Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > konigsberglem4 | Structured version Visualization version GIF version |
Description: Lemma 4 for konigsberg 28522: Vertices 0, 1, 3 are vertices of odd degree. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 28-Feb-2021.) |
Ref | Expression |
---|---|
konigsberg.v | ⊢ 𝑉 = (0...3) |
konigsberg.e | ⊢ 𝐸 = 〈“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”〉 |
konigsberg.g | ⊢ 𝐺 = 〈𝑉, 𝐸〉 |
Ref | Expression |
---|---|
konigsberglem4 | ⊢ {0, 1, 3} ⊆ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3nn0 12181 | . . . . . 6 ⊢ 3 ∈ ℕ0 | |
2 | 0elfz 13282 | . . . . . 6 ⊢ (3 ∈ ℕ0 → 0 ∈ (0...3)) | |
3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ 0 ∈ (0...3) |
4 | konigsberg.v | . . . . 5 ⊢ 𝑉 = (0...3) | |
5 | 3, 4 | eleqtrri 2838 | . . . 4 ⊢ 0 ∈ 𝑉 |
6 | n2dvds3 16008 | . . . . 5 ⊢ ¬ 2 ∥ 3 | |
7 | konigsberg.e | . . . . . . 7 ⊢ 𝐸 = 〈“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”〉 | |
8 | konigsberg.g | . . . . . . 7 ⊢ 𝐺 = 〈𝑉, 𝐸〉 | |
9 | 4, 7, 8 | konigsberglem1 28517 | . . . . . 6 ⊢ ((VtxDeg‘𝐺)‘0) = 3 |
10 | 9 | breq2i 5078 | . . . . 5 ⊢ (2 ∥ ((VtxDeg‘𝐺)‘0) ↔ 2 ∥ 3) |
11 | 6, 10 | mtbir 322 | . . . 4 ⊢ ¬ 2 ∥ ((VtxDeg‘𝐺)‘0) |
12 | fveq2 6756 | . . . . . . 7 ⊢ (𝑥 = 0 → ((VtxDeg‘𝐺)‘𝑥) = ((VtxDeg‘𝐺)‘0)) | |
13 | 12 | breq2d 5082 | . . . . . 6 ⊢ (𝑥 = 0 → (2 ∥ ((VtxDeg‘𝐺)‘𝑥) ↔ 2 ∥ ((VtxDeg‘𝐺)‘0))) |
14 | 13 | notbid 317 | . . . . 5 ⊢ (𝑥 = 0 → (¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥) ↔ ¬ 2 ∥ ((VtxDeg‘𝐺)‘0))) |
15 | 14 | elrab 3617 | . . . 4 ⊢ (0 ∈ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} ↔ (0 ∈ 𝑉 ∧ ¬ 2 ∥ ((VtxDeg‘𝐺)‘0))) |
16 | 5, 11, 15 | mpbir2an 707 | . . 3 ⊢ 0 ∈ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} |
17 | 1nn0 12179 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
18 | 1le3 12115 | . . . . . 6 ⊢ 1 ≤ 3 | |
19 | elfz2nn0 13276 | . . . . . 6 ⊢ (1 ∈ (0...3) ↔ (1 ∈ ℕ0 ∧ 3 ∈ ℕ0 ∧ 1 ≤ 3)) | |
20 | 17, 1, 18, 19 | mpbir3an 1339 | . . . . 5 ⊢ 1 ∈ (0...3) |
21 | 20, 4 | eleqtrri 2838 | . . . 4 ⊢ 1 ∈ 𝑉 |
22 | 4, 7, 8 | konigsberglem2 28518 | . . . . . 6 ⊢ ((VtxDeg‘𝐺)‘1) = 3 |
23 | 22 | breq2i 5078 | . . . . 5 ⊢ (2 ∥ ((VtxDeg‘𝐺)‘1) ↔ 2 ∥ 3) |
24 | 6, 23 | mtbir 322 | . . . 4 ⊢ ¬ 2 ∥ ((VtxDeg‘𝐺)‘1) |
25 | fveq2 6756 | . . . . . . 7 ⊢ (𝑥 = 1 → ((VtxDeg‘𝐺)‘𝑥) = ((VtxDeg‘𝐺)‘1)) | |
26 | 25 | breq2d 5082 | . . . . . 6 ⊢ (𝑥 = 1 → (2 ∥ ((VtxDeg‘𝐺)‘𝑥) ↔ 2 ∥ ((VtxDeg‘𝐺)‘1))) |
27 | 26 | notbid 317 | . . . . 5 ⊢ (𝑥 = 1 → (¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥) ↔ ¬ 2 ∥ ((VtxDeg‘𝐺)‘1))) |
28 | 27 | elrab 3617 | . . . 4 ⊢ (1 ∈ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} ↔ (1 ∈ 𝑉 ∧ ¬ 2 ∥ ((VtxDeg‘𝐺)‘1))) |
