Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > konigsberglem4 | Structured version Visualization version GIF version |
Description: Lemma 4 for konigsberg 28649: Vertices 0, 1, 3 are vertices of odd degree. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 28-Feb-2021.) |
Ref | Expression |
---|---|
konigsberg.v | ⊢ 𝑉 = (0...3) |
konigsberg.e | ⊢ 𝐸 = 〈“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”〉 |
konigsberg.g | ⊢ 𝐺 = 〈𝑉, 𝐸〉 |
Ref | Expression |
---|---|
konigsberglem4 | ⊢ {0, 1, 3} ⊆ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3nn0 12279 | . . . . . 6 ⊢ 3 ∈ ℕ0 | |
2 | 0elfz 13381 | . . . . . 6 ⊢ (3 ∈ ℕ0 → 0 ∈ (0...3)) | |
3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ 0 ∈ (0...3) |
4 | konigsberg.v | . . . . 5 ⊢ 𝑉 = (0...3) | |
5 | 3, 4 | eleqtrri 2833 | . . . 4 ⊢ 0 ∈ 𝑉 |
6 | n2dvds3 16108 | . . . . 5 ⊢ ¬ 2 ∥ 3 | |
7 | konigsberg.e | . . . . . . 7 ⊢ 𝐸 = 〈“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”〉 | |
8 | konigsberg.g | . . . . . . 7 ⊢ 𝐺 = 〈𝑉, 𝐸〉 | |
9 | 4, 7, 8 | konigsberglem1 28644 | . . . . . 6 ⊢ ((VtxDeg‘𝐺)‘0) = 3 |
10 | 9 | breq2i 5085 | . . . . 5 ⊢ (2 ∥ ((VtxDeg‘𝐺)‘0) ↔ 2 ∥ 3) |
11 | 6, 10 | mtbir 322 | . . . 4 ⊢ ¬ 2 ∥ ((VtxDeg‘𝐺)‘0) |
12 | fveq2 6792 | . . . . . . 7 ⊢ (𝑥 = 0 → ((VtxDeg‘𝐺)‘𝑥) = ((VtxDeg‘𝐺)‘0)) | |
13 | 12 | breq2d 5089 | . . . . . 6 ⊢ (𝑥 = 0 → (2 ∥ ((VtxDeg‘𝐺)‘𝑥) ↔ 2 ∥ ((VtxDeg‘𝐺)‘0))) |
14 | 13 | notbid 317 | . . . . 5 ⊢ (𝑥 = 0 → (¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥) ↔ ¬ 2 ∥ ((VtxDeg‘𝐺)‘0))) |
15 | 14 | elrab 3626 | . . . 4 ⊢ (0 ∈ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} ↔ (0 ∈ 𝑉 ∧ ¬ 2 ∥ ((VtxDeg‘𝐺)‘0))) |
16 | 5, 11, 15 | mpbir2an 707 | . . 3 ⊢ 0 ∈ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} |
17 | 1nn0 12277 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
18 | 1le3 12213 | . . . . . 6 ⊢ 1 ≤ 3 | |
19 | elfz2nn0 13375 | . . . . . 6 ⊢ (1 ∈ (0...3) ↔ (1 ∈ ℕ0 ∧ 3 ∈ ℕ0 ∧ 1 ≤ 3)) | |
20 | 17, 1, 18, 19 | mpbir3an 1339 | . . . . 5 ⊢ 1 ∈ (0...3) |
21 | 20, 4 | eleqtrri 2833 | . . . 4 ⊢ 1 ∈ 𝑉 |
22 | 4, 7, 8 | konigsberglem2 28645 | . . . . . 6 ⊢ ((VtxDeg‘𝐺)‘1) = 3 |
23 | 22 | breq2i 5085 | . . . . 5 ⊢ (2 ∥ ((VtxDeg‘𝐺)‘1) ↔ 2 ∥ 3) |
24 | 6, 23 | mtbir 322 | . . . 4 ⊢ ¬ 2 ∥ ((VtxDeg‘𝐺)‘1) |
25 | fveq2 6792 | . . . . . . 7 ⊢ (𝑥 = 1 → ((VtxDeg‘𝐺)‘𝑥) = ((VtxDeg‘𝐺)‘1)) | |
26 | 25 | breq2d 5089 | . . . . . 6 ⊢ (𝑥 = 1 → (2 ∥ ((VtxDeg‘𝐺)‘𝑥) ↔ 2 ∥ ((VtxDeg‘𝐺)‘1))) |
27 | 26 | notbid 317 | . . . . 5 ⊢ (𝑥 = 1 → (¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥) ↔ ¬ 2 ∥ ((VtxDeg‘𝐺)‘1))) |
28 | 27 | elrab 3626 | . . . 4 ⊢ (1 ∈ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} ↔ (1 ∈ 𝑉 ∧ ¬ 2 ∥ ((VtxDeg‘𝐺)‘1))) |
29 | 21, 24, 28 | mpbir2an 707 | . . 3 ⊢ 1 ∈ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} |
30 | 3re 12081 | . . . . . . 7 ⊢ 3 ∈ ℝ | |
31 | 30 | leidi 11537 | . . . . . 6 ⊢ 3 ≤ 3 |
32 | elfz2nn0 13375 | . . . . . 6 ⊢ (3 ∈ (0...3) ↔ (3 ∈ ℕ0 ∧ 3 ∈ ℕ0 ∧ 3 ≤ 3)) | |
33 | 1, 1, 31, 32 | mpbir3an 1339 | . . . . 5 ⊢ 3 ∈ (0...3) |
34 | 33, 4 | eleqtrri 2833 | . . . 4 ⊢ 3 ∈ 𝑉 |
35 | 4, 7, 8 | konigsberglem3 28646 | . . . . . 6 ⊢ ((VtxDeg‘𝐺)‘3) = 3 |
36 | 35 | breq2i 5085 | . . . . 5 ⊢ (2 ∥ ((VtxDeg‘𝐺)‘3) ↔ 2 ∥ 3) |
37 | 6, 36 | mtbir 322 | . . . 4 ⊢ ¬ 2 ∥ ((VtxDeg‘𝐺)‘3) |
