Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem114 Structured version   Visualization version   GIF version

Theorem fourierdlem114 43651
Description: Fourier series convergence for periodic, piecewise smooth functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem114.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem114.t 𝑇 = (2 · π)
fourierdlem114.per ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
fourierdlem114.g 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π))
fourierdlem114.dmdv (𝜑 → ((-π(,)π) ∖ dom 𝐺) ∈ Fin)
fourierdlem114.gcn (𝜑𝐺 ∈ (dom 𝐺cn→ℂ))
fourierdlem114.rlim ((𝜑𝑥 ∈ ((-π[,)π) ∖ dom 𝐺)) → ((𝐺 ↾ (𝑥(,)+∞)) lim 𝑥) ≠ ∅)
fourierdlem114.llim ((𝜑𝑥 ∈ ((-π(,]π) ∖ dom 𝐺)) → ((𝐺 ↾ (-∞(,)𝑥)) lim 𝑥) ≠ ∅)
fourierdlem114.x (𝜑𝑋 ∈ ℝ)
fourierdlem114.l (𝜑𝐿 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
fourierdlem114.r (𝜑𝑅 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
fourierdlem114.a 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))
fourierdlem114.b 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))
fourierdlem114.s 𝑆 = (𝑛 ∈ ℕ ↦ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))))
fourierdlem114.p 𝑃 = (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑛) = π) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem114.e 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((π − 𝑥) / 𝑇)) · 𝑇)))
fourierdlem114.h 𝐻 = ({-π, π, (𝐸𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺))
fourierdlem114.m 𝑀 = ((♯‘𝐻) − 1)
fourierdlem114.q 𝑄 = (℩𝑔𝑔 Isom < , < ((0...𝑀), 𝐻))
Assertion
Ref Expression
fourierdlem114 (𝜑 → (seq1( + , 𝑆) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)) ∧ (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝐿 + 𝑅) / 2)))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝑥,𝐸   𝑖,𝐹,𝑛,𝑥   𝑖,𝐺,𝑥   𝑔,𝐻   𝑖,𝐿,𝑛   𝑔,𝑀   𝑖,𝑀,𝑛,𝑝   𝑥,𝑀   𝑄,𝑔   𝑄,𝑖,𝑛,𝑝   𝑥,𝑄   𝑅,𝑖,𝑛   𝑇,𝑖,𝑛,𝑝   𝑥,𝑇   𝑖,𝑋,𝑛,𝑝   𝑥,𝑋   𝜑,𝑔   𝜑,𝑖,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑝)   𝐴(𝑥,𝑔,𝑖,𝑝)   𝐵(𝑥,𝑔,𝑖,𝑝)   𝑃(𝑥,𝑔,𝑖,𝑛,𝑝)   𝑅(𝑥,𝑔,𝑝)   𝑆(𝑥,𝑔,𝑖,𝑛,𝑝)   𝑇(𝑔)   𝐸(𝑔,𝑖,𝑛,𝑝)   𝐹(𝑔,𝑝)   𝐺(𝑔,𝑛,𝑝)   𝐻(𝑥,𝑖,𝑛,𝑝)   𝐿(𝑥,𝑔,𝑝)   𝑋(𝑔)

Proof of Theorem fourierdlem114
StepHypRef Expression
1 fourierdlem114.f . 2 (𝜑𝐹:ℝ⟶ℝ)
2 fourierdlem114.t . 2 𝑇 = (2 · π)
3 fourierdlem114.per . 2 ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
4 fourierdlem114.x . 2 (𝜑𝑋 ∈ ℝ)
5 fourierdlem114.l . 2 (𝜑𝐿 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
6 fourierdlem114.r . 2 (𝜑𝑅 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
7 fourierdlem114.p . 2 𝑃 = (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑛) = π) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
8 fourierdlem114.m . . 3 𝑀 = ((♯‘𝐻) − 1)
9 2z 12282 . . . . . 6 2 ∈ ℤ
109a1i 11 . . . . 5 (𝜑 → 2 ∈ ℤ)
11 fourierdlem114.h . . . . . . . 8 𝐻 = ({-π, π, (𝐸𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺))
12 tpfi 9020 . . . . . . . . . 10 {-π, π, (𝐸𝑋)} ∈ Fin
1312a1i 11 . . . . . . . . 9 (𝜑 → {-π, π, (𝐸𝑋)} ∈ Fin)
14 pire 25520 . . . . . . . . . . . . . . 15 π ∈ ℝ
1514renegcli 11212 . . . . . . . . . . . . . 14 -π ∈ ℝ
1615rexri 10964 . . . . . . . . . . . . 13 -π ∈ ℝ*
1714rexri 10964 . . . . . . . . . . . . 13 π ∈ ℝ*
