MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1cubr Structured version   Visualization version   GIF version

Theorem 1cubr 25897
Description: The cube roots of unity. (Contributed by Mario Carneiro, 23-Apr-2015.)
Hypothesis
Ref Expression
1cubr.r 𝑅 = {1, ((-1 + (i · (√‘3))) / 2), ((-1 − (i · (√‘3))) / 2)}
Assertion
Ref Expression
1cubr (𝐴𝑅 ↔ (𝐴 ∈ ℂ ∧ (𝐴↑3) = 1))

Proof of Theorem 1cubr
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 1cubr.r . . . . 5 𝑅 = {1, ((-1 + (i · (√‘3))) / 2), ((-1 − (i · (√‘3))) / 2)}
2 ax-1cn 10860 . . . . . . 7 1 ∈ ℂ
3 neg1cn 12017 . . . . . . . . 9 -1 ∈ ℂ
4 ax-icn 10861 . . . . . . . . . 10 i ∈ ℂ
5 3cn 11984 . . . . . . . . . . 11 3 ∈ ℂ
6 sqrtcl 15001 . . . . . . . . . . 11 (3 ∈ ℂ → (√‘3) ∈ ℂ)
75, 6ax-mp 5 . . . . . . . . . 10 (√‘3) ∈ ℂ
84, 7mulcli 10913 . . . . . . . . 9 (i · (√‘3)) ∈ ℂ
93, 8addcli 10912 . . . . . . . 8 (-1 + (i · (√‘3))) ∈ ℂ
10 halfcl 12128 . . . . . . . 8 ((-1 + (i · (√‘3))) ∈ ℂ → ((-1 + (i · (√‘3))) / 2) ∈ ℂ)
119, 10ax-mp 5 . . . . . . 7 ((-1 + (i · (√‘3))) / 2) ∈ ℂ
123, 8subcli 11227 . . . . . . . 8 (-1 − (i · (√‘3))) ∈ ℂ
13 halfcl 12128 . . . . . . . 8 ((-1 − (i · (√‘3))) ∈ ℂ → ((-1 − (i · (√‘3))) / 2) ∈ ℂ)
1412, 13ax-mp 5 . . . . . . 7 ((-1 − (i · (√‘3))) / 2) ∈ ℂ
152, 11, 143pm3.2i 1337 . . . . . 6 (1 ∈ ℂ ∧ ((-1 + (i · (√‘3))) / 2) ∈ ℂ ∧ ((-1 − (i · (√‘3))) / 2) ∈ ℂ)
162elexi 3441 . . . . . . 7 1 ∈ V
17 ovex 7288 . . . . . . 7 ((-1 + (i · (√‘3))) / 2) ∈ V
18 ovex 7288 . . . . . . 7 ((-1 − (i · (√‘3))) / 2) ∈ V
1916, 17, 18tpss 4765 . . . . . 6 ((1 ∈ ℂ ∧ ((-1 + (i · (√‘3))) / 2) ∈ ℂ ∧ ((-1 − (i · (√‘3))) / 2) ∈ ℂ) ↔ {1, ((-1 + (i · (√‘3))) / 2), ((-1 − (i · (√‘3))) / 2)} ⊆ ℂ)
2015, 19mpbi 229 . . . . 5 {1, ((-1 + (i · (√‘3))) / 2), ((-1 − (i · (√‘3))) / 2)} ⊆ ℂ
211, 20eqsstri 3951 . . . 4 𝑅 ⊆ ℂ
2221sseli 3913 . . 3 (𝐴𝑅𝐴 ∈ ℂ)
2322pm4.71ri 560 . 2 (𝐴𝑅 ↔ (𝐴 ∈ ℂ ∧ 𝐴𝑅))
24 3nn 11982 . . . . 5 3 ∈ ℕ
25 cxpeq 25815 . . . . 5 ((𝐴 ∈ ℂ ∧ 3 ∈ ℕ ∧ 1 ∈ ℂ) → ((𝐴↑3) = 1 ↔ ∃𝑛 ∈ (0...(3 − 1))𝐴 = ((1↑𝑐(1 / 3)) · ((-1↑𝑐(2 / 3))↑𝑛))))
