MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1cubr Structured version   Visualization version   GIF version

Theorem 1cubr 26192
Description: The cube roots of unity. (Contributed by Mario Carneiro, 23-Apr-2015.)
Hypothesis
Ref Expression
1cubr.r 𝑅 = {1, ((-1 + (i · (√‘3))) / 2), ((-1 − (i · (√‘3))) / 2)}
Assertion
Ref Expression
1cubr (𝐴𝑅 ↔ (𝐴 ∈ ℂ ∧ (𝐴↑3) = 1))

Proof of Theorem 1cubr
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 1cubr.r . . . . 5 𝑅 = {1, ((-1 + (i · (√‘3))) / 2), ((-1 − (i · (√‘3))) / 2)}
2 ax-1cn 11109 . . . . . . 7 1 ∈ ℂ
3 neg1cn 12267 . . . . . . . . 9 -1 ∈ ℂ
4 ax-icn 11110 . . . . . . . . . 10 i ∈ ℂ
5 3cn 12234 . . . . . . . . . . 11 3 ∈ ℂ
6 sqrtcl 15246 . . . . . . . . . . 11 (3 ∈ ℂ → (√‘3) ∈ ℂ)
75, 6ax-mp 5 . . . . . . . . . 10 (√‘3) ∈ ℂ
84, 7mulcli 11162 . . . . . . . . 9 (i · (√‘3)) ∈ ℂ
93, 8addcli 11161 . . . . . . . 8 (-1 + (i · (√‘3))) ∈ ℂ
10 halfcl 12378 . . . . . . . 8 ((-1 + (i · (√‘3))) ∈ ℂ → ((-1 + (i · (√‘3))) / 2) ∈ ℂ)
119, 10ax-mp 5 . . . . . . 7 ((-1 + (i · (√‘3))) / 2) ∈ ℂ
123, 8subcli 11477 . . . . . . . 8 (-1 − (i · (√‘3))) ∈ ℂ
13 halfcl 12378 . . . . . . . 8 ((-1 − (i · (√‘3))) ∈ ℂ → ((-1 − (i · (√‘3))) / 2) ∈ ℂ)
1412, 13ax-mp 5 . . . . . . 7 ((-1 − (i · (√‘3))) / 2) ∈ ℂ
152, 11, 143pm3.2i 1339 . . . . . 6 (1 ∈ ℂ ∧ ((-1 + (i · (√‘3))) / 2) ∈ ℂ ∧ ((-1 − (i · (√‘3))) / 2) ∈ ℂ)
162elexi 3464 . . . . . . 7 1 ∈ V
17 ovex 7390 . . . . . . 7 ((-1 + (i · (√‘3))) / 2) ∈ V
18 ovex 7390 . . . . . . 7 ((-1 − (i · (√‘3))) / 2) ∈ V
1916, 17, 18tpss 4795 . . . . . 6 ((1 ∈ ℂ ∧ ((-1 + (i · (√‘3))) / 2) ∈ ℂ ∧ ((-1 − (i · (√‘3))) / 2) ∈ ℂ) ↔ {1, ((-1 + (i · (√‘3))) / 2), ((-1 − (i · (√‘3))) / 2)} ⊆ ℂ)
2015, 19mpbi 229 . . . . 5 {1, ((-1 + (i · (√‘3))) / 2), ((-1 − (i · (√‘3))) / 2)} ⊆ ℂ
211, 20eqsstri 3978 . . . 4 𝑅 ⊆ ℂ
2221sseli 3940 . . 3 (𝐴𝑅𝐴 ∈ ℂ)
2322pm4.71ri 561 . 2 (𝐴𝑅 ↔ (𝐴 ∈ ℂ ∧ 𝐴𝑅))
24 3nn 12232 . . . . 5 3 ∈ ℕ
25 cxpeq 26110 . . . . 5 ((𝐴 ∈ ℂ ∧ 3 ∈ ℕ ∧ 1 ∈ ℂ) → ((𝐴↑3) = 1 ↔ ∃𝑛 ∈ (0...(3 − 1))𝐴 = ((1↑𝑐(1 / 3)) · ((-1↑𝑐(2 / 3))↑𝑛))))
