MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1cubr Structured version   Visualization version   GIF version

Theorem 1cubr 26819
Description: The cube roots of unity. (Contributed by Mario Carneiro, 23-Apr-2015.)
Hypothesis
Ref Expression
1cubr.r 𝑅 = {1, ((-1 + (i · (√‘3))) / 2), ((-1 − (i · (√‘3))) / 2)}
Assertion
Ref Expression
1cubr (𝐴𝑅 ↔ (𝐴 ∈ ℂ ∧ (𝐴↑3) = 1))

Proof of Theorem 1cubr
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 1cubr.r . . . . 5 𝑅 = {1, ((-1 + (i · (√‘3))) / 2), ((-1 − (i · (√‘3))) / 2)}
2 ax-1cn 11198 . . . . . . 7 1 ∈ ℂ
3 neg1cn 12359 . . . . . . . . 9 -1 ∈ ℂ
4 ax-icn 11199 . . . . . . . . . 10 i ∈ ℂ
5 3cn 12326 . . . . . . . . . . 11 3 ∈ ℂ
6 sqrtcl 15344 . . . . . . . . . . 11 (3 ∈ ℂ → (√‘3) ∈ ℂ)
75, 6ax-mp 5 . . . . . . . . . 10 (√‘3) ∈ ℂ
84, 7mulcli 11253 . . . . . . . . 9 (i · (√‘3)) ∈ ℂ
93, 8addcli 11252 . . . . . . . 8 (-1 + (i · (√‘3))) ∈ ℂ
10 halfcl 12470 . . . . . . . 8 ((-1 + (i · (√‘3))) ∈ ℂ → ((-1 + (i · (√‘3))) / 2) ∈ ℂ)
119, 10ax-mp 5 . . . . . . 7 ((-1 + (i · (√‘3))) / 2) ∈ ℂ
123, 8subcli 11568 . . . . . . . 8 (-1 − (i · (√‘3))) ∈ ℂ
13 halfcl 12470 . . . . . . . 8 ((-1 − (i · (√‘3))) ∈ ℂ → ((-1 − (i · (√‘3))) / 2) ∈ ℂ)
1412, 13ax-mp 5 . . . . . . 7 ((-1 − (i · (√‘3))) / 2) ∈ ℂ
152, 11, 143pm3.2i 1336 . . . . . 6 (1 ∈ ℂ ∧ ((-1 + (i · (√‘3))) / 2) ∈ ℂ ∧ ((-1 − (i · (√‘3))) / 2) ∈ ℂ)
162elexi 3482 . . . . . . 7 1 ∈ V
17 ovex 7452 . . . . . . 7 ((-1 + (i · (√‘3))) / 2) ∈ V
18 ovex 7452 . . . . . . 7 ((-1 − (i · (√‘3))) / 2) ∈ V
1916, 17, 18tpss 4840 . . . . . 6 ((1 ∈ ℂ ∧ ((-1 + (i · (√‘3))) / 2) ∈ ℂ ∧ ((-1 − (i · (√‘3))) / 2) ∈ ℂ) ↔ {1, ((-1 + (i · (√‘3))) / 2), ((-1 − (i · (√‘3))) / 2)} ⊆ ℂ)
2015, 19mpbi 229 . . . . 5 {1, ((-1 + (i · (√‘3))) / 2), ((-1 − (i · (√‘3))) / 2)} ⊆ ℂ
211, 20eqsstri 4011 . . . 4 𝑅 ⊆ ℂ
2221sseli 3972 . . 3 (𝐴𝑅𝐴 ∈ ℂ)
2322pm4.71ri 559 . 2 (𝐴𝑅 ↔ (𝐴 ∈ ℂ ∧ 𝐴𝑅))
24 3nn 12324 . . . . 5 3 ∈ ℕ
25 cxpeq 26737 . . . . 5 ((𝐴 ∈ ℂ ∧ 3 ∈ ℕ ∧ 1 ∈ ℂ) → ((𝐴↑3) = 1 ↔ ∃𝑛 ∈ (0...(3 − 1))𝐴 = ((1↑𝑐(1 / 3)) · ((-1↑𝑐(2 / 3))↑𝑛))))
2624, 2, 25mp3an23 1449 . . . 4 (𝐴 ∈ ℂ → ((𝐴↑3) = 1 ↔ ∃𝑛 ∈ (0...(3 − 1))𝐴 = ((1↑𝑐(1 / 3)) · ((-1↑𝑐(2 / 3))↑𝑛))))
27 eltpg 4691 . . . . 5 (𝐴 ∈ ℂ → (𝐴 ∈ {1, ((-1 + (i · (√‘3))) / 2), ((-1 − (i · (√‘3))) / 2)} ↔ (𝐴 = 1 ∨ 𝐴 = ((-1 + (i · (√‘3))) / 2) ∨ 𝐴 = ((-1 − (i · (√‘3))) / 2))))
281eleq2i 2817 . . . . 5 (𝐴𝑅𝐴 ∈ {1, ((-1 + (i · (√‘3))) / 2), ((-1 − (i · (√‘3))) / 2)})
