Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rabren3dioph Structured version   Visualization version   GIF version

Theorem rabren3dioph 38753
Description: Change variable numbers in a 3-variable Diophantine class abstraction. (Contributed by Stefan O'Rear, 17-Oct-2014.)
Hypotheses
Ref Expression
rabren3dioph.a (((𝑎‘1) = (𝑏𝑋) ∧ (𝑎‘2) = (𝑏𝑌) ∧ (𝑎‘3) = (𝑏𝑍)) → (𝜑𝜓))
rabren3dioph.b 𝑋 ∈ (1...𝑁)
rabren3dioph.c 𝑌 ∈ (1...𝑁)
rabren3dioph.d 𝑍 ∈ (1...𝑁)
Assertion
Ref Expression
rabren3dioph ((𝑁 ∈ ℕ0 ∧ {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ 𝜑} ∈ (Dioph‘3)) → {𝑏 ∈ (ℕ0𝑚 (1...𝑁)) ∣ 𝜓} ∈ (Dioph‘𝑁))
Distinct variable groups:   𝜓,𝑎   𝜑,𝑏   𝑋,𝑎,𝑏   𝑌,𝑎,𝑏   𝑍,𝑎,𝑏   𝑁,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑎)   𝜓(𝑏)

Proof of Theorem rabren3dioph
StepHypRef Expression
1 vex 3412 . . . . 5 𝑏 ∈ V
2 tpex 7281 . . . . 5 {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩} ∈ V
31, 2coex 7444 . . . 4 (𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}) ∈ V
4 1ne2 11648 . . . . . . . . . 10 1 ≠ 2
5 1re 10431 . . . . . . . . . . 11 1 ∈ ℝ
6 1lt3 11613 . . . . . . . . . . 11 1 < 3
75, 6ltneii 10545 . . . . . . . . . 10 1 ≠ 3
8 2re 11507 . . . . . . . . . . 11 2 ∈ ℝ
9 2lt3 11612 . . . . . . . . . . 11 2 < 3
108, 9ltneii 10545 . . . . . . . . . 10 2 ≠ 3
11 1ex 10427 . . . . . . . . . . 11 1 ∈ V
12 2ex 11510 . . . . . . . . . . 11 2 ∈ V
13 3ex 11516 . . . . . . . . . . 11 3 ∈ V
14 rabren3dioph.b . . . . . . . . . . . 12 𝑋 ∈ (1...𝑁)
1514elexi 3428 . . . . . . . . . . 11 𝑋 ∈ V
16 rabren3dioph.c . . . . . . . . . . . 12 𝑌 ∈ (1...𝑁)
1716elexi 3428 . . . . . . . . . . 11 𝑌 ∈ V
18 rabren3dioph.d . . . . . . . . . . . 12 𝑍 ∈ (1...𝑁)
1918elexi 3428 . . . . . . . . . . 11 𝑍 ∈ V
2011, 12, 13, 15, 17, 19fntp 6242 . . . . . . . . . 10 ((1 ≠ 2 ∧ 1 ≠ 3 ∧ 2 ≠ 3) → {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩} Fn {1, 2, 3})
214, 7, 10, 20mp3an 1440 . . . . . . . . 9 {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩} Fn {1, 2, 3}
2211tpid1 4572 . . . . . . . . 9 1 ∈ {1, 2, 3}
23 fvco2 6580 . . . . . . . . 9 (({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩} Fn {1, 2, 3} ∧ 1 ∈ {1, 2, 3}) → ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘1) = (𝑏‘({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}‘1)))
2421, 22, 23mp2an 679 . . . . . . . 8 ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘1) = (𝑏‘({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}‘1))
2511, 15fvtp1 6778 . . . . . . . . . 10 ((1 ≠ 2 ∧ 1 ≠ 3) → ({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}‘1) = 𝑋)
264, 7, 25mp2an 679 . . . . . . . . 9 ({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}‘1) = 𝑋
2726fveq2i 6496 . . . . . . . 8 (𝑏‘({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}‘1)) = (𝑏𝑋)
2824, 27eqtri 2796 . . . . . . 7 ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘1) = (𝑏𝑋)
2912tpid2 4574 . . . . . . . . 9 2 ∈ {1, 2, 3}
30 fvco2 6580 . . . . . . . . 9 (({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩} Fn {1, 2, 3} ∧ 2 ∈ {1, 2, 3}) → ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘2) = (𝑏‘({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}‘2)))
3121, 29, 30mp2an 679 . . . . . . . 8 ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘2) = (𝑏‘({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}‘2))
3212, 17fvtp2 6779 . . . . . . . . . 10 ((1 ≠ 2 ∧ 2 ≠ 3) → ({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}‘2) = 𝑌)
334, 10, 32mp2an 679 . . . . . . . . 9 ({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}‘2) = 𝑌