38 | fveq2 6792 | . . . . . . 7 ⊢ (𝑥 = 3 → ((VtxDeg‘𝐺)‘𝑥) = ((VtxDeg‘𝐺)‘3)) | |
39 | 38 | breq2d 5089 | . . . . . 6 ⊢ (𝑥 = 3 → (2 ∥ ((VtxDeg‘𝐺)‘𝑥) ↔ 2 ∥ ((VtxDeg‘𝐺)‘3))) |
40 | 39 | notbid 317 | . . . . 5 ⊢ (𝑥 = 3 → (¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥) ↔ ¬ 2 ∥ ((VtxDeg‘𝐺)‘3))) |
41 | 40 | elrab 3626 | . . . 4 ⊢ (3 ∈ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} ↔ (3 ∈ 𝑉 ∧ ¬ 2 ∥ ((VtxDeg‘𝐺)‘3))) |
42 | 34, 37, 41 | mpbir2an 707 | . . 3 ⊢ 3 ∈ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} |
43 | 16, 29, 42 | 3pm3.2i 1337 | . 2 ⊢ (0 ∈ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} ∧ 1 ∈ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} ∧ 3 ∈ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) |
44 | c0ex 10997 | . . 3 ⊢ 0 ∈ V | |
45 | 1ex 10999 | . . 3 ⊢ 1 ∈ V | |
46 | 3ex 12083 | . . 3 ⊢ 3 ∈ V | |
47 | 44, 45, 46 | tpss 4771 | . 2 ⊢ ((0 ∈ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} ∧ 1 ∈ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} ∧ 3 ∈ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ↔ {0, 1, 3} ⊆ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) |
48 | 43, 47 | mpbi 229 | 1 ⊢ {0, 1, 3} ⊆ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ w3a 1085 = wceq 1537 ∈ wcel 2101 {crab 3221 ⊆ wss 3889 {cpr 4566 {ctp 4568 〈cop 4570 class class class wbr 5077 ‘cfv 6447 (class class class)co 7295 0cc0 10899 1c1 10900 ≤ cle 11038 2c2 12056 3c3 12057 ℕ0cn0 12261 ...cfz 13267 〈“cs7 14587 ∥ cdvds 15991 VtxDegcvtxdg 27860 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-rep 5212 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7608 ax-cnex 10955 ax-resscn 10956 ax-1cn 10957 ax-icn 10958 ax-addcl 10959 ax-addrcl 10960 ax-mulcl 10961 ax-mulrcl 10962 ax-mulcom 10963 ax-addass 10964 ax-mulass 10965 ax-distr 10966 ax-i2m1 10967 ax-1ne0 10968 ax-1rid 10969 ax-rnegex 10970 ax-rrecex 10971 ax-cnre 10972 ax-pre-lttri 10973 ax-pre-lttrn 10974 ax-pre-ltadd 10975 ax-pre-mulgt0 10976 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3222 df-reu 3223 df-rab 3224 df-v 3436 df-sbc 3719 df-csb 3835 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-pss 3908 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-tp 4569 df-op 4571 df-uni 4842 df-int 4883 df-iun 4929 df-br 5078 df-opab 5140 df-mpt 5161 df-tr 5195 df-id 5491 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-we 5548 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-riota 7252 df-ov 7298 df-oprab 7299 df-mpo 7300 df-om 7733 df-1st 7851 df-2nd 7852 df-frecs 8117 df-wrecs 8148 df-recs 8222 df-rdg 8261 df-1o 8317 df-oadd 8321 df-er 8518 df-en 8754 df-dom 8755 df-sdom 8756 df-fin 8757 df-dju 9687 df-card 9725 df-pnf 11039 df-mnf 11040 df-xr 11041 df-ltxr 11042 df-le 11043 df-sub 11235 df-neg 11236 df-div 11661 df-nn 12002 df-2 12064 df-3 12065 df-4 12066 df-n0 12262 df-xnn0 12334 df-z 12348 df-uz 12611 df-xadd 12877 df-fz 13268 df-fzo 13411 df-hash 14073 df-word 14246 df-concat 14302 df-s1 14329 df-s2 14589 df-s3 14590 df-s4 14591 df-s5 14592 df-s6 14593 df-s7 14594 df-dvds 15992 df-vtx 27396 df-iedg 27397 df-vtxdg 27861 |
This theorem is referenced by: konigsberglem5 28648 |
Copyright terms: Public domain | W3C validator |