2624, 2, 25mp3an23 1451 . . . 4 (𝐴 ∈ ℂ → ((𝐴↑3) = 1 ↔ ∃𝑛 ∈ (0...(3 − 1))𝐴 = ((1↑𝑐(1 / 3)) · ((-1↑𝑐(2 / 3))↑𝑛))))
27 eltpg 4618 . . . . 5 (𝐴 ∈ ℂ → (𝐴 ∈ {1, ((-1 + (i · (√‘3))) / 2), ((-1 − (i · (√‘3))) / 2)} ↔ (𝐴 = 1 ∨ 𝐴 = ((-1 + (i · (√‘3))) / 2) ∨ 𝐴 = ((-1 − (i · (√‘3))) / 2))))
281eleq2i 2830 . . . . 5 (𝐴𝑅𝐴 ∈ {1, ((-1 + (i · (√‘3))) / 2), ((-1 − (i · (√‘3))) / 2)})
29 3m1e2 12031 . . . . . . . . . 10 (3 − 1) = 2
30 2cn 11978 . . . . . . . . . . 11 2 ∈ ℂ
3130addid2i 11093 . . . . . . . . . 10 (0 + 2) = 2
3229, 31eqtr4i 2769 . . . . . . . . 9 (3 − 1) = (0 + 2)
3332oveq2i 7266 . . . . . . . 8 (0...(3 − 1)) = (0...(0 + 2))
34 0z 12260 . . . . . . . . 9 0 ∈ ℤ
35 fztp 13241 . . . . . . . . 9 (0 ∈ ℤ → (0...(0 + 2)) = {0, (0 + 1), (0 + 2)})
3634, 35ax-mp 5 . . . . . . . 8 (0...(0 + 2)) = {0, (0 + 1), (0 + 2)}
3733, 36eqtri 2766 . . . . . . 7 (0...(3 − 1)) = {0, (0 + 1), (0 + 2)}
3837rexeqi 3338 . . . . . 6 (∃𝑛 ∈ (0...(3 − 1))𝐴 = ((1↑𝑐(1 / 3)) · ((-1↑𝑐(2 / 3))↑𝑛)) ↔ ∃𝑛 ∈ {0, (0 + 1), (0 + 2)}𝐴 = ((1↑𝑐(1 / 3)) · ((-1↑𝑐(2 / 3))↑𝑛)))
39 3ne0 12009 . . . . . . . . . . 11 3 ≠ 0
405, 39reccli 11635 . . . . . . . . . 10 (1 / 3) ∈ ℂ
41 1cxp 25732 . . . . . . . . . 10 ((1 / 3) ∈ ℂ → (1↑𝑐(1 / 3)) = 1)
4240, 41ax-mp 5 . . . . . . . . 9 (1↑𝑐(1 / 3)) = 1
4342oveq1i 7265 . . . . . . . 8 ((1↑𝑐(1 / 3)) · ((-1↑𝑐(2 / 3))↑𝑛)) = (1 · ((-1↑𝑐(2 / 3))↑𝑛))
4443eqeq2i 2751 . . . . . . 7 (𝐴 = ((1↑𝑐(1 / 3)) · ((-1↑𝑐(2 / 3))↑𝑛)) ↔ 𝐴 = (1 · ((-1↑𝑐(2 / 3))↑𝑛)))
4544rexbii 3177 . . . . . 6 (∃𝑛 ∈ {0, (0 + 1), (0 + 2)}𝐴 = ((1↑𝑐(1 / 3)) · ((-1↑𝑐(2 / 3))↑𝑛)) ↔ ∃𝑛 ∈ {0, (0 + 1), (0 + 2)}𝐴 = (1 · ((-1↑𝑐(2 / 3))↑𝑛)))
4634elexi 3441 . . . . . . 7 0 ∈ V
47 ovex 7288 . . . . . . 7 (0 + 1) ∈ V
48 ovex 7288 . . . . . . 7 (0 + 2) ∈ V
49 oveq2 7263 . . . . . . . . . . 11 (𝑛 = 0 → ((-1↑𝑐(2 / 3))↑𝑛) = ((-1↑𝑐(2 / 3))↑0))
5030, 5, 39divcli 11647 . . . . . . . . . . . . 13 (2 / 3) ∈ ℂ
51 cxpcl 25734 . . . . . . . . . . . . 13 ((-1 ∈ ℂ ∧ (2 / 3) ∈ ℂ) → (-1↑𝑐(2 / 3)) ∈ ℂ)