18 negpilt0 42708 . . . . . . . . . . . . . . 15 -π < 0
19 pipos 25522 . . . . . . . . . . . . . . 15 0 < π
20 0re 10908 . . . . . . . . . . . . . . . 16 0 ∈ ℝ
2115, 20, 14lttri 11031 . . . . . . . . . . . . . . 15 ((-π < 0 ∧ 0 < π) → -π < π)
2218, 19, 21mp2an 688 . . . . . . . . . . . . . 14 -π < π
2315, 14, 22ltleii 11028 . . . . . . . . . . . . 13 -π ≤ π
24 prunioo 13142 . . . . . . . . . . . . 13 ((-π ∈ ℝ* ∧ π ∈ ℝ* ∧ -π ≤ π) → ((-π(,)π) ∪ {-π, π}) = (-π[,]π))
2516, 17, 23, 24mp3an 1459 . . . . . . . . . . . 12 ((-π(,)π) ∪ {-π, π}) = (-π[,]π)
2625difeq1i 4049 . . . . . . . . . . 11 (((-π(,)π) ∪ {-π, π}) ∖ dom 𝐺) = ((-π[,]π) ∖ dom 𝐺)
27 difundir 4211 . . . . . . . . . . 11 (((-π(,)π) ∪ {-π, π}) ∖ dom 𝐺) = (((-π(,)π) ∖ dom 𝐺) ∪ ({-π, π} ∖ dom 𝐺))
2826, 27eqtr3i 2768 . . . . . . . . . 10 ((-π[,]π) ∖ dom 𝐺) = (((-π(,)π) ∖ dom 𝐺) ∪ ({-π, π} ∖ dom 𝐺))
29 fourierdlem114.dmdv . . . . . . . . . . 11 (𝜑 → ((-π(,)π) ∖ dom 𝐺) ∈ Fin)
30 prfi 9019 . . . . . . . . . . . 12 {-π, π} ∈ Fin
31 diffi 8979 . . . . . . . . . . . 12 ({-π, π} ∈ Fin → ({-π, π} ∖ dom 𝐺) ∈ Fin)
3230, 31mp1i 13 . . . . . . . . . . 11 (𝜑 → ({-π, π} ∖ dom 𝐺) ∈ Fin)
33 unfi 8917 . . . . . . . . . . 11 ((((-π(,)π) ∖ dom 𝐺) ∈ Fin ∧ ({-π, π} ∖ dom 𝐺) ∈ Fin) → (((-π(,)π) ∖ dom 𝐺) ∪ ({-π, π} ∖ dom 𝐺)) ∈ Fin)
3429, 32, 33syl2anc 583 . . . . . . . . . 10 (𝜑 → (((-π(,)π) ∖ dom 𝐺) ∪ ({-π, π} ∖ dom 𝐺)) ∈ Fin)
3528, 34eqeltrid 2843 . . . . . . . . 9 (𝜑 → ((-π[,]π) ∖ dom 𝐺) ∈ Fin)
36 unfi 8917 . . . . . . . . 9 (({-π, π, (𝐸𝑋)} ∈ Fin ∧ ((-π[,]π) ∖ dom 𝐺) ∈ Fin) → ({-π, π, (𝐸𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺)) ∈ Fin)
3713, 35, 36syl2anc 583 . . . . . . . 8 (𝜑 → ({-π, π, (𝐸𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺)) ∈ Fin)
3811, 37eqeltrid 2843 . . . . . . 7 (𝜑𝐻 ∈ Fin)
39 hashcl 13999 . . . . . . 7 (𝐻 ∈ Fin → (♯‘𝐻) ∈ ℕ0)
4038, 39syl 17 . . . . . 6 (𝜑 → (♯‘𝐻) ∈ ℕ0)
4140nn0zd 12353 . . . . 5 (𝜑 → (♯‘𝐻) ∈ ℤ)
4215, 22ltneii 11018 . . . . . . 7 -π ≠ π
43 hashprg 14038 . . . . . . . 8 ((-π ∈ ℝ ∧ π ∈ ℝ) → (-π ≠ π ↔ (♯‘{-π, π}) = 2))
4415, 14, 43mp2an 688 . . . . . . 7 (-π ≠ π ↔ (♯‘{-π, π}) = 2)
4542, 44mpbi 229 . . . . . 6 (♯‘{-π, π}) = 2
4612elexi 3441 . . . . . . . . . 10 {-π, π, (𝐸𝑋)} ∈ V
47 ovex 7288 . . . . . . . . . . 11 (-π[,]π) ∈ V
48 difexg 5246 . . . . . . . . . . 11 ((-π[,]π) ∈ V → ((-π[,]π) ∖ dom 𝐺) ∈ V)
4947, 48ax-mp 5 . . . . . . . . . 10 ((-π[,]π) ∖ dom 𝐺) ∈ V
5046, 49unex 7574 . . . . . . . . 9 ({-π, π, (𝐸𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺)) ∈ V
5111, 50eqeltri 2835 . . . . . . . 8 𝐻 ∈ V
52 negex 11149 . . . . . . . . . . 11 -π ∈ V
5352tpid1 4701 . . . . . . . . . 10 -π ∈ {-π, π, (𝐸𝑋)}
5414elexi 3441 . . . . . . . . . . 11 π ∈ V
5554tpid2 4703 . . . . . . . . . 10 π ∈ {-π, π, (𝐸𝑋)}
56 prssi 4751 . . . . . . . . . 10 ((-π ∈ {-π, π, (𝐸𝑋)} ∧ π ∈ {-π, π, (𝐸𝑋)}) → {-π, π} ⊆ {-π, π, (𝐸𝑋)})
5753, 55, 56mp2an 688 . . . . . . . . 9 {-π, π} ⊆ {-π, π, (𝐸𝑋)}
58 ssun1 4102 . . . . . . . . . 10 {-π, π, (𝐸𝑋)} ⊆ ({-π, π, (𝐸𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺))
5958, 11sseqtrri 3954 . . . . . . . . 9 {-π, π, (𝐸𝑋)} ⊆ 𝐻
6057, 59sstri 3926 . . . . . . . 8 {-π, π} ⊆ 𝐻
61 hashss 14052 . . . . . . . 8 ((𝐻 ∈ V ∧ {-π, π} ⊆ 𝐻) → (♯‘{-π, π}) ≤ (♯‘𝐻))
