Step | Hyp | Ref
| Expression |
1 | | 1cubr.r |
. . . . 5
⊢ 𝑅 = {1, ((-1 + (i ·
(√‘3))) / 2), ((-1 − (i · (√‘3))) /
2)} |
2 | | ax-1cn 10922 |
. . . . . . 7
⊢ 1 ∈
ℂ |
3 | | neg1cn 12079 |
. . . . . . . . 9
⊢ -1 ∈
ℂ |
4 | | ax-icn 10923 |
. . . . . . . . . 10
⊢ i ∈
ℂ |
5 | | 3cn 12046 |
. . . . . . . . . . 11
⊢ 3 ∈
ℂ |
6 | | sqrtcl 15063 |
. . . . . . . . . . 11
⊢ (3 ∈
ℂ → (√‘3) ∈ ℂ) |
7 | 5, 6 | ax-mp 5 |
. . . . . . . . . 10
⊢
(√‘3) ∈ ℂ |
8 | 4, 7 | mulcli 10975 |
. . . . . . . . 9
⊢ (i
· (√‘3)) ∈ ℂ |
9 | 3, 8 | addcli 10974 |
. . . . . . . 8
⊢ (-1 + (i
· (√‘3))) ∈ ℂ |
10 | | halfcl 12190 |
. . . . . . . 8
⊢ ((-1 + (i
· (√‘3))) ∈ ℂ → ((-1 + (i ·
(√‘3))) / 2) ∈ ℂ) |
11 | 9, 10 | ax-mp 5 |
. . . . . . 7
⊢ ((-1 + (i
· (√‘3))) / 2) ∈ ℂ |
12 | 3, 8 | subcli 11289 |
. . . . . . . 8
⊢ (-1
− (i · (√‘3))) ∈ ℂ |
13 | | halfcl 12190 |
. . . . . . . 8
⊢ ((-1
− (i · (√‘3))) ∈ ℂ → ((-1 − (i
· (√‘3))) / 2) ∈ ℂ) |
14 | 12, 13 | ax-mp 5 |
. . . . . . 7
⊢ ((-1
− (i · (√‘3))) / 2) ∈ ℂ |
15 | 2, 11, 14 | 3pm3.2i 1338 |
. . . . . 6
⊢ (1 ∈
ℂ ∧ ((-1 + (i · (√‘3))) / 2) ∈ ℂ ∧
((-1 − (i · (√‘3))) / 2) ∈
ℂ) |
16 | 2 | elexi 3450 |
. . . . . . 7
⊢ 1 ∈
V |
17 | | ovex 7302 |
. . . . . . 7
⊢ ((-1 + (i
· (√‘3))) / 2) ∈ V |
18 | | ovex 7302 |
. . . . . . 7
⊢ ((-1
− (i · (√‘3))) / 2) ∈ V |
19 | 16, 17, 18 | tpss 4774 |
. . . . . 6
⊢ ((1
∈ ℂ ∧ ((-1 + (i · (√‘3))) / 2) ∈ ℂ
∧ ((-1 − (i · (√‘3))) / 2) ∈ ℂ) ↔
{1, ((-1 + (i · (√‘3))) / 2), ((-1 − (i ·
(√‘3))) / 2)} ⊆ ℂ) |
20 | 15, 19 | mpbi 229 |
. . . . 5
⊢ {1, ((-1
+ (i · (√‘3))) / 2), ((-1 − (i ·
(√‘3))) / 2)} ⊆ ℂ |
21 | 1, 20 | eqsstri 3960 |
. . . 4
⊢ 𝑅 ⊆
ℂ |
22 | 21 | sseli 3922 |
. . 3
⊢ (𝐴 ∈ 𝑅 → 𝐴 ∈ ℂ) |
23 | 22 | pm4.71ri 561 |
. 2
⊢ (𝐴 ∈ 𝑅 ↔ (𝐴 ∈ ℂ ∧ 𝐴 ∈ 𝑅)) |
24 | | 3nn 12044 |
. . . . 5
⊢ 3 ∈
ℕ |
25 | | cxpeq 25900 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 3 ∈
ℕ ∧ 1 ∈ ℂ) → ((𝐴↑3) = 1 ↔ ∃𝑛 ∈ (0...(3 − 1))𝐴 =
((1↑𝑐(1 / 3)) · ((-1↑𝑐(2
/ 3))↑𝑛)))) |
26 | 24, 2, 25 | mp3an23 1452 |
. . . 4
