Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rabren3dioph Structured version   Visualization version   GIF version

Theorem rabren3dioph 42808
Description: Change variable numbers in a 3-variable Diophantine class abstraction. (Contributed by Stefan O'Rear, 17-Oct-2014.)
Hypotheses
Ref Expression
rabren3dioph.a (((𝑎‘1) = (𝑏𝑋) ∧ (𝑎‘2) = (𝑏𝑌) ∧ (𝑎‘3) = (𝑏𝑍)) → (𝜑𝜓))
rabren3dioph.b 𝑋 ∈ (1...𝑁)
rabren3dioph.c 𝑌 ∈ (1...𝑁)
rabren3dioph.d 𝑍 ∈ (1...𝑁)
Assertion
Ref Expression
rabren3dioph ((𝑁 ∈ ℕ0 ∧ {𝑎 ∈ (ℕ0m (1...3)) ∣ 𝜑} ∈ (Dioph‘3)) → {𝑏 ∈ (ℕ0m (1...𝑁)) ∣ 𝜓} ∈ (Dioph‘𝑁))
Distinct variable groups:   𝜓,𝑎   𝜑,𝑏   𝑋,𝑎,𝑏   𝑌,𝑎,𝑏   𝑍,𝑎,𝑏   𝑁,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑎)   𝜓(𝑏)

Proof of Theorem rabren3dioph
StepHypRef Expression
1 vex 3440 . . . . 5 𝑏 ∈ V
2 tpex 7682 . . . . 5 {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩} ∈ V
31, 2coex 7863 . . . 4 (𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}) ∈ V
4 1ne2 12331 . . . . . . . . . 10 1 ≠ 2
5 1re 11115 . . . . . . . . . . 11 1 ∈ ℝ
6 1lt3 12296 . . . . . . . . . . 11 1 < 3
75, 6ltneii 11229 . . . . . . . . . 10 1 ≠ 3
8 2re 12202 . . . . . . . . . . 11 2 ∈ ℝ
9 2lt3 12295 . . . . . . . . . . 11 2 < 3
108, 9ltneii 11229 . . . . . . . . . 10 2 ≠ 3
11 1ex 11111 . . . . . . . . . . 11 1 ∈ V
12 2ex 12205 . . . . . . . . . . 11 2 ∈ V
13 3ex 12210 . . . . . . . . . . 11 3 ∈ V
14 rabren3dioph.b . . . . . . . . . . . 12 𝑋 ∈ (1...𝑁)
1514elexi 3459 . . . . . . . . . . 11 𝑋 ∈ V
16 rabren3dioph.c . . . . . . . . . . . 12 𝑌 ∈ (1...𝑁)
1716elexi 3459 . . . . . . . . . . 11 𝑌 ∈ V
18 rabren3dioph.d . . . . . . . . . . . 12 𝑍 ∈ (1...𝑁)
1918elexi 3459 . . . . . . . . . . 11 𝑍 ∈ V
2011, 12, 13, 15, 17, 19fntp 6543 . . . . . . . . . 10 ((1 ≠ 2 ∧ 1 ≠ 3 ∧ 2 ≠ 3) → {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩} Fn {1, 2, 3})
214, 7, 10, 20mp3an 1463 . . . . . . . . 9 {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩} Fn {1, 2, 3}
2211tpid1 4720 . . . . . . . . 9 1 ∈ {1, 2, 3}
23 fvco2 6920 . . . . . . . . 9 (({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩} Fn {1, 2, 3} ∧ 1 ∈ {1, 2, 3}) → ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘1) = (𝑏‘({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}‘1)))
2421, 22, 23mp2an 692 . . . . . . . 8 ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘1) = (𝑏‘({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}‘1))
2511, 15fvtp1 7131 . . . . . . . . . 10 ((1 ≠ 2 ∧ 1 ≠ 3) → ({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}‘1) = 𝑋)
264, 7, 25mp2an 692 . . . . . . . . 9 ({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}‘1) = 𝑋
2726fveq2i 6825 . . . . . . . 8 (𝑏‘({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}‘1)) = (𝑏𝑋)
2824, 27eqtri 2752 . . . . . . 7 ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘1) = (𝑏𝑋)
2912tpid2 4722 . . . . . . . . 9 2 ∈ {1, 2, 3}
30 fvco2 6920 . . . . . . . . 9 (({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩} Fn {1, 2, 3} ∧ 2 ∈ {1, 2, 3}) → ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘2) = (𝑏‘({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}‘2)))