6251, 60, 61mp2an 688 . . . . . . 7 (♯‘{-π, π}) ≤ (♯‘𝐻)
6362a1i 11 . . . . . 6 (𝜑 → (♯‘{-π, π}) ≤ (♯‘𝐻))
6445, 63eqbrtrrid 5106 . . . . 5 (𝜑 → 2 ≤ (♯‘𝐻))
65 eluz2 12517 . . . . 5 ((♯‘𝐻) ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ (♯‘𝐻) ∈ ℤ ∧ 2 ≤ (♯‘𝐻)))
6610, 41, 64, 65syl3anbrc 1341 . . . 4 (𝜑 → (♯‘𝐻) ∈ (ℤ‘2))
67 uz2m1nn 12592 . . . 4 ((♯‘𝐻) ∈ (ℤ‘2) → ((♯‘𝐻) − 1) ∈ ℕ)
6866, 67syl 17 . . 3 (𝜑 → ((♯‘𝐻) − 1) ∈ ℕ)
698, 68eqeltrid 2843 . 2 (𝜑𝑀 ∈ ℕ)
7015a1i 11 . . . . . . . . . . 11 (𝜑 → -π ∈ ℝ)
7114a1i 11 . . . . . . . . . . 11 (𝜑 → π ∈ ℝ)
72 negpitopissre 25601 . . . . . . . . . . . 12 (-π(,]π) ⊆ ℝ
7322a1i 11 . . . . . . . . . . . . . 14 (𝜑 → -π < π)
74 picn 25521 . . . . . . . . . . . . . . . 16 π ∈ ℂ
75742timesi 12041 . . . . . . . . . . . . . . 15 (2 · π) = (π + π)
7674, 74subnegi 11230 . . . . . . . . . . . . . . 15 (π − -π) = (π + π)
7775, 2, 763eqtr4i 2776 . . . . . . . . . . . . . 14 𝑇 = (π − -π)
78 fourierdlem114.e . . . . . . . . . . . . . 14 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((π − 𝑥) / 𝑇)) · 𝑇)))
7970, 71, 73, 77, 78fourierdlem4 43542 . . . . . . . . . . . . 13 (𝜑𝐸:ℝ⟶(-π(,]π))
8079, 4ffvelrnd 6944 . . . . . . . . . . . 12 (𝜑 → (𝐸𝑋) ∈ (-π(,]π))
8172, 80sselid 3915 . . . . . . . . . . 11 (𝜑 → (𝐸𝑋) ∈ ℝ)
8270, 71, 813jca 1126 . . . . . . . . . 10 (𝜑 → (-π ∈ ℝ ∧ π ∈ ℝ ∧ (𝐸𝑋) ∈ ℝ))
83 fvex 6769 . . . . . . . . . . 11 (𝐸𝑋) ∈ V
8452, 54, 83tpss 4765 . . . . . . . . . 10 ((-π ∈ ℝ ∧ π ∈ ℝ ∧ (𝐸𝑋) ∈ ℝ) ↔ {-π, π, (𝐸𝑋)} ⊆ ℝ)
8582, 84sylib 217 . . . . . . . . 9 (𝜑 → {-π, π, (𝐸𝑋)} ⊆ ℝ)
86 iccssre 13090 . . . . . . . . . . 11 ((-π ∈ ℝ ∧ π ∈ ℝ) → (-π[,]π) ⊆ ℝ)
8715, 14, 86mp2an 688 . . . . . . . . . 10 (-π[,]π) ⊆ ℝ
88 ssdifss 4066 . . . . . . . . . 10 ((-π[,]π) ⊆ ℝ → ((-π[,]π) ∖ dom 𝐺) ⊆ ℝ)
8987, 88mp1i 13 . . . . . . . . 9 (𝜑 → ((-π[,]π) ∖ dom 𝐺) ⊆ ℝ)
9085, 89unssd 4116 . . . . . . . 8 (𝜑 → ({-π, π, (𝐸𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺)) ⊆ ℝ)
9111, 90eqsstrid 3965 . . . . . . 7 (𝜑𝐻 ⊆ ℝ)
92 fourierdlem114.q . . . . . . 7 𝑄 = (℩𝑔𝑔 Isom < , < ((0...𝑀), 𝐻))
9338, 91, 92, 8fourierdlem36 43574 . . . . . 6 (𝜑𝑄 Isom < , < ((0...𝑀), 𝐻))
94 isof1o 7174 . . . . . 6 (𝑄 Isom < , < ((0...𝑀), 𝐻) → 𝑄:(0...𝑀)–1-1-onto𝐻)
95 f1of 6700 . . . . . 6 (𝑄:(0...𝑀)–1-1-onto𝐻𝑄:(0...𝑀)⟶𝐻)
9693, 94, 953syl 18 . . . . 5 (𝜑𝑄:(0...𝑀)⟶𝐻)
9796, 91fssd 6602 . . . 4 (𝜑𝑄:(0...𝑀)⟶ℝ)
98 reex 10893 . . . . 5 ℝ ∈ V
99 ovex 7288 . . . . 5 (0...𝑀) ∈ V
10098, 99elmap 8617 . . . 4 (𝑄 ∈ (ℝ ↑m (0...𝑀)) ↔ 𝑄:(0...𝑀)⟶ℝ)
10197, 100sylibr 233 . . 3 (𝜑𝑄 ∈ (ℝ ↑m (0...𝑀)))
102 fveq2 6756 . . . . . . . . . . 11 (0 = 𝑖 → (𝑄‘0) = (𝑄𝑖))
103102adantl 481 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 0 = 𝑖) → (𝑄‘0) = (𝑄𝑖))
10497ffvelrnda 6943 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0...𝑀)) → (𝑄𝑖) ∈ ℝ)
105104leidd 11471 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0...𝑀)) → (𝑄𝑖) ≤ (𝑄𝑖))
106105adantr 480 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 0 = 𝑖) → (𝑄𝑖) ≤ (𝑄𝑖))
107103, 106eqbrtrd 5092 . . . . . . . . 9 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 0 = 𝑖) → (𝑄‘0) ≤ (𝑄𝑖))
108 elfzelz 13185 . . . . . . . . . . . . 13 (𝑖 ∈ (0...𝑀) → 𝑖 ∈ ℤ)
109108zred 12355 . . . . . . . . . . . 12 (𝑖 ∈ (0...𝑀) → 𝑖 ∈ ℝ)
