Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rabren3dioph Structured version   Visualization version   GIF version

Theorem rabren3dioph 42838
Description: Change variable numbers in a 3-variable Diophantine class abstraction. (Contributed by Stefan O'Rear, 17-Oct-2014.)
Hypotheses
Ref Expression
rabren3dioph.a (((𝑎‘1) = (𝑏𝑋) ∧ (𝑎‘2) = (𝑏𝑌) ∧ (𝑎‘3) = (𝑏𝑍)) → (𝜑𝜓))
rabren3dioph.b 𝑋 ∈ (1...𝑁)
rabren3dioph.c 𝑌 ∈ (1...𝑁)
rabren3dioph.d 𝑍 ∈ (1...𝑁)
Assertion
Ref Expression
rabren3dioph ((𝑁 ∈ ℕ0 ∧ {𝑎 ∈ (ℕ0m (1...3)) ∣ 𝜑} ∈ (Dioph‘3)) → {𝑏 ∈ (ℕ0m (1...𝑁)) ∣ 𝜓} ∈ (Dioph‘𝑁))
Distinct variable groups:   𝜓,𝑎   𝜑,𝑏   𝑋,𝑎,𝑏   𝑌,𝑎,𝑏   𝑍,𝑎,𝑏   𝑁,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑎)   𝜓(𝑏)

Proof of Theorem rabren3dioph
StepHypRef Expression
1 vex 3463 . . . . 5 𝑏 ∈ V
2 tpex 7740 . . . . 5 {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩} ∈ V
31, 2coex 7926 . . . 4 (𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}) ∈ V
4 1ne2 12448 . . . . . . . . . 10 1 ≠ 2
5 1re 11235 . . . . . . . . . . 11 1 ∈ ℝ
6 1lt3 12413 . . . . . . . . . . 11 1 < 3
75, 6ltneii 11348 . . . . . . . . . 10 1 ≠ 3
8 2re 12314 . . . . . . . . . . 11 2 ∈ ℝ
9 2lt3 12412 . . . . . . . . . . 11 2 < 3
108, 9ltneii 11348 . . . . . . . . . 10 2 ≠ 3
11 1ex 11231 . . . . . . . . . . 11 1 ∈ V
12 2ex 12317 . . . . . . . . . . 11 2 ∈ V
13 3ex 12322 . . . . . . . . . . 11 3 ∈ V
14 rabren3dioph.b . . . . . . . . . . . 12 𝑋 ∈ (1...𝑁)
1514elexi 3482 . . . . . . . . . . 11 𝑋 ∈ V
16 rabren3dioph.c . . . . . . . . . . . 12 𝑌 ∈ (1...𝑁)
1716elexi 3482 . . . . . . . . . . 11 𝑌 ∈ V
18 rabren3dioph.d . . . . . . . . . . . 12 𝑍 ∈ (1...𝑁)
1918elexi 3482 . . . . . . . . . . 11 𝑍 ∈ V
2011, 12, 13, 15, 17, 19fntp 6597 . . . . . . . . . 10 ((1 ≠ 2 ∧ 1 ≠ 3 ∧ 2 ≠ 3) → {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩} Fn {1, 2, 3})
214, 7, 10, 20mp3an 1463 . . . . . . . . 9 {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩} Fn {1, 2, 3}
2211tpid1 4744 . . . . . . . . 9 1 ∈ {1, 2, 3}
23 fvco2 6976 . . . . . . . . 9 (({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩} Fn {1, 2, 3} ∧ 1 ∈ {1, 2, 3}) → ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘1) = (𝑏‘({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}‘1)))
2421, 22, 23mp2an 692 . . . . . . . 8 ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘1) = (𝑏‘({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}‘1))
2511, 15fvtp1 7187 . . . . . . . . . 10 ((1 ≠ 2 ∧ 1 ≠ 3) → ({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}‘1) = 𝑋)
264, 7, 25mp2an 692 . . . . . . . . 9 ({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}‘1) = 𝑋
2726fveq2i 6879 . . . . . . . 8 (𝑏‘({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}‘1)) = (𝑏𝑋)
2824, 27eqtri 2758 . . . . . . 7 ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘1) = (𝑏𝑋)
2912tpid2 4746 . . . . . . . . 9 2 ∈ {1, 2, 3}
30 fvco2 6976 . . . . . . . . 9 (({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩} Fn {1, 2, 3} ∧ 2 ∈ {1, 2, 3}) → ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘2) = (𝑏‘({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}‘2)))
