpli 483 |
. . . . . . . . . 10
⊢
(-1↑𝑐(2 / 3)) = ((-1 + (i ·
(√‘3))) / 2) |
| 71 | 68, 70 | eqtri 2765 |
. . . . . . . . 9
⊢ (1
· (-1↑𝑐(2 / 3))) = ((-1 + (i ·
(√‘3))) / 2) |
| 72 | 67, 71 | eqtrdi 2793 |
. . . . . . . 8
⊢ (𝑛 = (0 + 1) → (1 ·
((-1↑𝑐(2 / 3))↑𝑛)) = ((-1 + (i · (√‘3))) /
2)) |
| 73 | 72 | eqeq2d 2748 |
. . . . . . 7
⊢ (𝑛 = (0 + 1) → (𝐴 = (1 ·
((-1↑𝑐(2 / 3))↑𝑛)) ↔ 𝐴 = ((-1 + (i · (√‘3))) /
2))) |
| 74 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝑛 = (0 + 2) → 𝑛 = (0 + 2)) |
| 75 | 74, 31 | eqtrdi 2793 |
. . . . . . . . . . 11
⊢ (𝑛 = (0 + 2) → 𝑛 = 2) |
| 76 | 75 | oveq2d 7447 |
. . . . . . . . . 10
⊢ (𝑛 = (0 + 2) →
((-1↑𝑐(2 / 3))↑𝑛) = ((-1↑𝑐(2 /
3))↑2)) |
| 77 | 76 | oveq2d 7447 |
. . . . . . . . 9
⊢ (𝑛 = (0 + 2) → (1 ·
((-1↑𝑐(2 / 3))↑𝑛)) = (1 ·
((-1↑𝑐(2 / 3))↑2))) |
| 78 | 52 | sqcli 14220 |
. . . . . . . . . . 11
⊢
((-1↑𝑐(2 / 3))↑2) ∈
ℂ |
| 79 | 78 | mullidi 11266 |
. . . . . . . . . 10
⊢ (1
· ((-1↑𝑐(2 / 3))↑2)) =
((-1↑𝑐(2 / 3))↑2) |
| 80 | 69 | simpri 485 |
. . . . . . . . . 10
⊢
((-1↑𝑐(2 / 3))↑2) = ((-1 − (i
· (√‘3))) / 2) |
| 81 | 79, 80 | eqtri 2765 |
. . . . . . . . 9
⊢ (1
· ((-1↑𝑐(2 / 3))↑2)) = ((-1 − (i
· (√‘3))) / 2) |
| 82 | 77, 81 | eqtrdi 2793 |
. . . . . . . 8
⊢ (𝑛 = (0 + 2) → (1 ·
((-1↑𝑐(2 / 3))↑𝑛)) = ((-1 − (i ·
(√‘3))) / 2)) |
| 83 | 82 | eqeq2d 2748 |
. . . . . . 7
⊢ (𝑛 = (0 + 2) → (𝐴 = (1 ·
((-1↑𝑐(2 / 3))↑𝑛)) ↔ 𝐴 = ((-1 − (i ·
(√‘3))) / 2))) |
| 84 | 46, 47, 48, 59, 73, 83 | rextp 4706 |
. . . . . 6
⊢
(∃𝑛 ∈ {0,
(0 + 1), (0 + 2)}𝐴 = (1
· ((-1↑𝑐(2 / 3))↑𝑛)) ↔ (𝐴 = 1 ∨ 𝐴 = ((-1 + (i · (√‘3))) /
2) ∨ 𝐴 = ((-1 − (i
· (√‘3))) / 2))) |
| 85 | 38, 45, 84 | 3bitri 297 |
. . . . 5
⊢
(∃𝑛 ∈
(0...(3 − 1))𝐴 =
((1↑𝑐(1 / 3)) · ((-1↑𝑐(2
/ 3))↑𝑛)) ↔
(𝐴 = 1 ∨ 𝐴 = ((-1 + (i ·
(√‘3))) / 2) ∨ 𝐴 = ((-1 − (i ·
(√‘3))) / 2))) |
| 86 | 27, 28, 85 | 3bitr4g 314 |
. . . 4
⊢ (𝐴 ∈ ℂ → (𝐴 ∈ 𝑅 ↔ ∃𝑛 ∈ (0...(3 − 1))𝐴 = ((1↑𝑐(1 / 3))
· ((-1↑𝑐(2 / 3))↑𝑛)))) |
| 87 | 26, 86 | bitr4d 282 |
. . 3
⊢ (𝐴 ∈ ℂ → ((𝐴↑3) = 1 ↔ 𝐴 ∈ 𝑅)) |
| 88 | 87 | pm5.32i 574 |
. 2
⊢ ((𝐴 ∈ ℂ ∧ (𝐴↑3) = 1) ↔ (𝐴 ∈ ℂ ∧ 𝐴 ∈ 𝑅)) |
| 89 | 23, 88 | bitr4i 278 |
1
⊢ (𝐴 ∈ 𝑅 ↔ (𝐴 ∈ ℂ ∧ (𝐴↑3) = 1)) |