110109ad2antlr 723 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0...𝑀)) ∧ ¬ 0 = 𝑖) → 𝑖 ∈ ℝ)
111 elfzle1 13188 . . . . . . . . . . . 12 (𝑖 ∈ (0...𝑀) → 0 ≤ 𝑖)
112111ad2antlr 723 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0...𝑀)) ∧ ¬ 0 = 𝑖) → 0 ≤ 𝑖)
113 neqne 2950 . . . . . . . . . . . . 13 (¬ 0 = 𝑖 → 0 ≠ 𝑖)
114113necomd 2998 . . . . . . . . . . . 12 (¬ 0 = 𝑖𝑖 ≠ 0)
115114adantl 481 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0...𝑀)) ∧ ¬ 0 = 𝑖) → 𝑖 ≠ 0)
116110, 112, 115ne0gt0d 11042 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0...𝑀)) ∧ ¬ 0 = 𝑖) → 0 < 𝑖)
117 nnssnn0 12166 . . . . . . . . . . . . . . . . 17 ℕ ⊆ ℕ0
118 nn0uz 12549 . . . . . . . . . . . . . . . . 17 0 = (ℤ‘0)
119117, 118sseqtri 3953 . . . . . . . . . . . . . . . 16 ℕ ⊆ (ℤ‘0)
120119, 69sselid 3915 . . . . . . . . . . . . . . 15 (𝜑𝑀 ∈ (ℤ‘0))
121 eluzfz1 13192 . . . . . . . . . . . . . . 15 (𝑀 ∈ (ℤ‘0) → 0 ∈ (0...𝑀))
122120, 121syl 17 . . . . . . . . . . . . . 14 (𝜑 → 0 ∈ (0...𝑀))
12396, 122ffvelrnd 6944 . . . . . . . . . . . . 13 (𝜑 → (𝑄‘0) ∈ 𝐻)
12491, 123sseldd 3918 . . . . . . . . . . . 12 (𝜑 → (𝑄‘0) ∈ ℝ)
125124ad2antrr 722 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 0 < 𝑖) → (𝑄‘0) ∈ ℝ)
126104adantr 480 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 0 < 𝑖) → (𝑄𝑖) ∈ ℝ)
127 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 0 < 𝑖) → 0 < 𝑖)
12893ad2antrr 722 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 0 < 𝑖) → 𝑄 Isom < , < ((0...𝑀), 𝐻))
129122anim1i 614 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0...𝑀)) → (0 ∈ (0...𝑀) ∧ 𝑖 ∈ (0...𝑀)))
130129adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 0 < 𝑖) → (0 ∈ (0...𝑀) ∧ 𝑖 ∈ (0...𝑀)))
131 isorel 7177 . . . . . . . . . . . . 13 ((𝑄 Isom < , < ((0...𝑀), 𝐻) ∧ (0 ∈ (0...𝑀) ∧ 𝑖 ∈ (0...𝑀))) → (0 < 𝑖 ↔ (𝑄‘0) < (𝑄𝑖)))
132128, 130, 131syl2anc 583 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 0 < 𝑖) → (0 < 𝑖 ↔ (𝑄‘0) < (𝑄𝑖)))
133127, 132mpbid 231 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 0 < 𝑖) → (𝑄‘0) < (𝑄𝑖))
134125, 126, 133ltled 11053 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 0 < 𝑖) → (𝑄‘0) ≤ (𝑄𝑖))
135116, 134syldan 590 . . . . . . . . 9 (((𝜑𝑖 ∈ (0...𝑀)) ∧ ¬ 0 = 𝑖) → (𝑄‘0) ≤ (𝑄𝑖))
136107, 135pm2.61dan 809 . . . . . . . 8 ((𝜑𝑖 ∈ (0...𝑀)) → (𝑄‘0) ≤ (𝑄𝑖))
137136adantr 480 . . . . . . 7 (((𝜑𝑖 ∈ (0...𝑀)) ∧ (𝑄𝑖) = -π) → (𝑄‘0) ≤ (𝑄𝑖))
138 simpr 484 . . . . . . 7 (((𝜑𝑖 ∈ (0...𝑀)) ∧ (𝑄𝑖) = -π) → (𝑄𝑖) = -π)
139137, 138breqtrd 5096 . . . . . 6 (((𝜑𝑖 ∈ (0...𝑀)) ∧ (𝑄𝑖) = -π) → (𝑄‘0) ≤ -π)
14070rexrd 10956 . . . . . . . 8 (𝜑 → -π ∈ ℝ*)
14171rexrd 10956 . . . . . . . 8 (𝜑 → π ∈ ℝ*)
142 lbicc2 13125 . . . . . . . . . . . . . 14 ((-π ∈ ℝ* ∧ π ∈ ℝ* ∧ -π ≤ π) → -π ∈ (-π[,]π))
14316, 17, 23, 142mp3an 1459 . . . . . . . . . . . . 13 -π ∈ (-π[,]π)
144143a1i 11 . . . . . . . . . . . 12 (𝜑 → -π ∈ (-π[,]π))
145 ubicc2 13126 . . . . . . . . . . . . . 14 ((-π ∈ ℝ* ∧ π ∈ ℝ* ∧ -π ≤ π) → π ∈ (-π[,]π))
14616, 17, 23, 145mp3an 1459 . . . . . . . . . . . . 13 π ∈ (-π[,]π)
147146a1i 11 . . . . . . . . . . . 12 (𝜑 → π ∈ (-π[,]π))
148 iocssicc 13098 . . . . . . . . . . . . 13 (-π(,]π) ⊆ (-π[,]π)
149148, 80sselid 3915 . . . . . . . . . . . 12 (𝜑 → (𝐸𝑋) ∈ (-π[,]π))