⊢ (𝐴 ∈ ℂ → ((𝐴↑3) = 1 ↔ ∃𝑛 ∈ (0...(3 − 1))𝐴 =
((1↑𝑐(1 / 3)) · ((-1↑𝑐(2
/ 3))↑𝑛)))) |
27 | | eltpg 4627 |
. . . . 5
⊢ (𝐴 ∈ ℂ → (𝐴 ∈ {1, ((-1 + (i ·
(√‘3))) / 2), ((-1 − (i · (√‘3))) / 2)}
↔ (𝐴 = 1 ∨ 𝐴 = ((-1 + (i ·
(√‘3))) / 2) ∨ 𝐴 = ((-1 − (i ·
(√‘3))) / 2)))) |
28 | 1 | eleq2i 2832 |
. . . . 5
⊢ (𝐴 ∈ 𝑅 ↔ 𝐴 ∈ {1, ((-1 + (i ·
(√‘3))) / 2), ((-1 − (i · (√‘3))) /
2)}) |
29 | | 3m1e2 12093 |
. . . . . . . . . 10
⊢ (3
− 1) = 2 |
30 | | 2cn 12040 |
. . . . . . . . . . 11
⊢ 2 ∈
ℂ |
31 | 30 | addid2i 11155 |
. . . . . . . . . 10
⊢ (0 + 2) =
2 |
32 | 29, 31 | eqtr4i 2771 |
. . . . . . . . 9
⊢ (3
− 1) = (0 + 2) |
33 | 32 | oveq2i 7280 |
. . . . . . . 8
⊢ (0...(3
− 1)) = (0...(0 + 2)) |
34 | | 0z 12322 |
. . . . . . . . 9
⊢ 0 ∈
ℤ |
35 | | fztp 13303 |
. . . . . . . . 9
⊢ (0 ∈
ℤ → (0...(0 + 2)) = {0, (0 + 1), (0 + 2)}) |
36 | 34, 35 | ax-mp 5 |
. . . . . . . 8
⊢ (0...(0 +
2)) = {0, (0 + 1), (0 + 2)} |
37 | 33, 36 | eqtri 2768 |
. . . . . . 7
⊢ (0...(3
− 1)) = {0, (0 + 1), (0 + 2)} |
38 | 37 | rexeqi 3346 |
. . . . . 6
⊢
(∃𝑛 ∈
(0...(3 − 1))𝐴 =
((1↑𝑐(1 / 3)) · ((-1↑𝑐(2
/ 3))↑𝑛)) ↔
∃𝑛 ∈ {0, (0 +
1), (0 + 2)}𝐴 =
((1↑𝑐(1 / 3)) · ((-1↑𝑐(2
/ 3))↑𝑛))) |
39 | | 3ne0 12071 |
. . . . . . . . . . 11
⊢ 3 ≠
0 |
40 | 5, 39 | reccli 11697 |
. . . . . . . . . 10
⊢ (1 / 3)
∈ ℂ |
41 | | 1cxp 25817 |
. . . . . . . . . 10
⊢ ((1 / 3)
∈ ℂ → (1↑𝑐(1 / 3)) =
1) |
42 | 40, 41 | ax-mp 5 |
. . . . . . . . 9
⊢
(1↑𝑐(1 / 3)) = 1 |
43 | 42 | oveq1i 7279 |
. . . . . . . 8
⊢
((1↑𝑐(1 / 3)) ·
((-1↑𝑐(2 / 3))↑𝑛)) = (1 ·
((-1↑𝑐(2 / 3))↑𝑛)) |
44 | 43 | eqeq2i 2753 |
. . . . . . 7
⊢ (𝐴 =
((1↑𝑐(1 / 3)) · ((-1↑𝑐(2
/ 3))↑𝑛)) ↔ 𝐴 = (1 ·
((-1↑𝑐(2 / 3))↑𝑛))) |
45 | 44 | rexbii 3180 |
. . . . . 6
⊢
(∃𝑛 ∈ {0,
(0 + 1), (0 + 2)}𝐴 =
((1↑𝑐(1 / 3)) · ((-1↑𝑐(2
/ 3))↑𝑛)) ↔
∃𝑛 ∈ {0, (0 +
1), (0 + 2)}𝐴 = (1 ·
((-1↑𝑐(2 / 3))↑𝑛))) |
46 | 34 | elexi 3450 |
. . . . . . 7
⊢ 0 ∈
V |
47 | | ovex 7302 |
. . . . . . 7
⊢ (0 + 1)
∈ V |
48 | | ovex 7302 |
. . . . . . 7
⊢ (0 + 2)
∈ V |
49 | | oveq2 7277 |