29 3m1e2 12373 . . . . . . . . . 10 (3 − 1) = 2
30 2cn 12320 . . . . . . . . . . 11 2 ∈ ℂ
3130addlidi 11434 . . . . . . . . . 10 (0 + 2) = 2
3229, 31eqtr4i 2756 . . . . . . . . 9 (3 − 1) = (0 + 2)
3332oveq2i 7430 . . . . . . . 8 (0...(3 − 1)) = (0...(0 + 2))
34 0z 12602 . . . . . . . . 9 0 ∈ ℤ
35 fztp 13592 . . . . . . . . 9 (0 ∈ ℤ → (0...(0 + 2)) = {0, (0 + 1), (0 + 2)})
3634, 35ax-mp 5 . . . . . . . 8 (0...(0 + 2)) = {0, (0 + 1), (0 + 2)}
3733, 36eqtri 2753 . . . . . . 7 (0...(3 − 1)) = {0, (0 + 1), (0 + 2)}
3837rexeqi 3313 . . . . . 6 (∃𝑛 ∈ (0...(3 − 1))𝐴 = ((1↑𝑐(1 / 3)) · ((-1↑𝑐(2 / 3))↑𝑛)) ↔ ∃𝑛 ∈ {0, (0 + 1), (0 + 2)}𝐴 = ((1↑𝑐(1 / 3)) · ((-1↑𝑐(2 / 3))↑𝑛)))
39 3ne0 12351 . . . . . . . . . . 11 3 ≠ 0
405, 39reccli 11977 . . . . . . . . . 10 (1 / 3) ∈ ℂ
41 1cxp 26651 . . . . . . . . . 10 ((1 / 3) ∈ ℂ → (1↑𝑐(1 / 3)) = 1)
4240, 41ax-mp 5 . . . . . . . . 9 (1↑𝑐(1 / 3)) = 1
4342oveq1i 7429 . . . . . . . 8 ((1↑𝑐(1 / 3)) · ((-1↑𝑐(2 / 3))↑𝑛)) = (1 · ((-1↑𝑐(2 / 3))↑𝑛))
4443eqeq2i 2738 . . . . . . 7 (𝐴 = ((1↑𝑐(1 / 3)) · ((-1↑𝑐(2 / 3))↑𝑛)) ↔ 𝐴 = (1 · ((-1↑𝑐(2 / 3))↑𝑛)))
4544rexbii 3083 . . . . . 6 (∃𝑛 ∈ {0, (0 + 1), (0 + 2)}𝐴 = ((1↑𝑐(1 / 3)) · ((-1↑𝑐(2 / 3))↑𝑛)) ↔ ∃𝑛 ∈ {0, (0 + 1), (0 + 2)}𝐴 = (1 · ((-1↑𝑐(2 / 3))↑𝑛)))
4634elexi 3482 . . . . . . 7 0 ∈ V
47 ovex 7452 . . . . . . 7 (0 + 1) ∈ V
48 ovex 7452 . . . . . . 7 (0 + 2) ∈ V
49 oveq2 7427 . . . . . . . . . . 11 (𝑛 = 0 → ((-1↑𝑐(2 / 3))↑𝑛) = ((-1↑𝑐(2 / 3))↑0))
5030, 5, 39divcli 11989 . . . . . . . . . . . . 13 (2 / 3) ∈ ℂ
51 cxpcl 26653 . . . . . . . . . . . . 13 ((-1 ∈ ℂ ∧ (2 / 3) ∈ ℂ) → (-1↑𝑐(2 / 3)) ∈ ℂ)
523, 50, 51mp2an 690 . . . . . . . . . . . 12 (-1↑𝑐(2 / 3)) ∈ ℂ
53 exp0 14066 . . . . . . . . . . . 12 ((-1↑𝑐(2 / 3)) ∈ ℂ → ((-1↑𝑐(2 / 3))↑0) = 1)
5452, 53ax-mp 5 . . . . . . . . . . 11 ((-1↑𝑐(2 / 3))↑0) = 1
5549, 54eqtrdi 2781 . . . . . . . . . 10 (𝑛 = 0 → ((-1↑𝑐(2 / 3))↑𝑛) = 1)
5655oveq2d 7435 . . . . . . . . 9 (𝑛 = 0 → (1 · ((-1↑𝑐(2 / 3))↑𝑛)) = (1 · 1))
57 1t1e1 12407 . . . . . . . . 9 (1 · 1) = 1
5856, 57eqtrdi 2781 . . . . . . . 8 (𝑛 = 0 → (1 · ((-1↑𝑐(2 / 3))↑𝑛)) = 1)
5958eqeq2d 2736 . . . . . . 7 (𝑛 = 0 → (𝐴 = (1 · ((-1↑𝑐(2 / 3))↑𝑛)) ↔ 𝐴 = 1))
60 id 22 . . . . . . . . . . . . 13 (𝑛 = (0 + 1) → 𝑛 = (0 + 1))
612addlidi 11434 . . . . . . . . . . . . 13 (0 + 1) = 1
6260, 61eqtrdi 2781 . . . . . . . . . . . 12 (𝑛 = (0 + 1) → 𝑛 = 1)
6362oveq2d 7435 . . . . . . . . . . 11 (𝑛 = (0 + 1) → ((-1↑𝑐(2 / 3))↑𝑛) = ((-1↑𝑐(2 / 3))↑1))