2624, 2, 25mp3an23 1453 . . . 4 (𝐴 ∈ ℂ → ((𝐴↑3) = 1 ↔ ∃𝑛 ∈ (0...(3 − 1))𝐴 = ((1↑𝑐(1 / 3)) · ((-1↑𝑐(2 / 3))↑𝑛))))
27 eltpg 4646 . . . . 5 (𝐴 ∈ ℂ → (𝐴 ∈ {1, ((-1 + (i · (√‘3))) / 2), ((-1 − (i · (√‘3))) / 2)} ↔ (𝐴 = 1 ∨ 𝐴 = ((-1 + (i · (√‘3))) / 2) ∨ 𝐴 = ((-1 − (i · (√‘3))) / 2))))
281eleq2i 2829 . . . . 5 (𝐴𝑅𝐴 ∈ {1, ((-1 + (i · (√‘3))) / 2), ((-1 − (i · (√‘3))) / 2)})
29 3m1e2 12281 . . . . . . . . . 10 (3 − 1) = 2
30 2cn 12228 . . . . . . . . . . 11 2 ∈ ℂ
3130addid2i 11343 . . . . . . . . . 10 (0 + 2) = 2
3229, 31eqtr4i 2767 . . . . . . . . 9 (3 − 1) = (0 + 2)
3332oveq2i 7368 . . . . . . . 8 (0...(3 − 1)) = (0...(0 + 2))
34 0z 12510 . . . . . . . . 9 0 ∈ ℤ
35 fztp 13497 . . . . . . . . 9 (0 ∈ ℤ → (0...(0 + 2)) = {0, (0 + 1), (0 + 2)})
3634, 35ax-mp 5 . . . . . . . 8 (0...(0 + 2)) = {0, (0 + 1), (0 + 2)}
3733, 36eqtri 2764 . . . . . . 7 (0...(3 − 1)) = {0, (0 + 1), (0 + 2)}
3837rexeqi 3312 . . . . . 6 (∃𝑛 ∈ (0...(3 − 1))𝐴 = ((1↑𝑐(1 / 3)) · ((-1↑𝑐(2 / 3))↑𝑛)) ↔ ∃𝑛 ∈ {0, (0 + 1), (0 + 2)}𝐴 = ((1↑𝑐(1 / 3)) · ((-1↑𝑐(2 / 3))↑𝑛)))
39 3ne0 12259 . . . . . . . . . . 11 3 ≠ 0
405, 39reccli 11885 . . . . . . . . . 10 (1 / 3) ∈ ℂ
41 1cxp 26027 . . . . . . . . . 10 ((1 / 3) ∈ ℂ → (1↑𝑐(1 / 3)) = 1)
4240, 41ax-mp 5 . . . . . . . . 9 (1↑𝑐(1 / 3)) = 1
4342oveq1i 7367 . . . . . . . 8 ((1↑𝑐(1 / 3)) · ((-1↑𝑐(2 / 3))↑𝑛)) = (1 · ((-1↑𝑐(2 / 3))↑𝑛))
4443eqeq2i 2749 . . . . . . 7 (𝐴 = ((1↑𝑐(1 / 3)) · ((-1↑𝑐(2 / 3))↑𝑛)) ↔ 𝐴 = (1 · ((-1↑𝑐(2 / 3))↑𝑛)))
4544rexbii 3097 . . . . . 6 (∃𝑛 ∈ {0, (0 + 1), (0 + 2)}𝐴 = ((1↑𝑐(1 / 3)) · ((-1↑𝑐(2 / 3))↑𝑛)) ↔ ∃𝑛 ∈ {0, (0 + 1), (0 + 2)}𝐴 = (1 · ((-1↑𝑐(2 / 3))↑𝑛)))
4634elexi 3464 . . . . . . 7 0 ∈ V
47 ovex 7390 . . . . . . 7 (0 + 1) ∈ V
48 ovex 7390 . . . . . . 7 (0 + 2) ∈ V
49 oveq2 7365 . . . . . . . . . . 11 (𝑛 = 0 → ((-1↑𝑐(2 / 3))↑𝑛) = ((-1↑𝑐(2 / 3))↑0))
5030, 5, 39divcli 11897 . . . . . . . . . . . . 13 (2 / 3) ∈ ℂ
51 cxpcl 26029 . . . . . . . . . . . . 13 ((-1 ∈ ℂ ∧ (2 / 3) ∈ ℂ) → (-1↑𝑐(2 / 3)) ∈ ℂ)
