| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > konigsberglem4 | Structured version Visualization version GIF version | ||
| Description: Lemma 4 for konigsberg 30238: Vertices 0, 1, 3 are vertices of odd degree. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 28-Feb-2021.) |
| Ref | Expression |
|---|---|
| konigsberg.v | ⊢ 𝑉 = (0...3) |
| konigsberg.e | ⊢ 𝐸 = 〈“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”〉 |
| konigsberg.g | ⊢ 𝐺 = 〈𝑉, 𝐸〉 |
| Ref | Expression |
|---|---|
| konigsberglem4 | ⊢ {0, 1, 3} ⊆ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3nn0 12519 | . . . . . 6 ⊢ 3 ∈ ℕ0 | |
| 2 | 0elfz 13641 | . . . . . 6 ⊢ (3 ∈ ℕ0 → 0 ∈ (0...3)) | |
| 3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ 0 ∈ (0...3) |
| 4 | konigsberg.v | . . . . 5 ⊢ 𝑉 = (0...3) | |
| 5 | 3, 4 | eleqtrri 2833 | . . . 4 ⊢ 0 ∈ 𝑉 |
| 6 | n2dvds3 16390 | . . . . 5 ⊢ ¬ 2 ∥ 3 | |
| 7 | konigsberg.e | . . . . . . 7 ⊢ 𝐸 = 〈“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”〉 | |
| 8 | konigsberg.g | . . . . . . 7 ⊢ 𝐺 = 〈𝑉, 𝐸〉 | |
| 9 | 4, 7, 8 | konigsberglem1 30233 | . . . . . 6 ⊢ ((VtxDeg‘𝐺)‘0) = 3 |
| 10 | 9 | breq2i 5127 | . . . . 5 ⊢ (2 ∥ ((VtxDeg‘𝐺)‘0) ↔ 2 ∥ 3) |
| 11 | 6, 10 | mtbir 323 | . . . 4 ⊢ ¬ 2 ∥ ((VtxDeg‘𝐺)‘0) |
| 12 | fveq2 6876 | . . . . . . 7 ⊢ (𝑥 = 0 → ((VtxDeg‘𝐺)‘𝑥) = ((VtxDeg‘𝐺)‘0)) | |
| 13 | 12 | breq2d 5131 | . . . . . 6 ⊢ (𝑥 = 0 → (2 ∥ ((VtxDeg‘𝐺)‘𝑥) ↔ 2 ∥ ((VtxDeg‘𝐺)‘0))) |
| 14 | 13 | notbid 318 | . . . . 5 ⊢ (𝑥 = 0 → (¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥) ↔ ¬ 2 ∥ ((VtxDeg‘𝐺)‘0))) |
| 15 | 14 | elrab 3671 | . . . 4 ⊢ (0 ∈ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} ↔ (0 ∈ 𝑉 ∧ ¬ 2 ∥ ((VtxDeg‘𝐺)‘0))) |
| 16 | 5, 11, 15 | mpbir2an 711 | . . 3 ⊢ 0 ∈ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} |
| 17 | 1nn0 12517 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
| 18 | 1le3 12452 | . . . . . 6 ⊢ 1 ≤ 3 | |
| 19 | elfz2nn0 13635 | . . . . . 6 ⊢ (1 ∈ (0...3) ↔ (1 ∈ ℕ0 ∧ 3 ∈ ℕ0 ∧ 1 ≤ 3)) | |
| 20 | 17, 1, 18, 19 | mpbir3an 1342 | . . . . 5 ⊢ 1 ∈ (0...3) |
| 21 | 20, 4 | eleqtrri 2833 | . . . 4 ⊢ 1 ∈ 𝑉 |
| 22 | 4, 7, 8 | konigsberglem2 30234 | . . . . . 6 ⊢ ((VtxDeg‘𝐺)‘1) = 3 |
| 23 | 22 | breq2i 5127 | . . . . 5 ⊢ (2 ∥ ((VtxDeg‘𝐺)‘1) ↔ 2 ∥ 3) |
| 24 | 6, 23 | mtbir 323 | . . . 4 ⊢ ¬ 2 ∥ ((VtxDeg‘𝐺)‘1) |
| 25 | fveq2 6876 | . . . . . . 7 ⊢ (𝑥 = 1 → ((VtxDeg‘𝐺)‘𝑥) = ((VtxDeg‘𝐺)‘1)) | |
| 26 | 25 | breq2d 5131 | . . . . . 6 ⊢ (𝑥 = 1 → (2 ∥ ((VtxDeg‘𝐺)‘𝑥) ↔ 2 ∥ ((VtxDeg‘𝐺)‘1))) |
| 27 | 26 | notbid 318 | . . . . 5 ⊢ (𝑥 = 1 → (¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥) ↔ ¬ 2 ∥ ((VtxDeg‘𝐺)‘1))) |
| 28 | 27 | elrab 3671 | . . . 4 ⊢ (1 ∈ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} ↔ (1 ∈ 𝑉 ∧ ¬ 2 ∥ ((VtxDeg‘𝐺)‘1))) |