64 exp1 14068 . . . . . . . . . . . 12 ((-1↑𝑐(2 / 3)) ∈ ℂ → ((-1↑𝑐(2 / 3))↑1) = (-1↑𝑐(2 / 3)))
6552, 64ax-mp 5 . . . . . . . . . . 11 ((-1↑𝑐(2 / 3))↑1) = (-1↑𝑐(2 / 3))
6663, 65eqtrdi 2781 . . . . . . . . . 10 (𝑛 = (0 + 1) → ((-1↑𝑐(2 / 3))↑𝑛) = (-1↑𝑐(2 / 3)))
6766oveq2d 7435 . . . . . . . . 9 (𝑛 = (0 + 1) → (1 · ((-1↑𝑐(2 / 3))↑𝑛)) = (1 · (-1↑𝑐(2 / 3))))
6852mullidi 11251 . . . . . . . . . 10 (1 · (-1↑𝑐(2 / 3))) = (-1↑𝑐(2 / 3))
69 1cubrlem 26818 . . . . . . . . . . 11 ((-1↑𝑐(2 / 3)) = ((-1 + (i · (√‘3))) / 2) ∧ ((-1↑𝑐(2 / 3))↑2) = ((-1 − (i · (√‘3))) / 2))
7069simpli 482 . . . . . . . . . 10 (-1↑𝑐(2 / 3)) = ((-1 + (i · (√‘3))) / 2)
7168, 70eqtri 2753 . . . . . . . . 9 (1 · (-1↑𝑐(2 / 3))) = ((-1 + (i · (√‘3))) / 2)
7267, 71eqtrdi 2781 . . . . . . . 8 (𝑛 = (0 + 1) → (1 · ((-1↑𝑐(2 / 3))↑𝑛)) = ((-1 + (i · (√‘3))) / 2))
7372eqeq2d 2736 . . . . . . 7 (𝑛 = (0 + 1) → (𝐴 = (1 · ((-1↑𝑐(2 / 3))↑𝑛)) ↔ 𝐴 = ((-1 + (i · (√‘3))) / 2)))
74 id 22 . . . . . . . . . . . 12 (𝑛 = (0 + 2) → 𝑛 = (0 + 2))
7574, 31eqtrdi 2781 . . . . . . . . . . 11 (𝑛 = (0 + 2) → 𝑛 = 2)
7675oveq2d 7435 . . . . . . . . . 10 (𝑛 = (0 + 2) → ((-1↑𝑐(2 / 3))↑𝑛) = ((-1↑𝑐(2 / 3))↑2))
7776oveq2d 7435 . . . . . . . . 9 (𝑛 = (0 + 2) → (1 · ((-1↑𝑐(2 / 3))↑𝑛)) = (1 · ((-1↑𝑐(2 / 3))↑2)))
7852sqcli 14180 . . . . . . . . . . 11 ((-1↑𝑐(2 / 3))↑2) ∈ ℂ
7978mullidi 11251 . . . . . . . . . 10 (1 · ((-1↑𝑐(2 / 3))↑2)) = ((-1↑𝑐(2 / 3))↑2)
8069simpri 484 . . . . . . . . . 10 ((-1↑𝑐(2 / 3))↑2) = ((-1 − (i · (√‘3))) / 2)
8179, 80eqtri 2753 . . . . . . . . 9 (1 · ((-1↑𝑐(2 / 3))↑2)) = ((-1 − (i · (√‘3))) / 2)
8277, 81eqtrdi 2781 . . . . . . . 8 (𝑛 = (0 + 2) → (1 · ((-1↑𝑐(2 / 3))↑𝑛)) = ((-1 − (i · (√‘3))) / 2))
8382eqeq2d 2736 . . . . . . 7 (𝑛 = (0 + 2) → (𝐴 = (1 · ((-1↑𝑐(2 / 3))↑𝑛)) ↔ 𝐴 = ((-1 − (i · (√‘3))) / 2)))
8446, 47, 48, 59, 73, 83rextp 4712 . . . . . 6 (∃𝑛 ∈ {0, (0 + 1), (0 + 2)}𝐴 = (1 · ((-1↑𝑐(2 / 3))↑𝑛)) ↔ (𝐴 = 1 ∨ 𝐴 = ((-1 + (i · (√‘3))) / 2) ∨ 𝐴 = ((-1 − (i · (√‘3))) / 2)))
8538, 45, 843bitri 296 . . . . 5 (∃𝑛 ∈ (0...(3 − 1))𝐴 = ((1↑𝑐(1 / 3)) · ((-1↑𝑐(2 / 3))↑𝑛)) ↔ (𝐴 = 1 ∨ 𝐴 = ((-1 + (i · (√‘3))) / 2) ∨ 𝐴 = ((-1 − (i · (√‘3))) / 2)))
8627, 28, 853bitr4g 313 . . . 4 (𝐴 ∈ ℂ → (𝐴𝑅 ↔ ∃𝑛 ∈ (0...(3 − 1))𝐴 = ((1↑𝑐(1 / 3)) · ((-1↑𝑐(2 / 3))↑𝑛))))
8726, 86bitr4d 281 . . 3 (𝐴 ∈ ℂ → ((𝐴↑3) = 1 ↔ 𝐴𝑅))
8887pm5.32i 573 . 2 ((𝐴 ∈ ℂ ∧ (𝐴↑3) = 1) ↔ (𝐴 ∈ ℂ ∧ 𝐴𝑅))