523, 50, 51mp2an 690 . . . . . . . . . . . 12 (-1↑𝑐(2 / 3)) ∈ ℂ
53 exp0 13971 . . . . . . . . . . . 12 ((-1↑𝑐(2 / 3)) ∈ ℂ → ((-1↑𝑐(2 / 3))↑0) = 1)
5452, 53ax-mp 5 . . . . . . . . . . 11 ((-1↑𝑐(2 / 3))↑0) = 1
5549, 54eqtrdi 2792 . . . . . . . . . 10 (𝑛 = 0 → ((-1↑𝑐(2 / 3))↑𝑛) = 1)
5655oveq2d 7373 . . . . . . . . 9 (𝑛 = 0 → (1 · ((-1↑𝑐(2 / 3))↑𝑛)) = (1 · 1))
57 1t1e1 12315 . . . . . . . . 9 (1 · 1) = 1
5856, 57eqtrdi 2792 . . . . . . . 8 (𝑛 = 0 → (1 · ((-1↑𝑐(2 / 3))↑𝑛)) = 1)
5958eqeq2d 2747 . . . . . . 7 (𝑛 = 0 → (𝐴 = (1 · ((-1↑𝑐(2 / 3))↑𝑛)) ↔ 𝐴 = 1))
60 id 22 . . . . . . . . . . . . 13 (𝑛 = (0 + 1) → 𝑛 = (0 + 1))
612addid2i 11343 . . . . . . . . . . . . 13 (0 + 1) = 1
6260, 61eqtrdi 2792 . . . . . . . . . . . 12 (𝑛 = (0 + 1) → 𝑛 = 1)
6362oveq2d 7373 . . . . . . . . . . 11 (𝑛 = (0 + 1) → ((-1↑𝑐(2 / 3))↑𝑛) = ((-1↑𝑐(2 / 3))↑1))
64 exp1 13973 . . . . . . . . . . . 12 ((-1↑𝑐(2 / 3)) ∈ ℂ → ((-1↑𝑐(2 / 3))↑1) = (-1↑𝑐(2 / 3)))
6552, 64ax-mp 5 . . . . . . . . . . 11 ((-1↑𝑐(2 / 3))↑1) = (-1↑𝑐(2 / 3))
6663, 65eqtrdi 2792 . . . . . . . . . 10 (𝑛 = (0 + 1) → ((-1↑𝑐(2 / 3))↑𝑛) = (-1↑𝑐(2 / 3)))
6766oveq2d 7373 . . . . . . . . 9 (𝑛 = (0 + 1) → (1 · ((-1↑𝑐(2 / 3))↑𝑛)) = (1 · (-1↑𝑐(2 / 3))))
6852mulid2i 11160 . . . . . . . . . 10 (1 · (-1↑𝑐(2 / 3))) = (-1↑𝑐(2 / 3))
69 1cubrlem 26191 . . . . . . . . . . 11 ((-1↑𝑐(2 / 3)) = ((-1 + (i · (√‘3))) / 2) ∧ ((-1↑𝑐(2 / 3))↑2) = ((-1 − (i · (√‘3))) / 2))
7069simpli 484 . . . . . . . . . 10 (-1↑𝑐(2 / 3)) = ((-1 + (i · (√‘3))) / 2)
7168, 70eqtri 2764 . . . . . . . . 9 (1 · (-1↑𝑐(2 / 3))) = ((-1 + (i · (√‘3))) / 2)
7267, 71eqtrdi 2792 . . . . . . . 8 (𝑛 = (0 + 1) → (1 · ((-1↑𝑐(2 / 3))↑𝑛)) = ((-1 + (i · (√‘3))) / 2))
7372eqeq2d 2747 . . . . . . 7 (𝑛 = (0 + 1) → (𝐴 = (1 · ((-1↑𝑐(2 / 3))↑𝑛)) ↔ 𝐴 = ((-1 + (i · (√‘3))) / 2)))
74 id 22 . . . . . . . . . . . 12 (𝑛 = (0 + 2) → 𝑛 = (0 + 2))
7574, 31eqtrdi 2792 . . . . . . . . . . 11 (𝑛 = (0 + 2) → 𝑛 = 2)