3121, 29, 30mp2an 692 . . . . . . . 8 ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘2) = (𝑏‘({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}‘2))
3212, 17fvtp2 7132 . . . . . . . . . 10 ((1 ≠ 2 ∧ 2 ≠ 3) → ({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}‘2) = 𝑌)
334, 10, 32mp2an 692 . . . . . . . . 9 ({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}‘2) = 𝑌
3433fveq2i 6825 . . . . . . . 8 (𝑏‘({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}‘2)) = (𝑏𝑌)
3531, 34eqtri 2752 . . . . . . 7 ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘2) = (𝑏𝑌)
3613tpid3 4725 . . . . . . . . 9 3 ∈ {1, 2, 3}
37 fvco2 6920 . . . . . . . . 9 (({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩} Fn {1, 2, 3} ∧ 3 ∈ {1, 2, 3}) → ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘3) = (𝑏‘({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}‘3)))
3821, 36, 37mp2an 692 . . . . . . . 8 ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘3) = (𝑏‘({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}‘3))
3913, 19fvtp3 7133 . . . . . . . . . 10 ((1 ≠ 3 ∧ 2 ≠ 3) → ({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}‘3) = 𝑍)
407, 10, 39mp2an 692 . . . . . . . . 9 ({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}‘3) = 𝑍
4140fveq2i 6825 . . . . . . . 8 (𝑏‘({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}‘3)) = (𝑏𝑍)
4238, 41eqtri 2752 . . . . . . 7 ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘3) = (𝑏𝑍)
4328, 35, 423pm3.2i 1340 . . . . . 6 (((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘1) = (𝑏𝑋) ∧ ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘2) = (𝑏𝑌) ∧ ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘3) = (𝑏𝑍))
44 fveq1 6821 . . . . . . . 8 (𝑎 = (𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}) → (𝑎‘1) = ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘1))
4544eqeq1d 2731 . . . . . . 7 (𝑎 = (𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}) → ((𝑎‘1) = (𝑏𝑋) ↔ ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘1) = (𝑏𝑋)))
46 fveq1 6821 . . . . . . . 8 (𝑎 = (𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}) → (𝑎‘2) = ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘2))
4746eqeq1d 2731 . . . . . . 7 (𝑎 = (𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}) → ((𝑎‘2) = (𝑏𝑌) ↔ ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘2) = (𝑏𝑌)))
48 fveq1 6821 . . . . . . . 8 (𝑎 = (𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}) → (𝑎‘3) = ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘3))
4948eqeq1d 2731 . . . . . . 7 (𝑎 = (𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}) → ((𝑎‘3) = (𝑏𝑍) ↔ ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘3) = (𝑏𝑍)))
5045, 47, 493anbi123d 1438 . . . . . 6 (𝑎 = (𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}) → (((𝑎‘1) = (𝑏𝑋) ∧ (𝑎‘2) = (𝑏𝑌) ∧ (𝑎‘3) = (𝑏𝑍)) ↔ (((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘1) = (𝑏𝑋) ∧ ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘2) = (𝑏𝑌) ∧ ((𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩})‘3) = (𝑏𝑍))))
5143, 50mpbiri 258 . . . . 5 (𝑎 = (𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}) → ((𝑎‘1) = (𝑏𝑋) ∧ (𝑎‘2) = (𝑏𝑌) ∧ (𝑎‘3) = (𝑏𝑍)))