3121, 29, 30mp2an 692 . . . . . . . 8 ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘2) = (𝑏‘({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}‘2))
3212, 17fvtp2 7188 . . . . . . . . . 10 ((1 ≠ 2 ∧ 2 ≠ 3) → ({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}‘2) = 𝑌)
334, 10, 32mp2an 692 . . . . . . . . 9 ({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}‘2) = 𝑌
3433fveq2i 6879 . . . . . . . 8 (𝑏‘({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}‘2)) = (𝑏𝑌)
3531, 34eqtri 2758 . . . . . . 7 ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘2) = (𝑏𝑌)
3613tpid3 4749 . . . . . . . . 9 3 ∈ {1, 2, 3}
37 fvco2 6976 . . . . . . . . 9 (({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩} Fn {1, 2, 3} ∧ 3 ∈ {1, 2, 3}) → ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘3) = (𝑏‘({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}‘3)))
3821, 36, 37mp2an 692 . . . . . . . 8 ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘3) = (𝑏‘({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}‘3))
3913, 19fvtp3 7189 . . . . . . . . . 10 ((1 ≠ 3 ∧ 2 ≠ 3) → ({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}‘3) = 𝑍)
407, 10, 39mp2an 692 . . . . . . . . 9 ({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}‘3) = 𝑍
4140fveq2i 6879 . . . . . . . 8 (𝑏‘({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}‘3)) = (𝑏𝑍)
4238, 41eqtri 2758 . . . . . . 7 ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘3) = (𝑏𝑍)
4328, 35, 423pm3.2i 1340 . . . . . 6 (((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘1) = (𝑏𝑋) ∧ ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘2) = (𝑏𝑌) ∧ ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘3) = (𝑏𝑍))
44 fveq1 6875 . . . . . . . 8 (𝑎 = (𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}) → (𝑎‘1) = ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘1))
4544eqeq1d 2737 . . . . . . 7 (𝑎 = (𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}) → ((𝑎‘1) = (𝑏𝑋) ↔ ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘1) = (𝑏𝑋)))
46 fveq1 6875 . . . . . . . 8 (𝑎 = (𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}) → (𝑎‘2) = ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘2))
4746eqeq1d 2737 . . . . . . 7 (𝑎 = (𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}) → ((𝑎‘2) = (𝑏𝑌) ↔ ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘2) = (𝑏𝑌)))
48 fveq1 6875 . . . . . . . 8 (𝑎 = (𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}) → (𝑎‘3) = ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘3))
4948eqeq1d 2737 . . . . . . 7 (𝑎 = (𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}) → ((𝑎‘3) = (𝑏𝑍) ↔ ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘3) = (𝑏𝑍)))
5045, 47, 493anbi123d 1438 . . . . . 6 (𝑎 = (𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}) → (((𝑎‘1) = (𝑏𝑋) ∧ (𝑎‘2) = (𝑏𝑌) ∧ (𝑎‘3) = (𝑏𝑍)) ↔ (((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘1) = (𝑏𝑋) ∧ ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘2) = (𝑏𝑌) ∧ ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘3) = (𝑏𝑍))))
5143, 50mpbiri 258 . . . . 5 (𝑎 = (𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}) → ((𝑎‘1) = (𝑏𝑋) ∧ (𝑎‘2) = (𝑏𝑌) ∧ (𝑎‘3) = (𝑏𝑍)))
52 rabren3dioph.a . . . . 5 (((𝑎‘1) = (𝑏𝑋) ∧ (𝑎‘2) = (𝑏𝑌) ∧ (𝑎‘3) = (𝑏𝑍)) → (𝜑𝜓))