7675oveq2d 7373 . . . . . . . . . 10 (𝑛 = (0 + 2) → ((-1↑𝑐(2 / 3))↑𝑛) = ((-1↑𝑐(2 / 3))↑2))
7776oveq2d 7373 . . . . . . . . 9 (𝑛 = (0 + 2) → (1 · ((-1↑𝑐(2 / 3))↑𝑛)) = (1 · ((-1↑𝑐(2 / 3))↑2)))
7852sqcli 14085 . . . . . . . . . . 11 ((-1↑𝑐(2 / 3))↑2) ∈ ℂ
7978mulid2i 11160 . . . . . . . . . 10 (1 · ((-1↑𝑐(2 / 3))↑2)) = ((-1↑𝑐(2 / 3))↑2)
8069simpri 486 . . . . . . . . . 10 ((-1↑𝑐(2 / 3))↑2) = ((-1 − (i · (√‘3))) / 2)
8179, 80eqtri 2764 . . . . . . . . 9 (1 · ((-1↑𝑐(2 / 3))↑2)) = ((-1 − (i · (√‘3))) / 2)
8277, 81eqtrdi 2792 . . . . . . . 8 (𝑛 = (0 + 2) → (1 · ((-1↑𝑐(2 / 3))↑𝑛)) = ((-1 − (i · (√‘3))) / 2))
8382eqeq2d 2747 . . . . . . 7 (𝑛 = (0 + 2) → (𝐴 = (1 · ((-1↑𝑐(2 / 3))↑𝑛)) ↔ 𝐴 = ((-1 − (i · (√‘3))) / 2)))
8446, 47, 48, 59, 73, 83rextp 4667 . . . . . 6 (∃𝑛 ∈ {0, (0 + 1), (0 + 2)}𝐴 = (1 · ((-1↑𝑐(2 / 3))↑𝑛)) ↔ (𝐴 = 1 ∨ 𝐴 = ((-1 + (i · (√‘3))) / 2) ∨ 𝐴 = ((-1 − (i · (√‘3))) / 2)))
8538, 45, 843bitri 296 . . . . 5 (∃𝑛 ∈ (0...(3 − 1))𝐴 = ((1↑𝑐(1 / 3)) · ((-1↑𝑐(2 / 3))↑𝑛)) ↔ (𝐴 = 1 ∨ 𝐴 = ((-1 + (i · (√‘3))) / 2) ∨ 𝐴 = ((-1 − (i · (√‘3))) / 2)))
8627, 28, 853bitr4g 313 . . . 4 (𝐴 ∈ ℂ → (𝐴𝑅 ↔ ∃𝑛 ∈ (0...(3 − 1))𝐴 = ((1↑𝑐(1 / 3)) · ((-1↑𝑐(2 / 3))↑𝑛))))
8726, 86bitr4d 281 . . 3 (𝐴 ∈ ℂ → ((𝐴↑3) = 1 ↔ 𝐴𝑅))
8887pm5.32i 575 . 2 ((𝐴 ∈ ℂ ∧ (𝐴↑3) = 1) ↔ (𝐴 ∈ ℂ ∧ 𝐴𝑅))
8923, 88bitr4i 277 1 (𝐴𝑅 ↔ (𝐴 ∈ ℂ ∧ (𝐴↑3) = 1))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  w3o 1086  w3a 1087   = wceq 1541  wcel 2106  wrex 3073  wss 3910  {ctp 4590  cfv 6496  (class class class)co 7357  cc 11049  0cc0 11051  1c1 11052  ici 11053   + caddc 11054   · cmul 11056  cmin 11385  -cneg 11386   / cdiv 11812  cn 12153  2c2 12208  3c3 12209  cz 12499  ...cfz 13424  cexp 13967  csqrt 15118  𝑐ccxp 25911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-ef 15950  df-sin 15952  df-cos 15953  df-pi 15955  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-limc 25230  df-dv 25231  df-log 25912  df-cxp 25913
This theorem is referenced by:  cubic  26199
  Copyright terms: Public domain W3C validator