MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1cubr Structured version   Visualization version   GIF version

Theorem 1cubr 24860
Description: The cube roots of unity. (Contributed by Mario Carneiro, 23-Apr-2015.)
Hypothesis
Ref Expression
1cubr.r 𝑅 = {1, ((-1 + (i · (√‘3))) / 2), ((-1 − (i · (√‘3))) / 2)}
Assertion
Ref Expression
1cubr (𝐴𝑅 ↔ (𝐴 ∈ ℂ ∧ (𝐴↑3) = 1))

Proof of Theorem 1cubr
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 1cubr.r . . . . 5 𝑅 = {1, ((-1 + (i · (√‘3))) / 2), ((-1 − (i · (√‘3))) / 2)}
2 ax-1cn 10247 . . . . . . 7 1 ∈ ℂ
3 neg1cn 11393 . . . . . . . . 9 -1 ∈ ℂ
4 ax-icn 10248 . . . . . . . . . 10 i ∈ ℂ
5 3cn 11353 . . . . . . . . . . 11 3 ∈ ℂ
6 sqrtcl 14386 . . . . . . . . . . 11 (3 ∈ ℂ → (√‘3) ∈ ℂ)
75, 6ax-mp 5 . . . . . . . . . 10 (√‘3) ∈ ℂ
84, 7mulcli 10301 . . . . . . . . 9 (i · (√‘3)) ∈ ℂ
93, 8addcli 10300 . . . . . . . 8 (-1 + (i · (√‘3))) ∈ ℂ
10 halfcl 11503 . . . . . . . 8 ((-1 + (i · (√‘3))) ∈ ℂ → ((-1 + (i · (√‘3))) / 2) ∈ ℂ)
119, 10ax-mp 5 . . . . . . 7 ((-1 + (i · (√‘3))) / 2) ∈ ℂ
123, 8subcli 10611 . . . . . . . 8 (-1 − (i · (√‘3))) ∈ ℂ
13 halfcl 11503 . . . . . . . 8 ((-1 − (i · (√‘3))) ∈ ℂ → ((-1 − (i · (√‘3))) / 2) ∈ ℂ)
1412, 13ax-mp 5 . . . . . . 7 ((-1 − (i · (√‘3))) / 2) ∈ ℂ
152, 11, 143pm3.2i 1438 . . . . . 6 (1 ∈ ℂ ∧ ((-1 + (i · (√‘3))) / 2) ∈ ℂ ∧ ((-1 − (i · (√‘3))) / 2) ∈ ℂ)
162elexi 3366 . . . . . . 7 1 ∈ V
17 ovex 6874 . . . . . . 7 ((-1 + (i · (√‘3))) / 2) ∈ V
18 ovex 6874 . . . . . . 7 ((-1 − (i · (√‘3))) / 2) ∈ V
1916, 17, 18tpss 4520 . . . . . 6 ((1 ∈ ℂ ∧ ((-1 + (i · (√‘3))) / 2) ∈ ℂ ∧ ((-1 − (i · (√‘3))) / 2) ∈ ℂ) ↔ {1, ((-1 + (i · (√‘3))) / 2), ((-1 − (i · (√‘3))) / 2)} ⊆ ℂ)
2015, 19mpbi 221 . . . . 5 {1, ((-1 + (i · (√‘3))) / 2), ((-1 − (i · (√‘3))) / 2)} ⊆ ℂ
211, 20eqsstri 3795 . . . 4 𝑅 ⊆ ℂ
2221sseli 3757 . . 3 (𝐴𝑅𝐴 ∈ ℂ)
2322pm4.71ri 556 . 2 (𝐴𝑅 ↔ (𝐴 ∈ ℂ ∧ 𝐴𝑅))
24 3nn 11351 . . . . 5 3 ∈ ℕ
25 cxpeq 24789 . . . . 5 ((𝐴 ∈ ℂ ∧ 3 ∈ ℕ ∧ 1 ∈ ℂ) → ((𝐴↑3) = 1 ↔ ∃𝑛 ∈ (0...(3 − 1))𝐴 = ((1↑𝑐(1 / 3)) · ((-1↑𝑐(2 / 3))↑𝑛))))
