Mathbox for Stefan O'Rear < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rabren3dioph Structured version   Visualization version   GIF version

Theorem rabren3dioph 40175
 Description: Change variable numbers in a 3-variable Diophantine class abstraction. (Contributed by Stefan O'Rear, 17-Oct-2014.)
Hypotheses
Ref Expression
rabren3dioph.a (((𝑎‘1) = (𝑏𝑋) ∧ (𝑎‘2) = (𝑏𝑌) ∧ (𝑎‘3) = (𝑏𝑍)) → (𝜑𝜓))
rabren3dioph.b 𝑋 ∈ (1...𝑁)
rabren3dioph.c 𝑌 ∈ (1...𝑁)
rabren3dioph.d 𝑍 ∈ (1...𝑁)
Assertion
Ref Expression
rabren3dioph ((𝑁 ∈ ℕ0 ∧ {𝑎 ∈ (ℕ0m (1...3)) ∣ 𝜑} ∈ (Dioph‘3)) → {𝑏 ∈ (ℕ0m (1...𝑁)) ∣ 𝜓} ∈ (Dioph‘𝑁))
Distinct variable groups:   𝜓,𝑎   𝜑,𝑏   𝑋,𝑎,𝑏   𝑌,𝑎,𝑏   𝑍,𝑎,𝑏   𝑁,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑎)   𝜓(𝑏)

Proof of Theorem rabren3dioph
StepHypRef Expression
1 vex 3414 . . . . 5 𝑏 ∈ V
2 tpex 7475 . . . . 5 {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩} ∈ V
31, 2coex 7647 . . . 4 (𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}) ∈ V
4 1ne2 11896 . . . . . . . . . 10 1 ≠ 2
5 1re 10693 . . . . . . . . . . 11 1 ∈ ℝ
6 1lt3 11861 . . . . . . . . . . 11 1 < 3
75, 6ltneii 10805 . . . . . . . . . 10 1 ≠ 3
8 2re 11762 . . . . . . . . . . 11 2 ∈ ℝ
9 2lt3 11860 . . . . . . . . . . 11 2 < 3
108, 9ltneii 10805 . . . . . . . . . 10 2 ≠ 3
11 1ex 10689 . . . . . . . . . . 11 1 ∈ V
12 2ex 11765 . . . . . . . . . . 11 2 ∈ V
13 3ex 11770 . . . . . . . . . . 11 3 ∈ V
14 rabren3dioph.b . . . . . . . . . . . 12 𝑋 ∈ (1...𝑁)
1514elexi 3430 . . . . . . . . . . 11 𝑋 ∈ V
16 rabren3dioph.c . . . . . . . . . . . 12 𝑌 ∈ (1...𝑁)
1716elexi 3430 . . . . . . . . . . 11 𝑌 ∈ V
18 rabren3dioph.d . . . . . . . . . . . 12 𝑍 ∈ (1...𝑁)
1918elexi 3430 . . . . . . . . . . 11 𝑍 ∈ V
2011, 12, 13, 15, 17, 19fntp 6402 . . . . . . . . . 10 ((1 ≠ 2 ∧ 1 ≠ 3 ∧ 2 ≠ 3) → {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩} Fn {1, 2, 3})
214, 7, 10, 20mp3an 1459 . . . . . . . . 9 {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩} Fn {1, 2, 3}
2211tpid1 4665 . . . . . . . . 9 1 ∈ {1, 2, 3}
23 fvco2 6755 . . . . . . . . 9 (({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩} Fn {1, 2, 3} ∧ 1 ∈ {1, 2, 3}) → ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘1) = (𝑏‘({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}‘1)))
2421, 22, 23mp2an 691 . . . . . . . 8 ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘1) = (𝑏‘({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}‘1))
2511, 15fvtp1 6955 . . . . . . . . . 10 ((1 ≠ 2 ∧ 1 ≠ 3) → ({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}‘1) = 𝑋)
264, 7, 25mp2an 691 . . . . . . . . 9 ({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}‘1) = 𝑋
2726fveq2i 6667 . . . . . . . 8 (𝑏‘({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}‘1)) = (𝑏𝑋)
2824, 27eqtri 2782 . . . . . . 7 ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘1) = (𝑏𝑋)
2912tpid2 4667 . . . . . . . . 9 2 ∈ {1, 2, 3}
30 fvco2 6755 . . . . . . . . 9 (({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩} Fn {1, 2, 3} ∧ 2 ∈ {1, 2, 3}) → ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘2) = (𝑏‘({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}‘2)))
3121, 29, 30mp2an 691 . . . . . . . 8 ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘2) = (𝑏‘({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}‘2))
3212, 17fvtp2 6956 . . . . . . . . . 10 ((1 ≠ 2 ∧ 2 ≠ 3) → ({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}‘2) = 𝑌)
334, 10, 32mp2an 691 . . . . . . . . 9 ({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}‘2) = 𝑌
3433fveq2i 6667 . . . . . . . 8 (𝑏‘({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}‘2)) = (𝑏𝑌)