150 tpssi 4766 . . . . . . . . . . . 12 ((-π ∈ (-π[,]π) ∧ π ∈ (-π[,]π) ∧ (𝐸𝑋) ∈ (-π[,]π)) → {-π, π, (𝐸𝑋)} ⊆ (-π[,]π))
151144, 147, 149, 150syl3anc 1369 . . . . . . . . . . 11 (𝜑 → {-π, π, (𝐸𝑋)} ⊆ (-π[,]π))
152 difssd 4063 . . . . . . . . . . 11 (𝜑 → ((-π[,]π) ∖ dom 𝐺) ⊆ (-π[,]π))
153151, 152unssd 4116 . . . . . . . . . 10 (𝜑 → ({-π, π, (𝐸𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺)) ⊆ (-π[,]π))
15411, 153eqsstrid 3965 . . . . . . . . 9 (𝜑𝐻 ⊆ (-π[,]π))
155154, 123sseldd 3918 . . . . . . . 8 (𝜑 → (𝑄‘0) ∈ (-π[,]π))
156 iccgelb 13064 . . . . . . . 8 ((-π ∈ ℝ* ∧ π ∈ ℝ* ∧ (𝑄‘0) ∈ (-π[,]π)) → -π ≤ (𝑄‘0))
157140, 141, 155, 156syl3anc 1369 . . . . . . 7 (𝜑 → -π ≤ (𝑄‘0))
158157ad2antrr 722 . . . . . 6 (((𝜑𝑖 ∈ (0...𝑀)) ∧ (𝑄𝑖) = -π) → -π ≤ (𝑄‘0))
159124ad2antrr 722 . . . . . . 7 (((𝜑𝑖 ∈ (0...𝑀)) ∧ (𝑄𝑖) = -π) → (𝑄‘0) ∈ ℝ)
16015a1i 11 . . . . . . 7 (((𝜑𝑖 ∈ (0...𝑀)) ∧ (𝑄𝑖) = -π) → -π ∈ ℝ)
161159, 160letri3d 11047 . . . . . 6 (((𝜑𝑖 ∈ (0...𝑀)) ∧ (𝑄𝑖) = -π) → ((𝑄‘0) = -π ↔ ((𝑄‘0) ≤ -π ∧ -π ≤ (𝑄‘0))))
162139, 158, 161mpbir2and 709 . . . . 5 (((𝜑𝑖 ∈ (0...𝑀)) ∧ (𝑄𝑖) = -π) → (𝑄‘0) = -π)
16359, 53sselii 3914 . . . . . . 7 -π ∈ 𝐻
164 f1ofo 6707 . . . . . . . . 9 (𝑄:(0...𝑀)–1-1-onto𝐻𝑄:(0...𝑀)–onto𝐻)
16594, 164syl 17 . . . . . . . 8 (𝑄 Isom < , < ((0...𝑀), 𝐻) → 𝑄:(0...𝑀)–onto𝐻)
166 forn 6675 . . . . . . . 8 (𝑄:(0...𝑀)–onto𝐻 → ran 𝑄 = 𝐻)
16793, 165, 1663syl 18 . . . . . . 7 (𝜑 → ran 𝑄 = 𝐻)
168163, 167eleqtrrid 2846 . . . . . 6 (𝜑 → -π ∈ ran 𝑄)
169 ffn 6584 . . . . . . 7 (𝑄:(0...𝑀)⟶𝐻𝑄 Fn (0...𝑀))
170 fvelrnb 6812 . . . . . . 7 (𝑄 Fn (0...𝑀) → (-π ∈ ran 𝑄 ↔ ∃𝑖 ∈ (0...𝑀)(𝑄𝑖) = -π))
17196, 169, 1703syl 18 . . . . . 6 (𝜑 → (-π ∈ ran 𝑄 ↔ ∃𝑖 ∈ (0...𝑀)(𝑄𝑖) = -π))
172168, 171mpbid 231 . . . . 5 (𝜑 → ∃𝑖 ∈ (0...𝑀)(𝑄𝑖) = -π)
173162, 172r19.29a 3217 . . . 4 (𝜑 → (𝑄‘0) = -π)
17459, 55sselii 3914 . . . . . . 7 π ∈ 𝐻
175174, 167eleqtrrid 2846 . . . . . 6 (𝜑 → π ∈ ran 𝑄)
176 fvelrnb 6812 . . . . . . 7 (𝑄 Fn (0...𝑀) → (π ∈ ran 𝑄 ↔ ∃𝑖 ∈ (0...𝑀)(𝑄𝑖) = π))
17796, 169, 1763syl 18 . . . . . 6 (𝜑 → (π ∈ ran 𝑄 ↔ ∃𝑖 ∈ (0...𝑀)(𝑄𝑖) = π))
178175, 177mpbid 231 . . . . 5 (𝜑 → ∃𝑖 ∈ (0...𝑀)(𝑄𝑖) = π)
17996, 154fssd 6602 . . . . . . . . . 10 (𝜑𝑄:(0...𝑀)⟶(-π[,]π))
180 eluzfz2 13193 . . . . . . . . . . 11 (𝑀 ∈ (ℤ‘0) → 𝑀 ∈ (0...𝑀))
181120, 180syl 17 . . . . . . . . . 10 (𝜑𝑀 ∈ (0...𝑀))
182179, 181ffvelrnd 6944 . . . . . . . . 9 (𝜑 → (𝑄𝑀) ∈ (-π[,]π))
183 iccleub 13063 . . . . . . . . 9 ((-π ∈ ℝ* ∧ π ∈ ℝ* ∧ (𝑄𝑀) ∈ (-π[,]π)) → (𝑄𝑀) ≤ π)
184140, 141, 182, 183syl3anc 1369 . . . . . . . 8 (𝜑 → (𝑄𝑀) ≤ π)
1851843ad2ant1 1131 . . . . . . 7 ((𝜑𝑖 ∈ (0...𝑀) ∧ (𝑄𝑖) = π) → (𝑄𝑀) ≤ π)
186 id 22 . . . . . . . . . 10 ((𝑄𝑖) = π → (𝑄𝑖) = π)
187186eqcomd 2744 . . . . . . . . 9 ((𝑄𝑖) = π → π = (𝑄𝑖))
1881873ad2ant3 1133 . . . . . . . 8 ((𝜑𝑖 ∈ (0...𝑀) ∧ (𝑄𝑖) = π) → π = (𝑄𝑖))
189105adantr 480 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑖 = 𝑀) → (𝑄𝑖) ≤ (𝑄𝑖))
190 fveq2 6756 . . . . . . . . . . . 12 (𝑖 = 𝑀 → (𝑄𝑖) = (𝑄𝑀))
191190adantl 481 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑖 = 𝑀) → (𝑄𝑖) = (𝑄𝑀))
192189, 191breqtrd 5096 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑖 = 𝑀) → (𝑄𝑖) ≤ (𝑄𝑀))
193109ad2antlr 723 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0...𝑀)) ∧ ¬ 𝑖 = 𝑀) → 𝑖 ∈ ℝ)