2624, 2, 25mp3an23 1577 . . . 4 (𝐴 ∈ ℂ → ((𝐴↑3) = 1 ↔ ∃𝑛 ∈ (0...(3 − 1))𝐴 = ((1↑𝑐(1 / 3)) · ((-1↑𝑐(2 / 3))↑𝑛))))
27 eltpg 4383 . . . . 5 (𝐴 ∈ ℂ → (𝐴 ∈ {1, ((-1 + (i · (√‘3))) / 2), ((-1 − (i · (√‘3))) / 2)} ↔ (𝐴 = 1 ∨ 𝐴 = ((-1 + (i · (√‘3))) / 2) ∨ 𝐴 = ((-1 − (i · (√‘3))) / 2))))
281eleq2i 2836 . . . . 5 (𝐴𝑅𝐴 ∈ {1, ((-1 + (i · (√‘3))) / 2), ((-1 − (i · (√‘3))) / 2)})
29 3m1e2 11407 . . . . . . . . . 10 (3 − 1) = 2
30 2cn 11347 . . . . . . . . . . 11 2 ∈ ℂ
3130addid2i 10478 . . . . . . . . . 10 (0 + 2) = 2
3229, 31eqtr4i 2790 . . . . . . . . 9 (3 − 1) = (0 + 2)
3332oveq2i 6853 . . . . . . . 8 (0...(3 − 1)) = (0...(0 + 2))
34 0z 11635 . . . . . . . . 9 0 ∈ ℤ
35 fztp 12604 . . . . . . . . 9 (0 ∈ ℤ → (0...(0 + 2)) = {0, (0 + 1), (0 + 2)})
3634, 35ax-mp 5 . . . . . . . 8 (0...(0 + 2)) = {0, (0 + 1), (0 + 2)}
3733, 36eqtri 2787 . . . . . . 7 (0...(3 − 1)) = {0, (0 + 1), (0 + 2)}
3837rexeqi 3291 . . . . . 6 (∃𝑛 ∈ (0...(3 − 1))𝐴 = ((1↑𝑐(1 / 3)) · ((-1↑𝑐(2 / 3))↑𝑛)) ↔ ∃𝑛 ∈ {0, (0 + 1), (0 + 2)}𝐴 = ((1↑𝑐(1 / 3)) · ((-1↑𝑐(2 / 3))↑𝑛)))
39 3ne0 11385 . . . . . . . . . . 11 3 ≠ 0
405, 39reccli 11009 . . . . . . . . . 10 (1 / 3) ∈ ℂ
41 1cxp 24709 . . . . . . . . . 10 ((1 / 3) ∈ ℂ → (1↑𝑐(1 / 3)) = 1)
4240, 41ax-mp 5 . . . . . . . . 9 (1↑𝑐(1 / 3)) = 1
4342oveq1i 6852 . . . . . . . 8 ((1↑𝑐(1 / 3)) · ((-1↑𝑐(2 / 3))↑𝑛)) = (1 · ((-1↑𝑐(2 / 3))↑𝑛))
4443eqeq2i 2777 . . . . . . 7 (𝐴 = ((1↑𝑐(1 / 3)) · ((-1↑𝑐(2 / 3))↑𝑛)) ↔ 𝐴 = (1 · ((-1↑𝑐(2 / 3))↑𝑛)))
4544rexbii 3188 . . . . . 6 (∃𝑛 ∈ {0, (0 + 1), (0 + 2)}𝐴 = ((1↑𝑐(1 / 3)) · ((-1↑𝑐(2 / 3))↑𝑛)) ↔ ∃𝑛 ∈ {0, (0 + 1), (0 + 2)}𝐴 = (1 · ((-1↑𝑐(2 / 3))↑𝑛)))
4634elexi 3366 . . . . . . 7 0 ∈ V
47 ovex 6874 . . . . . . 7 (0 + 1) ∈ V
48 ovex 6874 . . . . . . 7 (0 + 2) ∈ V
49 oveq2 6850 . . . . . . . . . . 11 (𝑛 = 0 → ((-1↑𝑐(2 / 3))↑𝑛) = ((-1↑𝑐(2 / 3))↑0))
5030, 5, 39divcli 11021 . . . . . . . . . . . . 13 (2 / 3) ∈ ℂ
51 cxpcl 24711 . . . . . . . . . . . . 13 ((-1 ∈ ℂ ∧ (2 / 3) ∈ ℂ) → (-1↑𝑐(2 / 3)) ∈ ℂ)