3433fveq2i 6496 . . . . . . . 8 (𝑏‘({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}‘2)) = (𝑏𝑌)
3531, 34eqtri 2796 . . . . . . 7 ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘2) = (𝑏𝑌)
3613tpid3 4577 . . . . . . . . 9 3 ∈ {1, 2, 3}
37 fvco2 6580 . . . . . . . . 9 (({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩} Fn {1, 2, 3} ∧ 3 ∈ {1, 2, 3}) → ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘3) = (𝑏‘({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}‘3)))
3821, 36, 37mp2an 679 . . . . . . . 8 ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘3) = (𝑏‘({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}‘3))
3913, 19fvtp3 6780 . . . . . . . . . 10 ((1 ≠ 3 ∧ 2 ≠ 3) → ({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}‘3) = 𝑍)
407, 10, 39mp2an 679 . . . . . . . . 9 ({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}‘3) = 𝑍
4140fveq2i 6496 . . . . . . . 8 (𝑏‘({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}‘3)) = (𝑏𝑍)
4238, 41eqtri 2796 . . . . . . 7 ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘3) = (𝑏𝑍)
4328, 35, 423pm3.2i 1319 . . . . . 6 (((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘1) = (𝑏𝑋) ∧ ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘2) = (𝑏𝑌) ∧ ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘3) = (𝑏𝑍))
44 fveq1 6492 . . . . . . . 8 (𝑎 = (𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}) → (𝑎‘1) = ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘1))
4544eqeq1d 2774 . . . . . . 7 (𝑎 = (𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}) → ((𝑎‘1) = (𝑏𝑋) ↔ ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘1) = (𝑏𝑋)))
46 fveq1 6492 . . . . . . . 8 (𝑎 = (𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}) → (𝑎‘2) = ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘2))
4746eqeq1d 2774 . . . . . . 7 (𝑎 = (𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}) → ((𝑎‘2) = (𝑏𝑌) ↔ ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘2) = (𝑏𝑌)))
48 fveq1 6492 . . . . . . . 8 (𝑎 = (𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}) → (𝑎‘3) = ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘3))
4948eqeq1d 2774 . . . . . . 7 (𝑎 = (𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}) → ((𝑎‘3) = (𝑏𝑍) ↔ ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘3) = (𝑏𝑍)))
5045, 47, 493anbi123d 1415 . . . . . 6 (𝑎 = (𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}) → (((𝑎‘1) = (𝑏𝑋) ∧ (𝑎‘2) = (𝑏𝑌) ∧ (𝑎‘3) = (𝑏𝑍)) ↔ (((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘1) = (𝑏𝑋) ∧ ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘2) = (𝑏𝑌) ∧ ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘3) = (𝑏𝑍))))
5143, 50mpbiri 250 . . . . 5 (𝑎 = (𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}) → ((𝑎‘1) = (𝑏𝑋) ∧ (𝑎‘2) = (𝑏𝑌) ∧ (𝑎‘3) = (𝑏𝑍)))
52 rabren3dioph.a . . . . 5 (((𝑎‘1) = (𝑏𝑋) ∧ (𝑎‘2) = (𝑏𝑌) ∧ (𝑎‘3) = (𝑏𝑍)) → (𝜑𝜓))
5351, 52syl 17 . . . 4 (𝑎 = (𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}) → (𝜑𝜓))
543, 53sbcie 3712 . . 3 ([(𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}) / 𝑎]𝜑𝜓)
5554rabbii 3393 . 2 {𝑏 ∈ (ℕ0𝑚 (1...𝑁)) ∣ [(𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}) / 𝑎]𝜑} = {𝑏 ∈ (ℕ0𝑚 (1...𝑁)) ∣ 𝜓}
5611, 12, 13, 15, 17, 19, 4, 7, 10ftp 6736 . . . . 5 {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}:{1, 2, 3}⟶{𝑋, 𝑌, 𝑍}
57 1z 11818 . . . . . . . 8 1 ∈ ℤ
58 fztp 12772 . . . . . . . 8 (1 ∈ ℤ → (1...(1 + 2)) = {1, (1 + 1), (1 + 2)})
5957, 58ax-mp 5 . . . . . . 7 (1...(1 + 2)) = {1, (1 + 1), (1 + 2)}
60 1p2e3 11583 . . . . . . . 8 (1 + 2) = 3
6160oveq2i 6981 . . . . . . 7 (1...(1 + 2)) = (1...3)
