MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1cubr Structured version   Visualization version   GIF version

Theorem 1cubr 25982
Description: The cube roots of unity. (Contributed by Mario Carneiro, 23-Apr-2015.)
Hypothesis
Ref Expression
1cubr.r 𝑅 = {1, ((-1 + (i · (√‘3))) / 2), ((-1 − (i · (√‘3))) / 2)}
Assertion
Ref Expression
1cubr (𝐴𝑅 ↔ (𝐴 ∈ ℂ ∧ (𝐴↑3) = 1))

Proof of Theorem 1cubr
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 1cubr.r . . . . 5 𝑅 = {1, ((-1 + (i · (√‘3))) / 2), ((-1 − (i · (√‘3))) / 2)}
2 ax-1cn 10922 . . . . . . 7 1 ∈ ℂ
3 neg1cn 12079 . . . . . . . . 9 -1 ∈ ℂ
4 ax-icn 10923 . . . . . . . . . 10 i ∈ ℂ
5 3cn 12046 . . . . . . . . . . 11 3 ∈ ℂ
6 sqrtcl 15063 . . . . . . . . . . 11 (3 ∈ ℂ → (√‘3) ∈ ℂ)
75, 6ax-mp 5 . . . . . . . . . 10 (√‘3) ∈ ℂ
84, 7mulcli 10975 . . . . . . . . 9 (i · (√‘3)) ∈ ℂ
93, 8addcli 10974 . . . . . . . 8 (-1 + (i · (√‘3))) ∈ ℂ
10 halfcl 12190 . . . . . . . 8 ((-1 + (i · (√‘3))) ∈ ℂ → ((-1 + (i · (√‘3))) / 2) ∈ ℂ)
119, 10ax-mp 5 . . . . . . 7 ((-1 + (i · (√‘3))) / 2) ∈ ℂ
123, 8subcli 11289 . . . . . . . 8 (-1 − (i · (√‘3))) ∈ ℂ
13 halfcl 12190 . . . . . . . 8 ((-1 − (i · (√‘3))) ∈ ℂ → ((-1 − (i · (√‘3))) / 2) ∈ ℂ)
1412, 13ax-mp 5 . . . . . . 7 ((-1 − (i · (√‘3))) / 2) ∈ ℂ
152, 11, 143pm3.2i 1338 . . . . . 6 (1 ∈ ℂ ∧ ((-1 + (i · (√‘3))) / 2) ∈ ℂ ∧ ((-1 − (i · (√‘3))) / 2) ∈ ℂ)
162elexi 3450 . . . . . . 7 1 ∈ V
17 ovex 7302 . . . . . . 7 ((-1 + (i · (√‘3))) / 2) ∈ V
18 ovex 7302 . . . . . . 7 ((-1 − (i · (√‘3))) / 2) ∈ V
1916, 17, 18tpss 4774 . . . . . 6 ((1 ∈ ℂ ∧ ((-1 + (i · (√‘3))) / 2) ∈ ℂ ∧ ((-1 − (i · (√‘3))) / 2) ∈ ℂ) ↔ {1, ((-1 + (i · (√‘3))) / 2), ((-1 − (i · (√‘3))) / 2)} ⊆ ℂ)
2015, 19mpbi 229 . . . . 5 {1, ((-1 + (i · (√‘3))) / 2), ((-1 − (i · (√‘3))) / 2)} ⊆ ℂ
211, 20eqsstri 3960 . . . 4 𝑅 ⊆ ℂ
2221sseli 3922 . . 3 (𝐴𝑅𝐴 ∈ ℂ)
2322pm4.71ri 561 . 2 (𝐴𝑅 ↔ (𝐴 ∈ ℂ ∧ 𝐴𝑅))
24 3nn 12044 . . . . 5 3 ∈ ℕ
25 cxpeq 25900 . . . . 5 ((𝐴 ∈ ℂ ∧ 3 ∈ ℕ ∧ 1 ∈ ℂ) → ((𝐴↑3) = 1 ↔ ∃𝑛 ∈ (0...(3 − 1))𝐴 = ((1↑𝑐(1 / 3)) · ((-1↑𝑐(2 / 3))↑𝑛))))
2624, 2, 25mp3an23 1452 . . . 4 (𝐴 ∈ ℂ → ((𝐴↑3) = 1 ↔ ∃𝑛 ∈ (0...(3 − 1))𝐴 = ((1↑𝑐(1 / 3)) · ((-1↑𝑐(2 / 3))↑𝑛))))