8923, 88bitr4i 277 1 (𝐴𝑅 ↔ (𝐴 ∈ ℂ ∧ (𝐴↑3) = 1))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 394  w3o 1083  w3a 1084   = wceq 1533  wcel 2098  wrex 3059  wss 3944  {ctp 4634  cfv 6549  (class class class)co 7419  cc 11138  0cc0 11140  1c1 11141  ici 11142   + caddc 11143   · cmul 11145  cmin 11476  -cneg 11477   / cdiv 11903  cn 12245  2c2 12300  3c3 12301  cz 12591  ...cfz 13519  cexp 14062  csqrt 15216  𝑐ccxp 26534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-inf2 9666  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218  ax-addf 11219
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-om 7872  df-1st 7994  df-2nd 7995  df-supp 8166  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-er 8725  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9388  df-fi 9436  df-sup 9467  df-inf 9468  df-oi 9535  df-card 9964  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12506  df-z 12592  df-dec 12711  df-uz 12856  df-q 12966  df-rp 13010  df-xneg 13127  df-xadd 13128  df-xmul 13129  df-ioo 13363  df-ioc 13364  df-ico 13365  df-icc 13366  df-fz 13520  df-fzo 13663  df-fl 13793  df-mod 13871  df-seq 14003  df-exp 14063  df-fac 14269  df-bc 14298  df-hash 14326  df-shft 15050  df-cj 15082  df-re 15083  df-im 15084  df-sqrt 15218  df-abs 15219  df-limsup 15451  df-clim 15468  df-rlim 15469  df-sum 15669  df-ef 16047  df-sin 16049  df-cos 16050  df-pi 16052  df-struct 17119  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-mulr 17250  df-starv 17251  df-sca 17252  df-vsca 17253  df-ip 17254  df-tset 17255  df-ple 17256  df-ds 17258  df-unif 17259  df-hom 17260  df-cco 17261  df-rest 17407  df-topn 17408  df-0g 17426  df-gsum 17427  df-topgen 17428  df-pt 17429  df-prds 17432  df-xrs 17487  df-qtop 17492  df-imas 17493  df-xps 17495  df-mre 17569  df-mrc 17570  df-acs 17572  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-submnd 18744  df-mulg 19032  df-cntz 19280  df-cmn 19749  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-fbas 21293  df-fg 21294  df-cnfld 21297  df-top 22840  df-topon 22857  df-topsp 22879  df-bases 22893  df-cld 22967  df-ntr 22968  df-cls 22969  df-nei 23046  df-lp 23084  df-perf 23085  df-cn 23175  df-cnp 23176  df-haus 23263  df-tx 23510  df-hmeo 23703  df-fil 23794  df-fm 23886  df-flim 23887  df-flf 23888  df-xms 24270  df-ms 24271  df-tms 24272  df-cncf 24842  df-limc 25839  df-dv 25840  df-log 26535  df-cxp 26536
This theorem is referenced by:  cubic  26826
  Copyright terms: Public domain W3C validator