3531, 34eqtri 2782 . . . . . . 7 ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘2) = (𝑏𝑌)
3613tpid3 4670 . . . . . . . . 9 3 ∈ {1, 2, 3}
37 fvco2 6755 . . . . . . . . 9 (({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩} Fn {1, 2, 3} ∧ 3 ∈ {1, 2, 3}) → ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘3) = (𝑏‘({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}‘3)))
3821, 36, 37mp2an 691 . . . . . . . 8 ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘3) = (𝑏‘({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}‘3))
3913, 19fvtp3 6957 . . . . . . . . . 10 ((1 ≠ 3 ∧ 2 ≠ 3) → ({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}‘3) = 𝑍)
407, 10, 39mp2an 691 . . . . . . . . 9 ({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}‘3) = 𝑍
4140fveq2i 6667 . . . . . . . 8 (𝑏‘({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}‘3)) = (𝑏𝑍)
4238, 41eqtri 2782 . . . . . . 7 ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘3) = (𝑏𝑍)
4328, 35, 423pm3.2i 1337 . . . . . 6 (((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘1) = (𝑏𝑋) ∧ ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘2) = (𝑏𝑌) ∧ ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘3) = (𝑏𝑍))
44 fveq1 6663 . . . . . . . 8 (𝑎 = (𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}) → (𝑎‘1) = ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘1))
4544eqeq1d 2761 . . . . . . 7 (𝑎 = (𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}) → ((𝑎‘1) = (𝑏𝑋) ↔ ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘1) = (𝑏𝑋)))
46 fveq1 6663 . . . . . . . 8 (𝑎 = (𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}) → (𝑎‘2) = ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘2))
4746eqeq1d 2761 . . . . . . 7 (𝑎 = (𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}) → ((𝑎‘2) = (𝑏𝑌) ↔ ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘2) = (𝑏𝑌)))
48 fveq1 6663 . . . . . . . 8 (𝑎 = (𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}) → (𝑎‘3) = ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘3))
4948eqeq1d 2761 . . . . . . 7 (𝑎 = (𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}) → ((𝑎‘3) = (𝑏𝑍) ↔ ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘3) = (𝑏𝑍)))
5045, 47, 493anbi123d 1434 . . . . . 6 (𝑎 = (𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}) → (((𝑎‘1) = (𝑏𝑋) ∧ (𝑎‘2) = (𝑏𝑌) ∧ (𝑎‘3) = (𝑏𝑍)) ↔ (((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘1) = (𝑏𝑋) ∧ ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘2) = (𝑏𝑌) ∧ ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘3) = (𝑏𝑍))))
5143, 50mpbiri 261 . . . . 5 (𝑎 = (𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}) → ((𝑎‘1) = (𝑏𝑋) ∧ (𝑎‘2) = (𝑏𝑌) ∧ (𝑎‘3) = (𝑏𝑍)))
52 rabren3dioph.a . . . . 5 (((𝑎‘1) = (𝑏𝑋) ∧ (𝑎‘2) = (𝑏𝑌) ∧ (𝑎‘3) = (𝑏𝑍)) → (𝜑𝜓))
5351, 52syl 17 . . . 4 (𝑎 = (𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}) → (𝜑𝜓))
543, 53sbcie 3740 . . 3 ([(𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}) / 𝑎]𝜑𝜓)
5554rabbii 3386 . 2 {𝑏 ∈ (ℕ0m (1...𝑁)) ∣ [(𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}) / 𝑎]𝜑} = {𝑏 ∈ (ℕ0m (1...𝑁)) ∣ 𝜓}
5611, 12, 13, 15, 17, 19, 4, 7, 10ftp 6917 . . . . 5 {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}:{1, 2, 3}⟶{𝑋, 𝑌, 𝑍}
57 1z 12065 . . . . . . . 8 1 ∈ ℤ
58 fztp 13026 . . . . . . . 8 (1 ∈ ℤ → (1...(1 + 2)) = {1, (1 + 1), (1 + 2)})
5957, 58ax-mp 5 . . . . . . 7 (1...(1 + 2)) = {1, (1 + 1), (1 + 2)}
60 1p2e3 11831 . . . . . . . 8 (1 + 2) = 3
6160oveq2i 7168 . . . . . . 7 (1...(1 + 2)) = (1...3)
62 eqidd 2760 . . . . . . . . 9 (1 ∈ ℤ → 1 = 1)
63 1p1e2 11813 . . . . . . . . . 10 (1 + 1) = 2
6463a1i 11 . . . . . . . . 9 (1 ∈ ℤ → (1 + 1) = 2)
6560a1i 11 . . . . . . . . 9 (1 ∈ ℤ → (1 + 2) = 3)