29 | 21, 24, 28 | mpbir2an 707 | . . 3 ⊢ 1 ∈ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} |
30 | 3re 11983 | . . . . . . 7 ⊢ 3 ∈ ℝ | |
31 | 30 | leidi 11439 | . . . . . 6 ⊢ 3 ≤ 3 |
32 | elfz2nn0 13276 | . . . . . 6 ⊢ (3 ∈ (0...3) ↔ (3 ∈ ℕ0 ∧ 3 ∈ ℕ0 ∧ 3 ≤ 3)) | |
33 | 1, 1, 31, 32 | mpbir3an 1339 | . . . . 5 ⊢ 3 ∈ (0...3) |
34 | 33, 4 | eleqtrri 2838 | . . . 4 ⊢ 3 ∈ 𝑉 |
35 | 4, 7, 8 | konigsberglem3 28519 | . . . . . 6 ⊢ ((VtxDeg‘𝐺)‘3) = 3 |
36 | 35 | breq2i 5078 | . . . . 5 ⊢ (2 ∥ ((VtxDeg‘𝐺)‘3) ↔ 2 ∥ 3) |
37 | 6, 36 | mtbir 322 | . . . 4 ⊢ ¬ 2 ∥ ((VtxDeg‘𝐺)‘3) |
38 | fveq2 6756 | . . . . . . 7 ⊢ (𝑥 = 3 → ((VtxDeg‘𝐺)‘𝑥) = ((VtxDeg‘𝐺)‘3)) | |
39 | 38 | breq2d 5082 | . . . . . 6 ⊢ (𝑥 = 3 → (2 ∥ ((VtxDeg‘𝐺)‘𝑥) ↔ 2 ∥ ((VtxDeg‘𝐺)‘3))) |
40 | 39 | notbid 317 | . . . . 5 ⊢ (𝑥 = 3 → (¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥) ↔ ¬ 2 ∥ ((VtxDeg‘𝐺)‘3))) |
41 | 40 | elrab 3617 | . . . 4 ⊢ (3 ∈ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} ↔ (3 ∈ 𝑉 ∧ ¬ 2 ∥ ((VtxDeg‘𝐺)‘3))) |
42 | 34, 37, 41 | mpbir2an 707 | . . 3 ⊢ 3 ∈ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} |
43 | 16, 29, 42 | 3pm3.2i 1337 | . 2 ⊢ (0 ∈ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} ∧ 1 ∈ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} ∧ 3 ∈ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) |
44 | c0ex 10900 | . . 3 ⊢ 0 ∈ V | |
45 | 1ex 10902 | . . 3 ⊢ 1 ∈ V | |
46 | 3ex 11985 | . . 3 ⊢ 3 ∈ V | |
47 | 44, 45, 46 | tpss 4765 | . 2 ⊢ ((0 ∈ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} ∧ 1 ∈ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} ∧ 3 ∈ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ↔ {0, 1, 3} ⊆ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) |
48 | 43, 47 | mpbi 229 | 1 ⊢ {0, 1, 3} ⊆ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 {crab 3067 ⊆ wss 3883 {cpr 4560 {ctp 4562 〈cop 4564 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 0cc0 10802 1c1 10803 ≤ cle 10941 2c2 11958 3c3 11959 ℕ0cn0 12163 ...cfz 13168 〈“cs7 14487 ∥ cdvds 15891 VtxDegcvtxdg 27735 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-oadd 8271 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-dju 9590 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-n0 12164 df-xnn0 12236 df-z 12250 df-uz 12512 df-xadd 12778 df-fz 13169 df-fzo 13312 df-hash 13973 df-word 14146 df-concat 14202 df-s1 14229 df-s2 14489 df-s3 14490 df-s4 14491 df-s5 14492 df-s6 14493 df-s7 14494 df-dvds 15892 df-vtx 27271 df-iedg 27272 df-vtxdg 27736 |
This theorem is referenced by: konigsberglem5 28521 |
Copyright terms: Public domain | W3C validator |