523, 50, 51mp2an 683 . . . . . . . . . . . 12 (-1↑𝑐(2 / 3)) ∈ ℂ
53 exp0 13071 . . . . . . . . . . . 12 ((-1↑𝑐(2 / 3)) ∈ ℂ → ((-1↑𝑐(2 / 3))↑0) = 1)
5452, 53ax-mp 5 . . . . . . . . . . 11 ((-1↑𝑐(2 / 3))↑0) = 1
5549, 54syl6eq 2815 . . . . . . . . . 10 (𝑛 = 0 → ((-1↑𝑐(2 / 3))↑𝑛) = 1)
5655oveq2d 6858 . . . . . . . . 9 (𝑛 = 0 → (1 · ((-1↑𝑐(2 / 3))↑𝑛)) = (1 · 1))
57 1t1e1 11440 . . . . . . . . 9 (1 · 1) = 1
5856, 57syl6eq 2815 . . . . . . . 8 (𝑛 = 0 → (1 · ((-1↑𝑐(2 / 3))↑𝑛)) = 1)
5958eqeq2d 2775 . . . . . . 7 (𝑛 = 0 → (𝐴 = (1 · ((-1↑𝑐(2 / 3))↑𝑛)) ↔ 𝐴 = 1))
60 id 22 . . . . . . . . . . . . 13 (𝑛 = (0 + 1) → 𝑛 = (0 + 1))
612addid2i 10478 . . . . . . . . . . . . 13 (0 + 1) = 1
6260, 61syl6eq 2815 . . . . . . . . . . . 12 (𝑛 = (0 + 1) → 𝑛 = 1)
6362oveq2d 6858 . . . . . . . . . . 11 (𝑛 = (0 + 1) → ((-1↑𝑐(2 / 3))↑𝑛) = ((-1↑𝑐(2 / 3))↑1))
64 exp1 13073 . . . . . . . . . . . 12 ((-1↑𝑐(2 / 3)) ∈ ℂ → ((-1↑𝑐(2 / 3))↑1) = (-1↑𝑐(2 / 3)))
6552, 64ax-mp 5 . . . . . . . . . . 11 ((-1↑𝑐(2 / 3))↑1) = (-1↑𝑐(2 / 3))
6663, 65syl6eq 2815 . . . . . . . . . 10 (𝑛 = (0 + 1) → ((-1↑𝑐(2 / 3))↑𝑛) = (-1↑𝑐(2 / 3)))
6766oveq2d 6858 . . . . . . . . 9 (𝑛 = (0 + 1) → (1 · ((-1↑𝑐(2 / 3))↑𝑛)) = (1 · (-1↑𝑐(2 / 3))))
6852mulid2i 10299 . . . . . . . . . 10 (1 · (-1↑𝑐(2 / 3))) = (-1↑𝑐(2 / 3))
69 1cubrlem 24859 . . . . . . . . . . 11 ((-1↑𝑐(2 / 3)) = ((-1 + (i · (√‘3))) / 2) ∧ ((-1↑𝑐(2 / 3))↑2) = ((-1 − (i · (√‘3))) / 2))
7069simpli 476 . . . . . . . . . 10 (-1↑𝑐(2 / 3)) = ((-1 + (i · (√‘3))) / 2)
7168, 70eqtri 2787 . . . . . . . . 9 (1 · (-1↑𝑐(2 / 3))) = ((-1 + (i · (√‘3))) / 2)
7267, 71syl6eq 2815 . . . . . . . 8 (𝑛 = (0 + 1) → (1 · ((-1↑𝑐(2 / 3))↑𝑛)) = ((-1 + (i · (√‘3))) / 2))
7372eqeq2d 2775 . . . . . . 7 (𝑛 = (0 + 1) → (𝐴 = (1 · ((-1↑𝑐(2 / 3))↑𝑛)) ↔ 𝐴 = ((-1 + (i · (√‘3))) / 2)))
74 id 22 . . . . . . . . . . . 12 (𝑛 = (0 + 2) → 𝑛 = (0 + 2))
7574, 31syl6eq 2815 . . . . . . . . . . 11 (𝑛 = (0 + 2) → 𝑛 = 2)
7675oveq2d 6858 . . . . . . . . . 10 (𝑛 = (0 + 2) → ((-1↑𝑐(2 / 3))↑𝑛) = ((-1↑𝑐(2 / 3))↑2))