6662, 64, 65tpeq123d 4645 . . . . . . . 8 (1 ∈ ℤ → {1, (1 + 1), (1 + 2)} = {1, 2, 3})
6757, 66ax-mp 5 . . . . . . 7 {1, (1 + 1), (1 + 2)} = {1, 2, 3}
6859, 61, 673eqtr3i 2790 . . . . . 6 (1...3) = {1, 2, 3}
6968feq2i 6496 . . . . 5 ({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}:(1...3)⟶{𝑋, 𝑌, 𝑍} ↔ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}:{1, 2, 3}⟶{𝑋, 𝑌, 𝑍})
7056, 69mpbir 234 . . . 4 {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}:(1...3)⟶{𝑋, 𝑌, 𝑍}
7114, 16, 183pm3.2i 1337 . . . . 5 (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑍 ∈ (1...𝑁))
7215, 17, 19tpss 4729 . . . . 5 ((𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑍 ∈ (1...𝑁)) ↔ {𝑋, 𝑌, 𝑍} ⊆ (1...𝑁))
7371, 72mpbi 233 . . . 4 {𝑋, 𝑌, 𝑍} ⊆ (1...𝑁)
74 fss 6518 . . . 4 (({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}:(1...3)⟶{𝑋, 𝑌, 𝑍} ∧ {𝑋, 𝑌, 𝑍} ⊆ (1...𝑁)) → {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}:(1...3)⟶(1...𝑁))
7570, 73, 74mp2an 691 . . 3 {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}:(1...3)⟶(1...𝑁)
76 rabrenfdioph 40174 . . 3 ((𝑁 ∈ ℕ0 ∧ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}:(1...3)⟶(1...𝑁) ∧ {𝑎 ∈ (ℕ0m (1...3)) ∣ 𝜑} ∈ (Dioph‘3)) → {𝑏 ∈ (ℕ0m (1...𝑁)) ∣ [(𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}) / 𝑎]𝜑} ∈ (Dioph‘𝑁))
7775, 76mp3an2 1447 . 2 ((𝑁 ∈ ℕ0 ∧ {𝑎 ∈ (ℕ0m (1...3)) ∣ 𝜑} ∈ (Dioph‘3)) → {𝑏 ∈ (ℕ0m (1...𝑁)) ∣ [(𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}) / 𝑎]𝜑} ∈ (Dioph‘𝑁))
7855, 77eqeltrrid 2858 1 ((𝑁 ∈ ℕ0 ∧ {𝑎 ∈ (ℕ0m (1...3)) ∣ 𝜑} ∈ (Dioph‘3)) → {𝑏 ∈ (ℕ0m (1...𝑁)) ∣ 𝜓} ∈ (Dioph‘𝑁))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1085   = wceq 1539   ∈ wcel 2112   ≠ wne 2952  {crab 3075  [wsbc 3699   ⊆ wss 3861  {ctp 4530  ⟨cop 4532   ∘ ccom 5533   Fn wfn 6336  ⟶wf 6337  ‘cfv 6341  (class class class)co 7157   ↑m cmap 8423  1c1 10590   + caddc 10592  2c2 11743  3c3 11744  ℕ0cn0 11948  ℤcz 12034  ...cfz 12953  Diophcdioph 40115 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5161  ax-sep 5174  ax-nul 5181  ax-pow 5239  ax-pr 5303  ax-un 7466  ax-inf2 9151  ax-cnex 10645  ax-resscn 10646  ax-1cn 10647  ax-icn 10648  ax-addcl 10649  ax-addrcl 10650  ax-mulcl 10651  ax-mulrcl 10652  ax-mulcom 10653  ax-addass 10654  ax-mulass 10655  ax-distr 10656  ax-i2m1 10657  ax-1ne0 10658  ax-1rid 10659  ax-rnegex 10660  ax-rrecex 10661  ax-cnre 10662  ax-pre-lttri 10663  ax-pre-lttrn 10664  ax-pre-ltadd 10665  ax-pre-mulgt0 10666 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rab 3080  df-v 3412  df-sbc 3700  df-csb 3809  df-dif 3864  df-un 3866  df-in 3868  df-ss 3878  df-pss 3880  df-nul 4229  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4803  df-int 4843  df-iun 4889  df-br 5038  df-opab 5100  df-mpt 5118  df-tr 5144  df-id 5435  df-eprel 5440  df-po 5448  df-so 5449  df-fr 5488  df-we 5490  df-xp 5535  df-rel 5536  df-cnv 5537  df-co 5538  df-dm 5539  df-rn 5540  df-res 5541  df-ima 5542  df-pred 6132  df-ord 6178  df-on 6179  df-lim 6180  df-suc 6181  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-riota 7115  df-ov 7160  df-oprab 7161  df-mpo 7162  df-of 7412  df-om 7587  df-1st 7700  df-2nd 7701  df-wrecs 7964  df-recs 8025  df-rdg 8063  df-1o 8119  df-oadd 8123  df-er 8306  df-map 8425  df-en 8542  df-dom 8543  df-sdom 8544  df-fin 8545  df-dju 9377  df-card 9415  df-pnf 10729  df-mnf 10730  df-xr 10731  df-ltxr 10732  df-le 10733  df-sub 10924  df-neg 10925  df-nn 11689  df-2 11751  df-3 11752  df-n0 11949  df-z 12035  df-uz 12297  df-fz 12954  df-hash 13755  df-mzpcl 40083  df-mzp 40084  df-dioph 40116 This theorem is referenced by:  rmxdioph  40376  expdiophlem2  40382
 Copyright terms: Public domain W3C validator