| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > konigsberglem4 | Structured version Visualization version GIF version | ||
| Description: Lemma 4 for konigsberg 30237: Vertices 0, 1, 3 are vertices of odd degree. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 28-Feb-2021.) |
| Ref | Expression |
|---|---|
| konigsberg.v | ⊢ 𝑉 = (0...3) |
| konigsberg.e | ⊢ 𝐸 = 〈“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”〉 |
| konigsberg.g | ⊢ 𝐺 = 〈𝑉, 𝐸〉 |
| Ref | Expression |
|---|---|
| konigsberglem4 | ⊢ {0, 1, 3} ⊆ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3nn0 12399 | . . . . . 6 ⊢ 3 ∈ ℕ0 | |
| 2 | 0elfz 13524 | . . . . . 6 ⊢ (3 ∈ ℕ0 → 0 ∈ (0...3)) | |
| 3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ 0 ∈ (0...3) |
| 4 | konigsberg.v | . . . . 5 ⊢ 𝑉 = (0...3) | |
| 5 | 3, 4 | eleqtrri 2830 | . . . 4 ⊢ 0 ∈ 𝑉 |
| 6 | n2dvds3 16282 | . . . . 5 ⊢ ¬ 2 ∥ 3 | |
| 7 | konigsberg.e | . . . . . . 7 ⊢ 𝐸 = 〈“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”〉 | |
| 8 | konigsberg.g | . . . . . . 7 ⊢ 𝐺 = 〈𝑉, 𝐸〉 | |
| 9 | 4, 7, 8 | konigsberglem1 30232 | . . . . . 6 ⊢ ((VtxDeg‘𝐺)‘0) = 3 |
| 10 | 9 | breq2i 5097 | . . . . 5 ⊢ (2 ∥ ((VtxDeg‘𝐺)‘0) ↔ 2 ∥ 3) |
| 11 | 6, 10 | mtbir 323 | . . . 4 ⊢ ¬ 2 ∥ ((VtxDeg‘𝐺)‘0) |
| 12 | fveq2 6822 | . . . . . . 7 ⊢ (𝑥 = 0 → ((VtxDeg‘𝐺)‘𝑥) = ((VtxDeg‘𝐺)‘0)) | |
| 13 | 12 | breq2d 5101 | . . . . . 6 ⊢ (𝑥 = 0 → (2 ∥ ((VtxDeg‘𝐺)‘𝑥) ↔ 2 ∥ ((VtxDeg‘𝐺)‘0))) |
| 14 | 13 | notbid 318 | . . . . 5 ⊢ (𝑥 = 0 → (¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥) ↔ ¬ 2 ∥ ((VtxDeg‘𝐺)‘0))) |
| 15 | 14 | elrab 3642 | . . . 4 ⊢ (0 ∈ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} ↔ (0 ∈ 𝑉 ∧ ¬ 2 ∥ ((VtxDeg‘𝐺)‘0))) |
| 16 | 5, 11, 15 | mpbir2an 711 | . . 3 ⊢ 0 ∈ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} |
| 17 | 1nn0 12397 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
| 18 | 1le3 12332 | . . . . . 6 ⊢ 1 ≤ 3 | |
| 19 | elfz2nn0 13518 | . . . . . 6 ⊢ (1 ∈ (0...3) ↔ (1 ∈ ℕ0 ∧ 3 ∈ ℕ0 ∧ 1 ≤ 3)) | |
| 20 | 17, 1, 18, 19 | mpbir3an 1342 | . . . . 5 ⊢ 1 ∈ (0...3) |
| 21 | 20, 4 | eleqtrri 2830 | . . . 4 ⊢ 1 ∈ 𝑉 |
| 22 | 4, 7, 8 | konigsberglem2 30233 | . . . . . 6 ⊢ ((VtxDeg‘𝐺)‘1) = 3 |
| 23 | 22 | breq2i 5097 | . . . . 5 ⊢ (2 ∥ ((VtxDeg‘𝐺)‘1) ↔ 2 ∥ 3) |
| 24 | 6, 23 | mtbir 323 | . . . 4 ⊢ ¬ 2 ∥ ((VtxDeg‘𝐺)‘1) |
| 25 | fveq2 6822 | . . . . . . 7 ⊢ (𝑥 = 1 → ((VtxDeg‘𝐺)‘𝑥) = ((VtxDeg‘𝐺)‘1)) | |
| 26 | 25 | breq2d 5101 | . . . . . 6 ⊢ (𝑥 = 1 → (2 ∥ ((VtxDeg‘𝐺)‘𝑥) ↔ 2 ∥ ((VtxDeg‘𝐺)‘1))) |
| 27 | 26 | notbid 318 | . . . . 5 ⊢ (𝑥 = 1 → (¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥) ↔ ¬ 2 ∥ ((VtxDeg‘𝐺)‘1))) |
| 28 | 27 | elrab 3642 | . . . 4 ⊢ (1 ∈ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} ↔ (1 ∈ 𝑉 ∧ ¬ 2 ∥ ((VtxDeg‘𝐺)‘1))) |