27 eltpg 4627 . . . . 5 (𝐴 ∈ ℂ → (𝐴 ∈ {1, ((-1 + (i · (√‘3))) / 2), ((-1 − (i · (√‘3))) / 2)} ↔ (𝐴 = 1 ∨ 𝐴 = ((-1 + (i · (√‘3))) / 2) ∨ 𝐴 = ((-1 − (i · (√‘3))) / 2))))
281eleq2i 2832 . . . . 5 (𝐴𝑅𝐴 ∈ {1, ((-1 + (i · (√‘3))) / 2), ((-1 − (i · (√‘3))) / 2)})
29 3m1e2 12093 . . . . . . . . . 10 (3 − 1) = 2
30 2cn 12040 . . . . . . . . . . 11 2 ∈ ℂ
3130addid2i 11155 . . . . . . . . . 10 (0 + 2) = 2
3229, 31eqtr4i 2771 . . . . . . . . 9 (3 − 1) = (0 + 2)
3332oveq2i 7280 . . . . . . . 8 (0...(3 − 1)) = (0...(0 + 2))
34 0z 12322 . . . . . . . . 9 0 ∈ ℤ
35 fztp 13303 . . . . . . . . 9 (0 ∈ ℤ → (0...(0 + 2)) = {0, (0 + 1), (0 + 2)})
3634, 35ax-mp 5 . . . . . . . 8 (0...(0 + 2)) = {0, (0 + 1), (0 + 2)}
3733, 36eqtri 2768 . . . . . . 7 (0...(3 − 1)) = {0, (0 + 1), (0 + 2)}
3837rexeqi 3346 . . . . . 6 (∃𝑛 ∈ (0...(3 − 1))𝐴 = ((1↑𝑐(1 / 3)) · ((-1↑𝑐(2 / 3))↑𝑛)) ↔ ∃𝑛 ∈ {0, (0 + 1), (0 + 2)}𝐴 = ((1↑𝑐(1 / 3)) · ((-1↑𝑐(2 / 3))↑𝑛)))
39 3ne0 12071 . . . . . . . . . . 11 3 ≠ 0
405, 39reccli 11697 . . . . . . . . . 10 (1 / 3) ∈ ℂ
41 1cxp 25817 . . . . . . . . . 10 ((1 / 3) ∈ ℂ → (1↑𝑐(1 / 3)) = 1)
4240, 41ax-mp 5 . . . . . . . . 9 (1↑𝑐(1 / 3)) = 1
4342oveq1i 7279 . . . . . . . 8 ((1↑𝑐(1 / 3)) · ((-1↑𝑐(2 / 3))↑𝑛)) = (1 · ((-1↑𝑐(2 / 3))↑𝑛))
4443eqeq2i 2753 . . . . . . 7 (𝐴 = ((1↑𝑐(1 / 3)) · ((-1↑𝑐(2 / 3))↑𝑛)) ↔ 𝐴 = (1 · ((-1↑𝑐(2 / 3))↑𝑛)))
4544rexbii 3180 . . . . . 6 (∃𝑛 ∈ {0, (0 + 1), (0 + 2)}𝐴 = ((1↑𝑐(1 / 3)) · ((-1↑𝑐(2 / 3))↑𝑛)) ↔ ∃𝑛 ∈ {0, (0 + 1), (0 + 2)}𝐴 = (1 · ((-1↑𝑐(2 / 3))↑𝑛)))
4634elexi 3450 . . . . . . 7 0 ∈ V
47 ovex 7302 . . . . . . 7 (0 + 1) ∈ V
48 ovex 7302 . . . . . . 7 (0 + 2) ∈ V
49 oveq2 7277 . . . . . . . . . . 11 (𝑛 = 0 → ((-1↑𝑐(2 / 3))↑𝑛) = ((-1↑𝑐(2 / 3))↑0))
5030, 5, 39divcli 11709 . . . . . . . . . . . . 13 (2 / 3) ∈ ℂ
51 cxpcl 25819 . . . . . . . . . . . . 13 ((-1 ∈ ℂ ∧ (2 / 3) ∈ ℂ) → (-1↑𝑐(2 / 3)) ∈ ℂ)
523, 50, 51mp2an 689 . . . . . . . . . . . 12 (-1↑𝑐(2 / 3)) ∈ ℂ
53 exp0 13776 . . . . . . . . . . . 12 ((-1↑𝑐(2 / 3)) ∈ ℂ → ((-1↑𝑐(2 / 3))↑0) = 1)
5452, 53ax-mp 5 . . . . . . . . . . 11 ((-1↑𝑐(2 / 3))↑0) = 1
5549, 54eqtrdi 2796 . . . . . . . . . 10 (𝑛 = 0 → ((-1↑𝑐(2 / 3))↑𝑛) = 1)