523, 50, 51mp2an 688 . . . . . . . . . . . 12 (-1↑𝑐(2 / 3)) ∈ ℂ
53 exp0 13714 . . . . . . . . . . . 12 ((-1↑𝑐(2 / 3)) ∈ ℂ → ((-1↑𝑐(2 / 3))↑0) = 1)
5452, 53ax-mp 5 . . . . . . . . . . 11 ((-1↑𝑐(2 / 3))↑0) = 1
5549, 54eqtrdi 2795 . . . . . . . . . 10 (𝑛 = 0 → ((-1↑𝑐(2 / 3))↑𝑛) = 1)
5655oveq2d 7271 . . . . . . . . 9 (𝑛 = 0 → (1 · ((-1↑𝑐(2 / 3))↑𝑛)) = (1 · 1))
57 1t1e1 12065 . . . . . . . . 9 (1 · 1) = 1
5856, 57eqtrdi 2795 . . . . . . . 8 (𝑛 = 0 → (1 · ((-1↑𝑐(2 / 3))↑𝑛)) = 1)
5958eqeq2d 2749 . . . . . . 7 (𝑛 = 0 → (𝐴 = (1 · ((-1↑𝑐(2 / 3))↑𝑛)) ↔ 𝐴 = 1))
60 id 22 . . . . . . . . . . . . 13 (𝑛 = (0 + 1) → 𝑛 = (0 + 1))
612addid2i 11093 . . . . . . . . . . . . 13 (0 + 1) = 1
6260, 61eqtrdi 2795 . . . . . . . . . . . 12 (𝑛 = (0 + 1) → 𝑛 = 1)
6362oveq2d 7271 . . . . . . . . . . 11 (𝑛 = (0 + 1) → ((-1↑𝑐(2 / 3))↑𝑛) = ((-1↑𝑐(2 / 3))↑1))
64 exp1 13716 . . . . . . . . . . . 12 ((-1↑𝑐(2 / 3)) ∈ ℂ → ((-1↑𝑐(2 / 3))↑1) = (-1↑𝑐(2 / 3)))
6552, 64ax-mp 5 . . . . . . . . . . 11 ((-1↑𝑐(2 / 3))↑1) = (-1↑𝑐(2 / 3))
6663, 65eqtrdi 2795 . . . . . . . . . 10 (𝑛 = (0 + 1) → ((-1↑𝑐(2 / 3))↑𝑛) = (-1↑𝑐(2 / 3)))
6766oveq2d 7271 . . . . . . . . 9 (𝑛 = (0 + 1) → (1 · ((-1↑𝑐(2 / 3))↑𝑛)) = (1 · (-1↑𝑐(2 / 3))))
6852mulid2i 10911 . . . . . . . . . 10 (1 · (-1↑𝑐(2 / 3))) = (-1↑𝑐(2 / 3))
69 1cubrlem 25896 . . . . . . . . . . 11 ((-1↑𝑐(2 / 3)) = ((-1 + (i · (√‘3))) / 2) ∧ ((-1↑𝑐(2 / 3))↑2) = ((-1 − (i · (√‘3))) / 2))
7069simpli 483 . . . . . . . . . 10 (-1↑𝑐(2 / 3)) = ((-1 + (i · (√‘3))) / 2)
7168, 70eqtri 2766 . . . . . . . . 9 (1 · (-1↑𝑐(2 / 3))) = ((-1 + (i · (√‘3))) / 2)
7267, 71eqtrdi 2795 . . . . . . . 8 (𝑛 = (0 + 1) → (1 · ((-1↑𝑐(2 / 3))↑𝑛)) = ((-1 + (i · (√‘3))) / 2))
7372eqeq2d 2749 . . . . . . 7 (𝑛 = (0 + 1) → (𝐴 = (1 · ((-1↑𝑐(2 / 3))↑𝑛)) ↔ 𝐴 = ((-1 + (i · (√‘3))) / 2)))
74 id 22 . . . . . . . . . . . 12 (𝑛 = (0 + 2) → 𝑛 = (0 + 2))
7574, 31eqtrdi 2795 . . . . . . . . . . 11 (𝑛 = (0 + 2) → 𝑛 = 2)