5351, 52syl 17 . . . 4 (𝑎 = (𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}) → (𝜑𝜓))
543, 53sbcie 3807 . . 3 ([(𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}) / 𝑎]𝜑𝜓)
5554rabbii 3421 . 2 {𝑏 ∈ (ℕ0m (1...𝑁)) ∣ [(𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}) / 𝑎]𝜑} = {𝑏 ∈ (ℕ0m (1...𝑁)) ∣ 𝜓}
5611, 12, 13, 15, 17, 19, 4, 7, 10ftp 7147 . . . . 5 {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}:{1, 2, 3}⟶{𝑋, 𝑌, 𝑍}
57 1z 12622 . . . . . . . 8 1 ∈ ℤ
58 fztp 13597 . . . . . . . 8 (1 ∈ ℤ → (1...(1 + 2)) = {1, (1 + 1), (1 + 2)})
5957, 58ax-mp 5 . . . . . . 7 (1...(1 + 2)) = {1, (1 + 1), (1 + 2)}
60 1p2e3 12383 . . . . . . . 8 (1 + 2) = 3
6160oveq2i 7416 . . . . . . 7 (1...(1 + 2)) = (1...3)
62 eqidd 2736 . . . . . . . . 9 (1 ∈ ℤ → 1 = 1)
63 1p1e2 12365 . . . . . . . . . 10 (1 + 1) = 2
6463a1i 11 . . . . . . . . 9 (1 ∈ ℤ → (1 + 1) = 2)
6560a1i 11 . . . . . . . . 9 (1 ∈ ℤ → (1 + 2) = 3)
6662, 64, 65tpeq123d 4724 . . . . . . . 8 (1 ∈ ℤ → {1, (1 + 1), (1 + 2)} = {1, 2, 3})
6757, 66ax-mp 5 . . . . . . 7 {1, (1 + 1), (1 + 2)} = {1, 2, 3}
6859, 61, 673eqtr3i 2766 . . . . . 6 (1...3) = {1, 2, 3}
6968feq2i 6698 . . . . 5 ({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}:(1...3)⟶{𝑋, 𝑌, 𝑍} ↔ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}:{1, 2, 3}⟶{𝑋, 𝑌, 𝑍})
7056, 69mpbir 231 . . . 4 {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}:(1...3)⟶{𝑋, 𝑌, 𝑍}
7114, 16, 183pm3.2i 1340 . . . . 5 (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑍 ∈ (1...𝑁))
7215, 17, 19tpss 4813 . . . . 5 ((𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑍 ∈ (1...𝑁)) ↔ {𝑋, 𝑌, 𝑍} ⊆ (1...𝑁))
7371, 72mpbi 230 . . . 4 {𝑋, 𝑌, 𝑍} ⊆ (1...𝑁)
74 fss 6722 . . . 4 (({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}:(1...3)⟶{𝑋, 𝑌, 𝑍} ∧ {𝑋, 𝑌, 𝑍} ⊆ (1...𝑁)) → {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}:(1...3)⟶(1...𝑁))
7570, 73, 74mp2an 692 . . 3 {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}:(1...3)⟶(1...𝑁)
76 rabrenfdioph 42837 . . 3 ((𝑁 ∈ ℕ0 ∧ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}:(1...3)⟶(1...𝑁) ∧ {𝑎 ∈ (ℕ0m (1...3)) ∣ 𝜑} ∈ (Dioph‘3)) → {𝑏 ∈ (ℕ0m (1...𝑁)) ∣ [(𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}) / 𝑎]𝜑} ∈ (Dioph‘𝑁))
7775, 76mp3an2 1451 . 2 ((𝑁 ∈ ℕ0 ∧ {𝑎 ∈ (ℕ0m (1...3)) ∣ 𝜑} ∈ (Dioph‘3)) → {𝑏 ∈ (ℕ0m (1...𝑁)) ∣ [(𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}) / 𝑎]𝜑} ∈ (Dioph‘𝑁))
7855, 77eqeltrrid 2839 1 ((𝑁 ∈ ℕ0 ∧ {𝑎 ∈ (ℕ0m (1...3)) ∣ 𝜑} ∈ (Dioph‘3)) → {𝑏 ∈ (ℕ0m (1...𝑁)) ∣ 𝜓} ∈ (Dioph‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  {crab 3415  [wsbc 3765  wss 3926  {ctp 4605  cop 4607  ccom 5658   Fn wfn 6526  wf 6527  cfv 6531  (class class class)co 7405  m cmap 8840  1c1 11130   + caddc 11132  2c2 12295  3c3 12296  0cn0 12501  cz 12588  ...cfz 13524  Diophcdioph 42778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-oadd 8484  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-dju 9915  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-hash 14349  df-mzpcl 42746  df-mzp 42747  df-dioph 42779
This theorem is referenced by:  rmxdioph  43040  expdiophlem2  43046
  Copyright terms: Public domain W3C validator