5655oveq2d 7285 . . . . . . . . 9 (𝑛 = 0 → (1 · ((-1↑𝑐(2 / 3))↑𝑛)) = (1 · 1))
57 1t1e1 12127 . . . . . . . . 9 (1 · 1) = 1
5856, 57eqtrdi 2796 . . . . . . . 8 (𝑛 = 0 → (1 · ((-1↑𝑐(2 / 3))↑𝑛)) = 1)
5958eqeq2d 2751 . . . . . . 7 (𝑛 = 0 → (𝐴 = (1 · ((-1↑𝑐(2 / 3))↑𝑛)) ↔ 𝐴 = 1))
60 id 22 . . . . . . . . . . . . 13 (𝑛 = (0 + 1) → 𝑛 = (0 + 1))
612addid2i 11155 . . . . . . . . . . . . 13 (0 + 1) = 1
6260, 61eqtrdi 2796 . . . . . . . . . . . 12 (𝑛 = (0 + 1) → 𝑛 = 1)
6362oveq2d 7285 . . . . . . . . . . 11 (𝑛 = (0 + 1) → ((-1↑𝑐(2 / 3))↑𝑛) = ((-1↑𝑐(2 / 3))↑1))
64 exp1 13778 . . . . . . . . . . . 12 ((-1↑𝑐(2 / 3)) ∈ ℂ → ((-1↑𝑐(2 / 3))↑1) = (-1↑𝑐(2 / 3)))
6552, 64ax-mp 5 . . . . . . . . . . 11 ((-1↑𝑐(2 / 3))↑1) = (-1↑𝑐(2 / 3))
6663, 65eqtrdi 2796 . . . . . . . . . 10 (𝑛 = (0 + 1) → ((-1↑𝑐(2 / 3))↑𝑛) = (-1↑𝑐(2 / 3)))
6766oveq2d 7285 . . . . . . . . 9 (𝑛 = (0 + 1) → (1 · ((-1↑𝑐(2 / 3))↑𝑛)) = (1 · (-1↑𝑐(2 / 3))))
6852mulid2i 10973 . . . . . . . . . 10 (1 · (-1↑𝑐(2 / 3))) = (-1↑𝑐(2 / 3))
69 1cubrlem 25981 . . . . . . . . . . 11 ((-1↑𝑐(2 / 3)) = ((-1 + (i · (√‘3))) / 2) ∧ ((-1↑𝑐(2 / 3))↑2) = ((-1 − (i · (√‘3))) / 2))
7069simpli 484 . . . . . . . . . 10 (-1↑𝑐(2 / 3)) = ((-1 + (i · (√‘3))) / 2)
7168, 70eqtri 2768 . . . . . . . . 9 (1 · (-1↑𝑐(2 / 3))) = ((-1 + (i · (√‘3))) / 2)
7267, 71eqtrdi 2796 . . . . . . . 8 (𝑛 = (0 + 1) → (1 · ((-1↑𝑐(2 / 3))↑𝑛)) = ((-1 + (i · (√‘3))) / 2))
7372eqeq2d 2751 . . . . . . 7 (𝑛 = (0 + 1) → (𝐴 = (1 · ((-1↑𝑐(2 / 3))↑𝑛)) ↔ 𝐴 = ((-1 + (i · (√‘3))) / 2)))
74 id 22 . . . . . . . . . . . 12 (𝑛 = (0 + 2) → 𝑛 = (0 + 2))
7574, 31eqtrdi 2796 . . . . . . . . . . 11 (𝑛 = (0 + 2) → 𝑛 = 2)
7675oveq2d 7285 . . . . . . . . . 10 (𝑛 = (0 + 2) → ((-1↑𝑐(2 / 3))↑𝑛) = ((-1↑𝑐(2 / 3))↑2))
7776oveq2d 7285 . . . . . . . . 9 (𝑛 = (0 + 2) → (1 · ((-1↑𝑐(2 / 3))↑𝑛)) = (1 · ((-1↑𝑐(2 / 3))↑2)))
7852sqcli 13888 . . . . . . . . . . 11 ((-1↑𝑐(2 / 3))↑2) ∈ ℂ
7978mulid2i 10973 . . . . . . . . . 10 (1 · ((-1↑𝑐(2 / 3))↑2)) = ((-1↑𝑐(2 / 3))↑2)
8069simpri 486 . . . . . . . . . 10 ((-1↑𝑐(2 / 3))↑2) = ((-1 − (i · (√‘3))) / 2)
8179, 80eqtri 2768 . . . . . . . . 9 (1 · ((-1↑𝑐(2 / 3))↑2)) = ((-1 − (i · (√‘3))) / 2)