. . . . . . . . . . 11
⊢ (𝑛 = 0 →
((-1↑𝑐(2 / 3))↑𝑛) = ((-1↑𝑐(2 /
3))↑0)) |
50 | 30, 5, 39 | divcli 11709 |
. . . . . . . . . . . . 13
⊢ (2 / 3)
∈ ℂ |
51 | | cxpcl 25819 |
. . . . . . . . . . . . 13
⊢ ((-1
∈ ℂ ∧ (2 / 3) ∈ ℂ) →
(-1↑𝑐(2 / 3)) ∈ ℂ) |
52 | 3, 50, 51 | mp2an 689 |
. . . . . . . . . . . 12
⊢
(-1↑𝑐(2 / 3)) ∈ ℂ |
53 | | exp0 13776 |
. . . . . . . . . . . 12
⊢
((-1↑𝑐(2 / 3)) ∈ ℂ →
((-1↑𝑐(2 / 3))↑0) = 1) |
54 | 52, 53 | ax-mp 5 |
. . . . . . . . . . 11
⊢
((-1↑𝑐(2 / 3))↑0) = 1 |
55 | 49, 54 | eqtrdi 2796 |
. . . . . . . . . 10
⊢ (𝑛 = 0 →
((-1↑𝑐(2 / 3))↑𝑛) = 1) |
56 | 55 | oveq2d 7285 |
. . . . . . . . 9
⊢ (𝑛 = 0 → (1 ·
((-1↑𝑐(2 / 3))↑𝑛)) = (1 · 1)) |
57 | | 1t1e1 12127 |
. . . . . . . . 9
⊢ (1
· 1) = 1 |
58 | 56, 57 | eqtrdi 2796 |
. . . . . . . 8
⊢ (𝑛 = 0 → (1 ·
((-1↑𝑐(2 / 3))↑𝑛)) = 1) |
59 | 58 | eqeq2d 2751 |
. . . . . . 7
⊢ (𝑛 = 0 → (𝐴 = (1 ·
((-1↑𝑐(2 / 3))↑𝑛)) ↔ 𝐴 = 1)) |
60 | | id 22 |
. . . . . . . . . . . . 13
⊢ (𝑛 = (0 + 1) → 𝑛 = (0 + 1)) |
61 | 2 | addid2i 11155 |
. . . . . . . . . . . . 13
⊢ (0 + 1) =
1 |
62 | 60, 61 | eqtrdi 2796 |
. . . . . . . . . . . 12
⊢ (𝑛 = (0 + 1) → 𝑛 = 1) |
63 | 62 | oveq2d 7285 |
. . . . . . . . . . 11
⊢ (𝑛 = (0 + 1) →
((-1↑𝑐(2 / 3))↑𝑛) = ((-1↑𝑐(2 /
3))↑1)) |
64 | | exp1 13778 |
. . . . . . . . . . . 12
⊢
((-1↑𝑐(2 / 3)) ∈ ℂ →
((-1↑𝑐(2 / 3))↑1) =
(-1↑𝑐(2 / 3))) |
65 | 52, 64 | ax-mp 5 |
. . . . . . . . . . 11
⊢
((-1↑𝑐(2 / 3))↑1) =
(-1↑𝑐(2 / 3)) |
66 | 63, 65 | eqtrdi 2796 |
. . . . . . . . . 10
⊢ (𝑛 = (0 + 1) →
((-1↑𝑐(2 / 3))↑𝑛) = (-1↑𝑐(2 /
3))) |
67 | 66 | oveq2d 7285 |
. . . . . . . . 9
⊢ (𝑛 = (0 + 1) → (1 ·
((-1↑𝑐(2 / 3))↑𝑛)) = (1 ·
(-1↑𝑐(2 / 3)))) |
68 | 52 | mulid2i 10973 |
. . . . . . . . . 10
⊢ (1
· (-1↑𝑐(2 / 3))) =
(-1↑𝑐(2 / 3)) |
69 | | 1cubrlem 25981 |
. . . . . . . . . . 11
⊢
((-1↑𝑐(2 / 3)) = ((-1 + (i ·
(√‘3))) / 2) ∧ ((-1↑𝑐(2 / 3))↑2) =
((-1 − (i · (√‘3))) / 2)) |
70 | 69 | simpli 484 |
. . . . . . . . . 10
⊢
(-1↑𝑐(2 / 3)) = ((-1 + (i ·
(√‘3))) / 2) |
71 | 68, 70 | eqtri 2768 |