7675oveq2d 7271 . . . . . . . . . 10 (𝑛 = (0 + 2) → ((-1↑𝑐(2 / 3))↑𝑛) = ((-1↑𝑐(2 / 3))↑2))
7776oveq2d 7271 . . . . . . . . 9 (𝑛 = (0 + 2) → (1 · ((-1↑𝑐(2 / 3))↑𝑛)) = (1 · ((-1↑𝑐(2 / 3))↑2)))
7852sqcli 13826 . . . . . . . . . . 11 ((-1↑𝑐(2 / 3))↑2) ∈ ℂ
7978mulid2i 10911 . . . . . . . . . 10 (1 · ((-1↑𝑐(2 / 3))↑2)) = ((-1↑𝑐(2 / 3))↑2)
8069simpri 485 . . . . . . . . . 10 ((-1↑𝑐(2 / 3))↑2) = ((-1 − (i · (√‘3))) / 2)
8179, 80eqtri 2766 . . . . . . . . 9 (1 · ((-1↑𝑐(2 / 3))↑2)) = ((-1 − (i · (√‘3))) / 2)
8277, 81eqtrdi 2795 . . . . . . . 8 (𝑛 = (0 + 2) → (1 · ((-1↑𝑐(2 / 3))↑𝑛)) = ((-1 − (i · (√‘3))) / 2))
8382eqeq2d 2749 . . . . . . 7 (𝑛 = (0 + 2) → (𝐴 = (1 · ((-1↑𝑐(2 / 3))↑𝑛)) ↔ 𝐴 = ((-1 − (i · (√‘3))) / 2)))
8446, 47, 48, 59, 73, 83rextp 4639 . . . . . 6 (∃𝑛 ∈ {0, (0 + 1), (0 + 2)}𝐴 = (1 · ((-1↑𝑐(2 / 3))↑𝑛)) ↔ (𝐴 = 1 ∨ 𝐴 = ((-1 + (i · (√‘3))) / 2) ∨ 𝐴 = ((-1 − (i · (√‘3))) / 2)))
8538, 45, 843bitri 296 . . . . 5 (∃𝑛 ∈ (0...(3 − 1))𝐴 = ((1↑𝑐(1 / 3)) · ((-1↑𝑐(2 / 3))↑𝑛)) ↔ (𝐴 = 1 ∨ 𝐴 = ((-1 + (i · (√‘3))) / 2) ∨ 𝐴 = ((-1 − (i · (√‘3))) / 2)))
8627, 28, 853bitr4g 313 . . . 4 (𝐴 ∈ ℂ → (𝐴𝑅 ↔ ∃𝑛 ∈ (0...(3 − 1))𝐴 = ((1↑𝑐(1 / 3)) · ((-1↑𝑐(2 / 3))↑𝑛))))
8726, 86bitr4d 281 . . 3 (𝐴 ∈ ℂ → ((𝐴↑3) = 1 ↔ 𝐴𝑅))
8887pm5.32i 574 . 2 ((𝐴 ∈ ℂ ∧ (𝐴↑3) = 1) ↔ (𝐴 ∈ ℂ ∧ 𝐴𝑅))
8923, 88bitr4i 277 1 (𝐴𝑅 ↔ (𝐴 ∈ ℂ ∧ (𝐴↑3) = 1))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  w3o 1084  w3a 1085   = wceq 1539  wcel 2108  wrex 3064  wss 3883  {ctp 4562  cfv 6418  (class class class)co 7255  cc 10800  0cc0 10802  1c1 10803  ici 10804   + caddc 10805   · cmul 10807  cmin 11135  -cneg 11136   / cdiv 11562  cn 11903  2c2 11958  3c3 11959  cz 12249  ...cfz 13168  cexp 13710  csqrt 14872  𝑐ccxp 25616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-ef 15705  df-sin 15707  df-cos 15708  df-pi 15710  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-limc 24935  df-dv 24936  df-log 25617  df-cxp 25618
This theorem is referenced by:  cubic  25904
  Copyright terms: Public domain W3C validator