8277, 81eqtrdi 2796 . . . . . . . 8 (𝑛 = (0 + 2) → (1 · ((-1↑𝑐(2 / 3))↑𝑛)) = ((-1 − (i · (√‘3))) / 2))
8382eqeq2d 2751 . . . . . . 7 (𝑛 = (0 + 2) → (𝐴 = (1 · ((-1↑𝑐(2 / 3))↑𝑛)) ↔ 𝐴 = ((-1 − (i · (√‘3))) / 2)))
8446, 47, 48, 59, 73, 83rextp 4648 . . . . . 6 (∃𝑛 ∈ {0, (0 + 1), (0 + 2)}𝐴 = (1 · ((-1↑𝑐(2 / 3))↑𝑛)) ↔ (𝐴 = 1 ∨ 𝐴 = ((-1 + (i · (√‘3))) / 2) ∨ 𝐴 = ((-1 − (i · (√‘3))) / 2)))
8538, 45, 843bitri 297 . . . . 5 (∃𝑛 ∈ (0...(3 − 1))𝐴 = ((1↑𝑐(1 / 3)) · ((-1↑𝑐(2 / 3))↑𝑛)) ↔ (𝐴 = 1 ∨ 𝐴 = ((-1 + (i · (√‘3))) / 2) ∨ 𝐴 = ((-1 − (i · (√‘3))) / 2)))
8627, 28, 853bitr4g 314 . . . 4 (𝐴 ∈ ℂ → (𝐴𝑅 ↔ ∃𝑛 ∈ (0...(3 − 1))𝐴 = ((1↑𝑐(1 / 3)) · ((-1↑𝑐(2 / 3))↑𝑛))))
8726, 86bitr4d 281 . . 3 (𝐴 ∈ ℂ → ((𝐴↑3) = 1 ↔ 𝐴𝑅))
8887pm5.32i 575 . 2 ((𝐴 ∈ ℂ ∧ (𝐴↑3) = 1) ↔ (𝐴 ∈ ℂ ∧ 𝐴𝑅))
8923, 88bitr4i 277 1 (𝐴𝑅 ↔ (𝐴 ∈ ℂ ∧ (𝐴↑3) = 1))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  w3o 1085  w3a 1086   = wceq 1542  wcel 2110  wrex 3067  wss 3892  {ctp 4571  cfv 6431  (class class class)co 7269  cc 10862  0cc0 10864  1c1 10865  ici 10866   + caddc 10867   · cmul 10869  cmin 11197  -cneg 11198   / cdiv 11624  cn 11965  2c2 12020  3c3 12021  cz 12311  ...cfz 13230  cexp 13772  csqrt 14934  𝑐ccxp 25701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580  ax-inf2 9369  ax-cnex 10920  ax-resscn 10921  ax-1cn 10922  ax-icn 10923  ax-addcl 10924  ax-addrcl 10925  ax-mulcl 10926  ax-mulrcl 10927  ax-mulcom 10928  ax-addass 10929  ax-mulass 10930  ax-distr 10931  ax-i2m1 10932  ax-1ne0 10933  ax-1rid 10934  ax-rnegex 10935  ax-rrecex 10936  ax-cnre 10937  ax-pre-lttri 10938  ax-pre-lttrn 10939  ax-pre-ltadd 10940  ax-pre-mulgt0 10941  ax-pre-sup 10942  ax-addf 10943  ax-mulf 10944
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-iin 4933  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6200  df-ord 6267  df-on 6268  df-lim 6269  df-suc 6270  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-isom 6440  df-riota 7226  df-ov 7272  df-oprab 7273  df-mpo 7274  df-of 7525  df-om 7702  df-1st 7818  df-2nd 7819  df-supp 7963  df-frecs 8082  df-wrecs 8113  df-recs 