62 eqidd 2773 . . . . . . . . 9 (1 ∈ ℤ → 1 = 1)
63 1p1e2 11565 . . . . . . . . . 10 (1 + 1) = 2
6463a1i 11 . . . . . . . . 9 (1 ∈ ℤ → (1 + 1) = 2)
6560a1i 11 . . . . . . . . 9 (1 ∈ ℤ → (1 + 2) = 3)
6662, 64, 65tpeq123d 4552 . . . . . . . 8 (1 ∈ ℤ → {1, (1 + 1), (1 + 2)} = {1, 2, 3})
6757, 66ax-mp 5 . . . . . . 7 {1, (1 + 1), (1 + 2)} = {1, 2, 3}
6859, 61, 673eqtr3i 2804 . . . . . 6 (1...3) = {1, 2, 3}
6968feq2i 6330 . . . . 5 ({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}:(1...3)⟶{𝑋, 𝑌, 𝑍} ↔ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}:{1, 2, 3}⟶{𝑋, 𝑌, 𝑍})
7056, 69mpbir 223 . . . 4 {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}:(1...3)⟶{𝑋, 𝑌, 𝑍}
7114, 16, 183pm3.2i 1319 . . . . 5 (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑍 ∈ (1...𝑁))
7215, 17, 19tpss 4636 . . . . 5 ((𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑍 ∈ (1...𝑁)) ↔ {𝑋, 𝑌, 𝑍} ⊆ (1...𝑁))
7371, 72mpbi 222 . . . 4 {𝑋, 𝑌, 𝑍} ⊆ (1...𝑁)
74 fss 6351 . . . 4 (({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}:(1...3)⟶{𝑋, 𝑌, 𝑍} ∧ {𝑋, 𝑌, 𝑍} ⊆ (1...𝑁)) → {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}:(1...3)⟶(1...𝑁))
7570, 73, 74mp2an 679 . . 3 {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}:(1...3)⟶(1...𝑁)
76 rabrenfdioph 38752 . . 3 ((𝑁 ∈ ℕ0 ∧ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}:(1...3)⟶(1...𝑁) ∧ {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ 𝜑} ∈ (Dioph‘3)) → {𝑏 ∈ (ℕ0𝑚 (1...𝑁)) ∣ [(𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}) / 𝑎]𝜑} ∈ (Dioph‘𝑁))
7775, 76mp3an2 1428 . 2 ((𝑁 ∈ ℕ0 ∧ {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ 𝜑} ∈ (Dioph‘3)) → {𝑏 ∈ (ℕ0𝑚 (1...𝑁)) ∣ [(𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}) / 𝑎]𝜑} ∈ (Dioph‘𝑁))
7855, 77syl5eqelr 2865 1 ((𝑁 ∈ ℕ0 ∧ {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ 𝜑} ∈ (Dioph‘3)) → {𝑏 ∈ (ℕ0𝑚 (1...𝑁)) ∣ 𝜓} ∈ (Dioph‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  w3a 1068   = wceq 1507  wcel 2048  wne 2961  {crab 3086  [wsbc 3677  wss 3825  {ctp 4439  cop 4441  ccom 5404   Fn wfn 6177  wf 6178  cfv 6182  (class class class)co 6970  𝑚 cmap 8198  1c1 10328   + caddc 10330  2c2 11488  3c3 11489  0cn0 11700  cz 11786  ...cfz 12701  Diophcdioph 38692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-rep 5043  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-inf2 8890  ax-cnex 10383  ax-resscn 10384  ax-1cn 10385  ax-icn 10386  ax-addcl 10387  ax-addrcl 10388  ax-mulcl 10389  ax-mulrcl 10390  ax-mulcom 10391  ax-addass 10392  ax-mulass 10393  ax-distr 10394  ax-i2m1 10395  ax-1ne0 10396  ax-1rid 10397  ax-rnegex 10398  ax-rrecex 10399  ax-cnre 10400  ax-pre-lttri 10401  ax-pre-lttrn 10402  ax-pre-ltadd 10403  ax-pre-mulgt0 10404
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-pss 3841  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-int 4744  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5305  df-eprel 5310  df-po 5319  df-so 5320  df-fr 5359  df-we 5361  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-of 7221  df-om 7391  df-1st 7494  df-2nd 7495  df-wrecs 7743  df-recs 7805  df-rdg 7843  df-1o 7897  df-oadd 7901  df-er 8081  df-map 8200  df-en 8299  df-dom 8300  df-sdom 8301  df-fin 8302  df-dju 9116  df-card 9154  df-pnf 10468  df-mnf 10469  df-xr 10470  df-ltxr 10471  df-le 10472  df-sub 10664  df-neg 10665  df-nn 11432  df-2 11496  df-3 11497  df-n0 11701  df-z 11787  df-uz 12052  df-fz 12702  df-hash 13499  df-mzpcl 38660  df-mzp 38661  df-dioph 38693
This theorem is referenced by:  rmxdioph  38954  expdiophlem2  38960
  Copyright terms: Public domain W3C validator