194 elfzel2 13183 . . . . . . . . . . . . . 14 (𝑖 ∈ (0...𝑀) → 𝑀 ∈ ℤ)
195194zred 12355 . . . . . . . . . . . . 13 (𝑖 ∈ (0...𝑀) → 𝑀 ∈ ℝ)
196195ad2antlr 723 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0...𝑀)) ∧ ¬ 𝑖 = 𝑀) → 𝑀 ∈ ℝ)
197 elfzle2 13189 . . . . . . . . . . . . 13 (𝑖 ∈ (0...𝑀) → 𝑖𝑀)
198197ad2antlr 723 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0...𝑀)) ∧ ¬ 𝑖 = 𝑀) → 𝑖𝑀)
199 neqne 2950 . . . . . . . . . . . . . 14 𝑖 = 𝑀𝑖𝑀)
200199necomd 2998 . . . . . . . . . . . . 13 𝑖 = 𝑀𝑀𝑖)
201200adantl 481 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0...𝑀)) ∧ ¬ 𝑖 = 𝑀) → 𝑀𝑖)
202193, 196, 198, 201leneltd 11059 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0...𝑀)) ∧ ¬ 𝑖 = 𝑀) → 𝑖 < 𝑀)
203104adantr 480 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑖 < 𝑀) → (𝑄𝑖) ∈ ℝ)
20487, 182sselid 3915 . . . . . . . . . . . . 13 (𝜑 → (𝑄𝑀) ∈ ℝ)
205204ad2antrr 722 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑖 < 𝑀) → (𝑄𝑀) ∈ ℝ)
206 simpr 484 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑖 < 𝑀) → 𝑖 < 𝑀)
20793ad2antrr 722 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑖 < 𝑀) → 𝑄 Isom < , < ((0...𝑀), 𝐻))
208 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0...𝑀)) → 𝑖 ∈ (0...𝑀))
209181adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0...𝑀)) → 𝑀 ∈ (0...𝑀))
210208, 209jca 511 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0...𝑀)) → (𝑖 ∈ (0...𝑀) ∧ 𝑀 ∈ (0...𝑀)))
211210adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑖 < 𝑀) → (𝑖 ∈ (0...𝑀) ∧ 𝑀 ∈ (0...𝑀)))
212 isorel 7177 . . . . . . . . . . . . . 14 ((𝑄 Isom < , < ((0...𝑀), 𝐻) ∧ (𝑖 ∈ (0...𝑀) ∧ 𝑀 ∈ (0...𝑀))) → (𝑖 < 𝑀 ↔ (𝑄𝑖) < (𝑄𝑀)))
213207, 211, 212syl2anc 583 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑖 < 𝑀) → (𝑖 < 𝑀 ↔ (𝑄𝑖) < (𝑄𝑀)))
214206, 213mpbid 231 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑖 < 𝑀) → (𝑄𝑖) < (𝑄𝑀))
215203, 205, 214ltled 11053 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑖 < 𝑀) → (𝑄𝑖) ≤ (𝑄𝑀))
216202, 215syldan 590 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0...𝑀)) ∧ ¬ 𝑖 = 𝑀) → (𝑄𝑖) ≤ (𝑄𝑀))
217192, 216pm2.61dan 809 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...𝑀)) → (𝑄𝑖) ≤ (𝑄𝑀))
2182173adant3 1130 . . . . . . . 8 ((𝜑𝑖 ∈ (0...𝑀) ∧ (𝑄𝑖) = π) → (𝑄𝑖) ≤ (𝑄𝑀))
219188, 218eqbrtrd 5092 . . . . . . 7 ((𝜑𝑖 ∈ (0...𝑀) ∧ (𝑄𝑖) = π) → π ≤ (𝑄𝑀))
2202043ad2ant1 1131 . . . . . . . 8 ((𝜑𝑖 ∈ (0...𝑀) ∧ (𝑄𝑖) = π) → (𝑄𝑀) ∈ ℝ)
22114a1i 11 . . . . . . . 8 ((𝜑𝑖 ∈ (0...𝑀) ∧ (𝑄𝑖) = π) → π ∈ ℝ)
222220, 221letri3d 11047 . . . . . . 7 ((𝜑𝑖 ∈ (0...𝑀) ∧ (𝑄𝑖) = π) → ((𝑄𝑀) = π ↔ ((𝑄𝑀) ≤ π ∧ π ≤ (𝑄𝑀))))
223185, 219, 222mpbir2and 709 . . . . . 6 ((𝜑𝑖 ∈ (0...𝑀) ∧ (𝑄𝑖) = π) → (𝑄𝑀) = π)
224223rexlimdv3a 3214 . . . . 5 (𝜑 → (∃𝑖 ∈ (0...𝑀)(𝑄𝑖) = π → (𝑄𝑀) = π))
225178, 224mpd 15 . . . 4 (𝜑 → (𝑄𝑀) = π)
226 elfzoelz 13316 . . . . . . . . 9 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ ℤ)
227226zred 12355 . . . . . . . 8 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ ℝ)
228227ltp1d 11835 . . . . . . 7 (𝑖 ∈ (0..^𝑀) → 𝑖 < (𝑖 + 1))
229228adantl 481 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 < (𝑖 + 1))
230 elfzofz 13331 . . . . . . . 8 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀))