. . . . . . . . 9
⊢ (1
· (-1↑𝑐(2 / 3))) = ((-1 + (i ·
(√‘3))) / 2) |
72 | 67, 71 | eqtrdi 2796 |
. . . . . . . 8
⊢ (𝑛 = (0 + 1) → (1 ·
((-1↑𝑐(2 / 3))↑𝑛)) = ((-1 + (i · (√‘3))) /
2)) |
73 | 72 | eqeq2d 2751 |
. . . . . . 7
⊢ (𝑛 = (0 + 1) → (𝐴 = (1 ·
((-1↑𝑐(2 / 3))↑𝑛)) ↔ 𝐴 = ((-1 + (i · (√‘3))) /
2))) |
74 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝑛 = (0 + 2) → 𝑛 = (0 + 2)) |
75 | 74, 31 | eqtrdi 2796 |
. . . . . . . . . . 11
⊢ (𝑛 = (0 + 2) → 𝑛 = 2) |
76 | 75 | oveq2d 7285 |
. . . . . . . . . 10
⊢ (𝑛 = (0 + 2) →
((-1↑𝑐(2 / 3))↑𝑛) = ((-1↑𝑐(2 /
3))↑2)) |
77 | 76 | oveq2d 7285 |
. . . . . . . . 9
⊢ (𝑛 = (0 + 2) → (1 ·
((-1↑𝑐(2 / 3))↑𝑛)) = (1 ·
((-1↑𝑐(2 / 3))↑2))) |
78 | 52 | sqcli 13888 |
. . . . . . . . . . 11
⊢
((-1↑𝑐(2 / 3))↑2) ∈
ℂ |
79 | 78 | mulid2i 10973 |
. . . . . . . . . 10
⊢ (1
· ((-1↑𝑐(2 / 3))↑2)) =
((-1↑𝑐(2 / 3))↑2) |
80 | 69 | simpri 486 |
. . . . . . . . . 10
⊢
((-1↑𝑐(2 / 3))↑2) = ((-1 − (i
· (√‘3))) / 2) |
81 | 79, 80 | eqtri 2768 |
. . . . . . . . 9
⊢ (1
· ((-1↑𝑐(2 / 3))↑2)) = ((-1 − (i
· (√‘3))) / 2) |
82 | 77, 81 | eqtrdi 2796 |
. . . . . . . 8
⊢ (𝑛 = (0 + 2) → (1 ·
((-1↑𝑐(2 / 3))↑𝑛)) = ((-1 − (i ·
(√‘3))) / 2)) |
83 | 82 | eqeq2d 2751 |
. . . . . . 7
⊢ (𝑛 = (0 + 2) → (𝐴 = (1 ·
((-1↑𝑐(2 / 3))↑𝑛)) ↔ 𝐴 = ((-1 − (i ·
(√‘3))) / 2))) |
84 | 46, 47, 48, 59, 73, 83 | rextp 4648 |
. . . . . 6
⊢
(∃𝑛 ∈ {0,
(0 + 1), (0 + 2)}𝐴 = (1
· ((-1↑𝑐(2 / 3))↑𝑛)) ↔ (𝐴 = 1 ∨ 𝐴 = ((-1 + (i · (√‘3))) /
2) ∨ 𝐴 = ((-1 − (i
· (√‘3))) / 2))) |
85 | 38, 45, 84 | 3bitri 297 |
. . . . 5
⊢
(∃𝑛 ∈
(0...(3 − 1))𝐴 =
((1↑𝑐(1 / 3)) · ((-1↑𝑐(2
/ 3))↑𝑛)) ↔
(𝐴 = 1 ∨ 𝐴 = ((-1 + (i ·
(√‘3))) / 2) ∨ 𝐴 = ((-1 − (i ·
(√‘3))) / 2))) |
86 | 27, 28, 85 | 3bitr4g 314 |
. . . 4
⊢ (𝐴 ∈ ℂ → (𝐴 ∈ 𝑅 ↔ ∃𝑛 ∈ (0...(3 − 1))𝐴 = ((1↑𝑐(1 / 3))
· ((-1↑𝑐(2 / 3))↑𝑛)))) |
87 | 26, 86 | bitr4d 281 |
. . 3
⊢ (𝐴 ∈ ℂ → ((𝐴↑3) = 1 ↔ 𝐴 ∈ 𝑅)) |
88 | 87 | pm5.32i 575 |
. 2
⊢ ((𝐴 ∈ ℂ ∧ (𝐴↑3) = 1) ↔ (𝐴 ∈ ℂ ∧ 𝐴 ∈ 𝑅)) |
89 | 23, 88 | bitr4i 277 |
1
⊢ (𝐴 ∈ 𝑅 ↔ (𝐴 ∈ ℂ ∧ (𝐴↑3) = 1)) |