| 29 | 21, 24, 28 | mpbir2an 711 | . . 3 ⊢ 1 ∈ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} |
| 30 | 3re 12205 | . . . . . . 7 ⊢ 3 ∈ ℝ | |
| 31 | 30 | leidi 11651 | . . . . . 6 ⊢ 3 ≤ 3 |
| 32 | elfz2nn0 13518 | . . . . . 6 ⊢ (3 ∈ (0...3) ↔ (3 ∈ ℕ0 ∧ 3 ∈ ℕ0 ∧ 3 ≤ 3)) | |
| 33 | 1, 1, 31, 32 | mpbir3an 1342 | . . . . 5 ⊢ 3 ∈ (0...3) |
| 34 | 33, 4 | eleqtrri 2830 | . . . 4 ⊢ 3 ∈ 𝑉 |
| 35 | 4, 7, 8 | konigsberglem3 30234 | . . . . . 6 ⊢ ((VtxDeg‘𝐺)‘3) = 3 |
| 36 | 35 | breq2i 5097 | . . . . 5 ⊢ (2 ∥ ((VtxDeg‘𝐺)‘3) ↔ 2 ∥ 3) |
| 37 | 6, 36 | mtbir 323 | . . . 4 ⊢ ¬ 2 ∥ ((VtxDeg‘𝐺)‘3) |
| 38 | fveq2 6822 | . . . . . . 7 ⊢ (𝑥 = 3 → ((VtxDeg‘𝐺)‘𝑥) = ((VtxDeg‘𝐺)‘3)) | |
| 39 | 38 | breq2d 5101 | . . . . . 6 ⊢ (𝑥 = 3 → (2 ∥ ((VtxDeg‘𝐺)‘𝑥) ↔ 2 ∥ ((VtxDeg‘𝐺)‘3))) |
| 40 | 39 | notbid 318 | . . . . 5 ⊢ (𝑥 = 3 → (¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥) ↔ ¬ 2 ∥ ((VtxDeg‘𝐺)‘3))) |
| 41 | 40 | elrab 3642 | . . . 4 ⊢ (3 ∈ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} ↔ (3 ∈ 𝑉 ∧ ¬ 2 ∥ ((VtxDeg‘𝐺)‘3))) |
| 42 | 34, 37, 41 | mpbir2an 711 | . . 3 ⊢ 3 ∈ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} |
| 43 | 16, 29, 42 | 3pm3.2i 1340 | . 2 ⊢ (0 ∈ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} ∧ 1 ∈ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} ∧ 3 ∈ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) |
| 44 | c0ex 11106 | . . 3 ⊢ 0 ∈ V | |
| 45 | 1ex 11108 | . . 3 ⊢ 1 ∈ V | |
| 46 | 3ex 12207 | . . 3 ⊢ 3 ∈ V | |
| 47 | 44, 45, 46 | tpss 4786 | . 2 ⊢ ((0 ∈ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} ∧ 1 ∈ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} ∧ 3 ∈ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ↔ {0, 1, 3} ⊆ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) |
| 48 | 43, 47 | mpbi 230 | 1 ⊢ {0, 1, 3} ⊆ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 {crab 3395 ⊆ wss 3897 {cpr 4575 {ctp 4577 〈cop 4579 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 0cc0 11006 1c1 11007 ≤ cle 11147 2c2 12180 3c3 12181 ℕ0cn0 12381 ...cfz 13407 〈“cs7 14753 ∥ cdvds 16163 VtxDegcvtxdg 29444 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-oadd 8389 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-dju 9794 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-n0 12382 df-xnn0 12455 df-z 12469 df-uz 12733 df-xadd 13012 df-fz 13408 df-fzo 13555 df-hash 14238 df-word 14421 df-concat 14478 df-s1 14504 df-s2 14755 df-s3 14756 df-s4 14757 df-s5 14758 df-s6 14759 df-s7 14760 df-dvds 16164 df-vtx 28976 df-iedg 28977 df-vtxdg 29445 |
| This theorem is referenced by: konigsberglem5 30236 |
| Copyright terms: Public domain | W3C validator |