| 29 | 21, 24, 28 | mpbir2an 711 | . . 3 ⊢ 1 ∈ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} |
| 30 | 3re 12320 | . . . . . . 7 ⊢ 3 ∈ ℝ | |
| 31 | 30 | leidi 11771 | . . . . . 6 ⊢ 3 ≤ 3 |
| 32 | elfz2nn0 13635 | . . . . . 6 ⊢ (3 ∈ (0...3) ↔ (3 ∈ ℕ0 ∧ 3 ∈ ℕ0 ∧ 3 ≤ 3)) | |
| 33 | 1, 1, 31, 32 | mpbir3an 1342 | . . . . 5 ⊢ 3 ∈ (0...3) |
| 34 | 33, 4 | eleqtrri 2833 | . . . 4 ⊢ 3 ∈ 𝑉 |
| 35 | 4, 7, 8 | konigsberglem3 30235 | . . . . . 6 ⊢ ((VtxDeg‘𝐺)‘3) = 3 |
| 36 | 35 | breq2i 5127 | . . . . 5 ⊢ (2 ∥ ((VtxDeg‘𝐺)‘3) ↔ 2 ∥ 3) |
| 37 | 6, 36 | mtbir 323 | . . . 4 ⊢ ¬ 2 ∥ ((VtxDeg‘𝐺)‘3) |
| 38 | fveq2 6876 | . . . . . . 7 ⊢ (𝑥 = 3 → ((VtxDeg‘𝐺)‘𝑥) = ((VtxDeg‘𝐺)‘3)) | |
| 39 | 38 | breq2d 5131 | . . . . . 6 ⊢ (𝑥 = 3 → (2 ∥ ((VtxDeg‘𝐺)‘𝑥) ↔ 2 ∥ ((VtxDeg‘𝐺)‘3))) |
| 40 | 39 | notbid 318 | . . . . 5 ⊢ (𝑥 = 3 → (¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥) ↔ ¬ 2 ∥ ((VtxDeg‘𝐺)‘3))) |
| 41 | 40 | elrab 3671 | . . . 4 ⊢ (3 ∈ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} ↔ (3 ∈ 𝑉 ∧ ¬ 2 ∥ ((VtxDeg‘𝐺)‘3))) |
| 42 | 34, 37, 41 | mpbir2an 711 | . . 3 ⊢ 3 ∈ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} |
| 43 | 16, 29, 42 | 3pm3.2i 1340 | . 2 ⊢ (0 ∈ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} ∧ 1 ∈ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} ∧ 3 ∈ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) |
| 44 | c0ex 11229 | . . 3 ⊢ 0 ∈ V | |
| 45 | 1ex 11231 | . . 3 ⊢ 1 ∈ V | |
| 46 | 3ex 12322 | . . 3 ⊢ 3 ∈ V | |
| 47 | 44, 45, 46 | tpss 4813 | . 2 ⊢ ((0 ∈ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} ∧ 1 ∈ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} ∧ 3 ∈ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ↔ {0, 1, 3} ⊆ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) |
| 48 | 43, 47 | mpbi 230 | 1 ⊢ {0, 1, 3} ⊆ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 {crab 3415 ⊆ wss 3926 {cpr 4603 {ctp 4605 〈cop 4607 class class class wbr 5119 ‘cfv 6531 (class class class)co 7405 0cc0 11129 1c1 11130 ≤ cle 11270 2c2 12295 3c3 12296 ℕ0cn0 12501 ...cfz 13524 〈“cs7 14865 ∥ cdvds 16272 VtxDegcvtxdg 29445 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-oadd 8484 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-dju 9915 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-n0 12502 df-xnn0 12575 df-z 12589 df-uz 12853 df-xadd 13129 df-fz 13525 df-fzo 13672 df-hash 14349 df-word 14532 df-concat 14589 df-s1 14614 df-s2 14867 df-s3 14868 df-s4 14869 df-s5 14870 df-s6 14871 df-s7 14872 df-dvds 16273 df-vtx 28977 df-iedg 28978 df-vtxdg 29446 |
| This theorem is referenced by: konigsberglem5 30237 |
| Copyright terms: Public domain | W3C validator |