8187  df-rdg 8226  df-1o 8282  df-2o 8283  df-er 8473  df-map 8592  df-pm 8593  df-ixp 8661  df-en 8709  df-dom 8710  df-sdom 8711  df-fin 8712  df-fsupp 9099  df-fi 9140  df-sup 9171  df-inf 9172  df-oi 9239  df-card 9690  df-pnf 11004  df-mnf 11005  df-xr 11006  df-ltxr 11007  df-le 11008  df-sub 11199  df-neg 11200  df-div 11625  df-nn 11966  df-2 12028  df-3 12029  df-4 12030  df-5 12031  df-6 12032  df-7 12033  df-8 12034  df-9 12035  df-n0 12226  df-z 12312  df-dec 12429  df-uz 12574  df-q 12680  df-rp 12722  df-xneg 12839  df-xadd 12840  df-xmul 12841  df-ioo 13074  df-ioc 13075  df-ico 13076  df-icc 13077  df-fz 13231  df-fzo 13374  df-fl 13502  df-mod 13580  df-seq 13712  df-exp 13773  df-fac 13978  df-bc 14007  df-hash 14035  df-shft 14768  df-cj 14800  df-re 14801  df-im 14802  df-sqrt 14936  df-abs 14937  df-limsup 15170  df-clim 15187  df-rlim 15188  df-sum 15388  df-ef 15767  df-sin 15769  df-cos 15770  df-pi 15772  df-struct 16838  df-sets 16855  df-slot 16873  df-ndx 16885  df-base 16903  df-ress 16932  df-plusg 16965  df-mulr 16966  df-starv 16967  df-sca 16968  df-vsca 16969  df-ip 16970  df-tset 16971  df-ple 16972  df-ds 16974  df-unif 16975  df-hom 16976  df-cco 16977  df-rest 17123  df-topn 17124  df-0g 17142  df-gsum 17143  df-topgen 17144  df-pt 17145  df-prds 17148  df-xrs 17203  df-qtop 17208  df-imas 17209  df-xps 17211  df-mre 17285  df-mrc 17286  df-acs 17288  df-mgm 18316  df-sgrp 18365  df-mnd 18376  df-submnd 18421  df-mulg 18691  df-cntz 18913  df-cmn 19378  df-psmet 20579  df-xmet 20580  df-met 20581  df-bl 20582  df-mopn 20583  df-fbas 20584  df-fg 20585  df-cnfld 20588  df-top 22033  df-topon 22050  df-topsp 22072  df-bases 22086  df-cld 22160  df-ntr 22161  df-cls 22162  df-nei 22239  df-lp 22277  df-perf 22278  df-cn 22368  df-cnp 22369  df-haus 22456  df-tx 22703  df-hmeo 22896  df-fil 22987  df-fm 23079  df-flim 23080  df-flf 23081  df-xms 23463  df-ms 23464  df-tms 23465  df-cncf 24031  df-limc 25020  df-dv 25021  df-log 25702  df-cxp 25703
This theorem is referenced by:  cubic  25989
  Copyright terms: Public domain W3C validator