231 fzofzp1 13412 . . . . . . . 8 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀))
232230, 231jca 511 . . . . . . 7 (𝑖 ∈ (0..^𝑀) → (𝑖 ∈ (0...𝑀) ∧ (𝑖 + 1) ∈ (0...𝑀)))
233 isorel 7177 . . . . . . 7 ((𝑄 Isom < , < ((0...𝑀), 𝐻) ∧ (𝑖 ∈ (0...𝑀) ∧ (𝑖 + 1) ∈ (0...𝑀))) → (𝑖 < (𝑖 + 1) ↔ (𝑄𝑖) < (𝑄‘(𝑖 + 1))))
23493, 232, 233syl2an 595 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑖 < (𝑖 + 1) ↔ (𝑄𝑖) < (𝑄‘(𝑖 + 1))))
235229, 234mpbid 231 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
236235ralrimiva 3107 . . . 4 (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))
237173, 225, 236jca31 514 . . 3 (𝜑 → (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))
2387fourierdlem2 43540 . . . 4 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
23969, 238syl 17 . . 3 (𝜑 → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
240101, 237, 239mpbir2and 709 . 2 (𝜑𝑄 ∈ (𝑃𝑀))
241 fourierdlem114.g . . . . 5 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π))
242241reseq1i 5876 . . . 4 (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (((ℝ D 𝐹) ↾ (-π(,)π)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
24316a1i 11 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → -π ∈ ℝ*)
24417a1i 11 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → π ∈ ℝ*)
245179adantr 480 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶(-π[,]π))
246 simpr 484 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0..^𝑀))
247243, 244, 245, 246fourierdlem27 43565 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ (-π(,)π))
248247resabs1d 5911 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (((ℝ D 𝐹) ↾ (-π(,)π)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
249242, 248eqtr2id 2792 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
250 fourierdlem114.gcn . . . 4 (𝜑𝐺 ∈ (dom 𝐺cn→ℂ))
251250, 7, 69, 240, 11, 167fourierdlem38 43576 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
252249, 251eqeltrd 2839 . 2 ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
253249oveq1d 7270 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) = ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
254250adantr 480 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐺 ∈ (dom 𝐺cn→ℂ))
255 fourierdlem114.rlim . . . . . 6 ((𝜑𝑥 ∈ ((-π[,)π) ∖ dom 𝐺)) → ((𝐺 ↾ (𝑥(,)+∞)) lim 𝑥) ≠ ∅)
256255adantlr 711 . . . . 5 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((-π[,)π) ∖ dom 𝐺)) → ((𝐺 ↾ (𝑥(,)+∞)) lim 𝑥) ≠ ∅)
257 fourierdlem114.llim . . . . . 6 ((𝜑𝑥 ∈ ((-π(,]π) ∖ dom 𝐺)) → ((𝐺 ↾ (-∞(,)𝑥)) lim 𝑥) ≠ ∅)
258257adantlr 711 . . . . 5 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((-π(,]π) ∖ dom 𝐺)) → ((𝐺 ↾ (-∞(,)𝑥)) lim 𝑥) ≠ ∅)
25993adantr 480 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄 Isom < , < ((0...𝑀), 𝐻))
260259, 94, 953syl 18 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶𝐻)
26181adantr 480 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐸𝑋) ∈ ℝ)
262259, 165, 1663syl 18 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → ran 𝑄 = 𝐻)
263254, 256, 258, 259, 260, 246, 235, 247, 261, 11, 262fourierdlem46 43583 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) ≠ ∅ ∧ ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) ≠ ∅))