52 rabren3dioph.a . . . . 5 (((𝑎‘1) = (𝑏𝑋) ∧ (𝑎‘2) = (𝑏𝑌) ∧ (𝑎‘3) = (𝑏𝑍)) → (𝜑𝜓))
5351, 52syl 17 . . . 4 (𝑎 = (𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}) → (𝜑𝜓))
543, 53sbcie 3784 . . 3 ([(𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}) / 𝑎]𝜑𝜓)
5554rabbii 3400 . 2 {𝑏 ∈ (ℕ0m (1...𝑁)) ∣ [(𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}) / 𝑎]𝜑} = {𝑏 ∈ (ℕ0m (1...𝑁)) ∣ 𝜓}
5611, 12, 13, 15, 17, 19, 4, 7, 10ftp 7091 . . . . 5 {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}:{1, 2, 3}⟶{𝑋, 𝑌, 𝑍}
57 1z 12505 . . . . . . . 8 1 ∈ ℤ
58 fztp 13483 . . . . . . . 8 (1 ∈ ℤ → (1...(1 + 2)) = {1, (1 + 1), (1 + 2)})
5957, 58ax-mp 5 . . . . . . 7 (1...(1 + 2)) = {1, (1 + 1), (1 + 2)}
60 1p2e3 12266 . . . . . . . 8 (1 + 2) = 3
6160oveq2i 7360 . . . . . . 7 (1...(1 + 2)) = (1...3)
62 eqidd 2730 . . . . . . . . 9 (1 ∈ ℤ → 1 = 1)
63 1p1e2 12248 . . . . . . . . . 10 (1 + 1) = 2
6463a1i 11 . . . . . . . . 9 (1 ∈ ℤ → (1 + 1) = 2)
6560a1i 11 . . . . . . . . 9 (1 ∈ ℤ → (1 + 2) = 3)
6662, 64, 65tpeq123d 4700 . . . . . . . 8 (1 ∈ ℤ → {1, (1 + 1), (1 + 2)} = {1, 2, 3})
6757, 66ax-mp 5 . . . . . . 7 {1, (1 + 1), (1 + 2)} = {1, 2, 3}
6859, 61, 673eqtr3i 2760 . . . . . 6 (1...3) = {1, 2, 3}
6968feq2i 6644 . . . . 5 ({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}:(1...3)⟶{𝑋, 𝑌, 𝑍} ↔ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}:{1, 2, 3}⟶{𝑋, 𝑌, 𝑍})
7056, 69mpbir 231 . . . 4 {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}:(1...3)⟶{𝑋, 𝑌, 𝑍}
7114, 16, 183pm3.2i 1340 . . . . 5 (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑍 ∈ (1...𝑁))
7215, 17, 19tpss 4788 . . . . 5 ((𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑍 ∈ (1...𝑁)) ↔ {𝑋, 𝑌, 𝑍} ⊆ (1...𝑁))
7371, 72mpbi 230 . . . 4 {𝑋, 𝑌, 𝑍} ⊆ (1...𝑁)
74 fss 6668 . . . 4 (({⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}:(1...3)⟶{𝑋, 𝑌, 𝑍} ∧ {𝑋, 𝑌, 𝑍} ⊆ (1...𝑁)) → {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}:(1...3)⟶(1...𝑁))
7570, 73, 74mp2an 692 . . 3 {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}:(1...3)⟶(1...𝑁)
76 rabrenfdioph 42807 . . 3 ((𝑁 ∈ ℕ0 ∧ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}:(1...3)⟶(1...𝑁) ∧ {𝑎 ∈ (ℕ0m (1...3)) ∣ 𝜑} ∈ (Dioph‘3)) → {𝑏 ∈ (ℕ0m (1...𝑁)) ∣ [(𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}) / 𝑎]𝜑} ∈ (Dioph‘𝑁))
7775, 76mp3an2 1451 . 2 ((𝑁 ∈ ℕ0 ∧ {𝑎 ∈ (ℕ0m (1...3)) ∣ 𝜑} ∈ (Dioph‘3)) → {𝑏 ∈ (ℕ0m (1...𝑁)) ∣ [(𝑏 ∘ {⟨1, 𝑋⟩, ⟨2, 𝑌⟩, ⟨3, 𝑍⟩}) / 𝑎]𝜑} ∈ (Dioph‘𝑁))
7855, 77eqeltrrid 2833 1 ((𝑁 ∈ ℕ0 ∧ {𝑎 ∈ (ℕ0m (1...3)) ∣ 𝜑} ∈ (Dioph‘3)) → {𝑏 ∈ (ℕ0m (1...𝑁)) ∣ 𝜓} ∈ (Dioph‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  {crab 3394  [wsbc 3742  wss 3903  {ctp 4581  cop 4583  ccom 5623   Fn wfn 6477  wf 6478  cfv 6482  (class class class)co 7349  m cmap 8753  1c1 11010   + caddc 11012  2c2 12183  3c3 12184  0cn0 12384  cz 12471  ...cfz 13410  Diophcdioph 42748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-oadd 8392  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-dju 9797  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-hash 14238  df-mzpcl 42716  df-mzp 42717  df-dioph 42749
This theorem is referenced by:  rmxdioph  43009  expdiophlem2  43015
  Copyright terms: Public domain W3C validator