7776oveq2d 6858 . . . . . . . . 9 (𝑛 = (0 + 2) → (1 · ((-1↑𝑐(2 / 3))↑𝑛)) = (1 · ((-1↑𝑐(2 / 3))↑2)))
7852sqcli 13151 . . . . . . . . . . 11 ((-1↑𝑐(2 / 3))↑2) ∈ ℂ
7978mulid2i 10299 . . . . . . . . . 10 (1 · ((-1↑𝑐(2 / 3))↑2)) = ((-1↑𝑐(2 / 3))↑2)
8069simpri 479 . . . . . . . . . 10 ((-1↑𝑐(2 / 3))↑2) = ((-1 − (i · (√‘3))) / 2)
8179, 80eqtri 2787 . . . . . . . . 9 (1 · ((-1↑𝑐(2 / 3))↑2)) = ((-1 − (i · (√‘3))) / 2)
8277, 81syl6eq 2815 . . . . . . . 8 (𝑛 = (0 + 2) → (1 · ((-1↑𝑐(2 / 3))↑𝑛)) = ((-1 − (i · (√‘3))) / 2))
8382eqeq2d 2775 . . . . . . 7 (𝑛 = (0 + 2) → (𝐴 = (1 · ((-1↑𝑐(2 / 3))↑𝑛)) ↔ 𝐴 = ((-1 − (i · (√‘3))) / 2)))
8446, 47, 48, 59, 73, 83rextp 4397 . . . . . 6 (∃𝑛 ∈ {0, (0 + 1), (0 + 2)}𝐴 = (1 · ((-1↑𝑐(2 / 3))↑𝑛)) ↔ (𝐴 = 1 ∨ 𝐴 = ((-1 + (i · (√‘3))) / 2) ∨ 𝐴 = ((-1 − (i · (√‘3))) / 2)))
8538, 45, 843bitri 288 . . . . 5 (∃𝑛 ∈ (0...(3 − 1))𝐴 = ((1↑𝑐(1 / 3)) · ((-1↑𝑐(2 / 3))↑𝑛)) ↔ (𝐴 = 1 ∨ 𝐴 = ((-1 + (i · (√‘3))) / 2) ∨ 𝐴 = ((-1 − (i · (√‘3))) / 2)))
8627, 28, 853bitr4g 305 . . . 4 (𝐴 ∈ ℂ → (𝐴𝑅 ↔ ∃𝑛 ∈ (0...(3 − 1))𝐴 = ((1↑𝑐(1 / 3)) · ((-1↑𝑐(2 / 3))↑𝑛))))
8726, 86bitr4d 273 . . 3 (𝐴 ∈ ℂ → ((𝐴↑3) = 1 ↔ 𝐴𝑅))
8887pm5.32i 570 . 2 ((𝐴 ∈ ℂ ∧ (𝐴↑3) = 1) ↔ (𝐴 ∈ ℂ ∧ 𝐴𝑅))
8923, 88bitr4i 269 1 (𝐴𝑅 ↔ (𝐴 ∈ ℂ ∧ (𝐴↑3) = 1))
Colors of variables: wff setvar class
Syntax hints:  wb 197  wa 384  w3o 1106  w3a 1107   = wceq 1652  wcel 2155  wrex 3056  wss 3732  {ctp 4338  cfv 6068  (class class class)co 6842  cc 10187  0cc0 10189  1c1 10190  ici 10191   + caddc 10192   · cmul 10194  cmin 10520  -cneg 10521   / cdiv 10938  cn 11274  2c2 11327  3c3 11328  cz 11624  ...cfz 12533  cexp 13067  csqrt 14258  𝑐ccxp 24593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267  ax-addf 10268  ax-mulf 10269