264263simpld 494 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) ≠ ∅)
265253, 264eqnetrd 3010 . 2 ((𝜑𝑖 ∈ (0..^𝑀)) → (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) ≠ ∅)
266249oveq1d 7270 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) = ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
267263simprd 495 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) ≠ ∅)
268266, 267eqnetrd 3010 . 2 ((𝜑𝑖 ∈ (0..^𝑀)) → (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) ≠ ∅)
269 fourierdlem114.a . 2 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))
270 fourierdlem114.b . 2 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))
271 fourierdlem114.s . 2 𝑆 = (𝑛 ∈ ℕ ↦ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))))
27283tpid3 4706 . . . . 5 (𝐸𝑋) ∈ {-π, π, (𝐸𝑋)}
273 elun1 4106 . . . . 5 ((𝐸𝑋) ∈ {-π, π, (𝐸𝑋)} → (𝐸𝑋) ∈ ({-π, π, (𝐸𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺)))
274272, 273mp1i 13 . . . 4 (𝜑 → (𝐸𝑋) ∈ ({-π, π, (𝐸𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺)))
275274, 11eleqtrrdi 2850 . . 3 (𝜑 → (𝐸𝑋) ∈ 𝐻)
276275, 167eleqtrrd 2842 . 2 (𝜑 → (𝐸𝑋) ∈ ran 𝑄)
2771, 2, 3, 4, 5, 6, 7, 69, 240, 252, 265, 268, 269, 270, 271, 78, 276fourierdlem113 43650 1 (𝜑 → (seq1( + , 𝑆) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)) ∧ (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝐿 + 𝑅) / 2)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  {crab 3067  Vcvv 3422  cdif 3880  cun 3881  wss 3883  c0 4253  {cpr 4560  {ctp 4562   class class class wbr 5070  cmpt 5153  dom cdm 5580  ran crn 5581  cres 5582  cio 6374   Fn wfn 6413  wf 6414  ontowfo 6416  1-1-ontowf1o 6417  cfv 6418   Isom wiso 6419  (class class class)co 7255  m cmap 8573  Fincfn 8691  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  +∞cpnf 10937  -∞cmnf 10938  *cxr 10939   < clt 10940  cle 10941  cmin 11135  -cneg 11136   / cdiv 11562  cn 11903  2c2 11958  0cn0 12163  cz 12249  cuz 12511  (,)cioo 13008  (,]cioc 13009  [,)cico 13010  [,]cicc 13011  ...cfz 13168  ..^cfzo 13311  cfl 13438  seqcseq 13649  chash 13972  cli 15121  Σcsu 15325  sincsin 15701  cosccos 15702  πcpi 15704  cnccncf 23945  citg 24687   lim climc 24931   D cdv 24932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cc 10122  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-symdif 4173  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-disj 5036  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-ofr 7512  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-omul 8272  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-acn 9631  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-xnn0 12236  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-ef 15705  df-sin 15707  df-cos 15708  df-pi 15710  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-t1 22373  df-haus 22374  df-cmp 22446  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-ovol 24533  df-vol 24534  df-mbf 24688  df-itg1 24689  df-itg2 24690  df-ibl 24691  df-itg 24692  df-0p 24739  df-ditg 24916  df-limc 24935  df-dv 24936
This theorem is referenced by:  fourierdlem115  43652
  Copyright terms: Public domain W3C validator