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-iin 4679  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-of 7095  df-om 7264  df-1st 7366  df-2nd 7367  df-supp 7498  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-2o 7765  df-oadd 7768  df-er 7947  df-map 8062  df-pm 8063  df-ixp 8114  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-fsupp 8483  df-fi 8524  df-sup 8555  df-inf 8556  df-oi 8622  df-card 9016  df-cda 9243  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-4 11337  df-5 11338  df-6 11339  df-7 11340  df-8 11341  df-9 11342  df-n0 11539  df-z 11625  df-dec 11741  df-uz 11887  df-q 11990  df-rp 12029  df-xneg 12146  df-xadd 12147  df-xmul 12148  df-ioo 12381  df-ioc 12382  df-ico 12383  df-icc 12384  df-fz 12534  df-fzo 12674  df-fl 12801  df-mod 12877  df-seq 13009  df-exp 13068  df-fac 13265  df-bc 13294  df-hash 13322  df-shft 14092  df-cj 14124  df-re 14125  df-im 14126  df-sqrt 14260  df-abs 14261  df-limsup 14487  df-clim 14504  df-rlim 14505  df-sum 14702  df-ef 15080  df-sin 15082  df-cos 15083  df-pi 15085  df-struct 16132  df-ndx 16133  df-slot 16134  df-base 16136  df-sets 16137  df-ress 16138  df-plusg 16227  df-mulr 16228  df-starv 16229  df-sca 16230  df-vsca 16231  df-ip 16232  df-tset 16233  df-ple 16234  df-ds 16236  df-unif 16237  df-hom 16238  df-cco 16239  df-rest 16349  df-topn 16350  df-0g 16368  df-gsum 16369  df-topgen 16370  df-pt 16371  df-prds 16374  df-xrs 16428  df-qtop 16433  df-imas 16434  df-xps 16436  df-mre 16512  df-mrc 16513  df-acs 16515  df-mgm 17508  df-sgrp 17550  df-mnd 17561  df-submnd 17602  df-mulg 17808  df-cntz 18013  df-cmn 18461  df-psmet 20011  df-xmet 20012  df-met 20013  df-bl 20014  df-mopn 20015  df-fbas 20016  df-fg 20017  df-cnfld 20020  df-top 20978  df-topon 20995  df-topsp 21017  df-bases 21030  df-cld 21103  df-ntr 21104  df-cls 21105  df-nei 21182  df-lp 21220  df-perf 21221  df-cn 21311  df-cnp 21312  df-haus 21399  df-tx 21645  df-hmeo 21838  df-fil 21929  df-fm 22021  df-flim 22022  df-flf 22023  df-xms 22404  df-ms 22405  df-tms 22406  df-cncf 22960  df-limc 23921  df-dv 23922  df-log 24594  df-cxp 24595
This theorem is referenced by:  cubic  24867
  Copyright terms: Public domain W3C validator