Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem114 Structured version   Visualization version   GIF version

Theorem fourierdlem114 46141
Description: Fourier series convergence for periodic, piecewise smooth functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem114.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem114.t 𝑇 = (2 · π)
fourierdlem114.per ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
fourierdlem114.g 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π))
fourierdlem114.dmdv (𝜑 → ((-π(,)π) ∖ dom 𝐺) ∈ Fin)
fourierdlem114.gcn (𝜑𝐺 ∈ (dom 𝐺cn→ℂ))
fourierdlem114.rlim ((𝜑𝑥 ∈ ((-π[,)π) ∖ dom 𝐺)) → ((𝐺 ↾ (𝑥(,)+∞)) lim 𝑥) ≠ ∅)
fourierdlem114.llim ((𝜑𝑥 ∈ ((-π(,]π) ∖ dom 𝐺)) → ((𝐺 ↾ (-∞(,)𝑥)) lim 𝑥) ≠ ∅)
fourierdlem114.x (𝜑𝑋 ∈ ℝ)
fourierdlem114.l (𝜑𝐿 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
fourierdlem114.r (𝜑𝑅 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
fourierdlem114.a 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))
fourierdlem114.b 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))
fourierdlem114.s 𝑆 = (𝑛 ∈ ℕ ↦ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))))
fourierdlem114.p 𝑃 = (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑛) = π) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem114.e 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((π − 𝑥) / 𝑇)) · 𝑇)))
fourierdlem114.h 𝐻 = ({-π, π, (𝐸𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺))
fourierdlem114.m 𝑀 = ((♯‘𝐻) − 1)
fourierdlem114.q 𝑄 = (℩𝑔𝑔 Isom < , < ((0...𝑀), 𝐻))
Assertion
Ref Expression
fourierdlem114 (𝜑 → (seq1( + , 𝑆) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)) ∧ (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝐿 + 𝑅) / 2)))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝑥,𝐸   𝑖,𝐹,𝑛,𝑥   𝑖,𝐺,𝑥   𝑔,𝐻   𝑖,𝐿,𝑛   𝑔,𝑀   𝑖,𝑀,𝑛,𝑝   𝑥,𝑀   𝑄,𝑔   𝑄,𝑖,𝑛,𝑝   𝑥,𝑄   𝑅,𝑖,𝑛   𝑇,𝑖,𝑛,𝑝   𝑥,𝑇   𝑖,𝑋,𝑛,𝑝   𝑥,𝑋   𝜑,𝑔   𝜑,𝑖,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑝)   𝐴(𝑥,𝑔,𝑖,𝑝)   𝐵(𝑥,𝑔,𝑖,𝑝)   𝑃(𝑥,𝑔,𝑖,𝑛,𝑝)   𝑅(𝑥,𝑔,𝑝)   𝑆(𝑥,𝑔,𝑖,𝑛,𝑝)   𝑇(𝑔)   𝐸(𝑔,𝑖,𝑛,𝑝)   𝐹(𝑔,𝑝)   𝐺(𝑔,𝑛,𝑝)   𝐻(𝑥,𝑖,𝑛,𝑝)   𝐿(𝑥,𝑔,𝑝)   𝑋(𝑔)

Proof of Theorem fourierdlem114
StepHypRef Expression
1 fourierdlem114.f . 2 (𝜑𝐹:ℝ⟶ℝ)
2 fourierdlem114.t . 2 𝑇 = (2 · π)
3 fourierdlem114.per . 2 ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
4 fourierdlem114.x . 2 (𝜑𝑋 ∈ ℝ)
5 fourierdlem114.l . 2 (𝜑𝐿 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
6 fourierdlem114.r . 2 (𝜑𝑅 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
7 fourierdlem114.p . 2 𝑃 = (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑛) = π) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
8 fourierdlem114.m . . 3 𝑀 = ((♯‘𝐻) − 1)
9 2z 12675 . . . . . 6 2 ∈ ℤ
109a1i 11 . . . . 5 (𝜑 → 2 ∈ ℤ)
11 fourierdlem114.h . . . . . . . 8 𝐻 = ({-π, π, (𝐸𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺))
12 tpfi 9393 . . . . . . . . . 10 {-π, π, (𝐸𝑋)} ∈ Fin
1312a1i 11 . . . . . . . . 9 (𝜑 → {-π, π, (𝐸𝑋)} ∈ Fin)
14 pire 26518 . . . . . . . . . . . . . . 15 π ∈ ℝ
1514renegcli 11597 . . . . . . . . . . . . . 14 -π ∈ ℝ
1615rexri 11348 . . . . . . . . . . . . 13 -π ∈ ℝ*
1714rexri 11348 . . . . . . . . . . . . 13 π ∈ ℝ*
18 negpilt0 45195 . . . . . . . . . . . . . . 15 -π < 0
19 pipos 26520 . . . . . . . . . . . . . . 15 0 < π
20 0re 11292 . . . . . . . . . . . . . . . 16 0 ∈ ℝ
2115, 20, 14lttri 11416 . . . . . . . . . . . . . . 15 ((-π < 0 ∧ 0 < π) → -π < π)
2218, 19, 21mp2an 691 . . . . . . . . . . . . . 14 -π < π
2315, 14, 22ltleii 11413 . . . . . . . . . . . . 13 -π ≤ π
24 prunioo 13541 . . . . . . . . . . . . 13 ((-π ∈ ℝ* ∧ π ∈ ℝ* ∧ -π ≤ π) → ((-π(,)π) ∪ {-π, π}) = (-π[,]π))
2516, 17, 23, 24mp3an 1461 . . . . . . . . . . . 12 ((-π(,)π) ∪ {-π, π}) = (-π[,]π)
2625difeq1i 4145 . . . . . . . . . . 11 (((-π(,)π) ∪ {-π, π}) ∖ dom 𝐺) = ((-π[,]π) ∖ dom 𝐺)
27 difundir 4310 . . . . . . . . . . 11 (((-π(,)π) ∪ {-π, π}) ∖ dom 𝐺) = (((-π(,)π) ∖ dom 𝐺) ∪ ({-π, π} ∖ dom 𝐺))
2826, 27eqtr3i 2770 . . . . . . . . . 10 ((-π[,]π) ∖ dom 𝐺) = (((-π(,)π) ∖ dom 𝐺) ∪ ({-π, π} ∖ dom 𝐺))
29 fourierdlem114.dmdv . . . . . . . . . . 11 (𝜑 → ((-π(,)π) ∖ dom 𝐺) ∈ Fin)
30 prfi 9391 . . . . . . . . . . . 12 {-π, π} ∈ Fin
31 diffi 9242 . . . . . . . . . . . 12 ({-π, π} ∈ Fin → ({-π, π} ∖ dom 𝐺) ∈ Fin)
3230, 31mp1i 13 . . . . . . . . . . 11 (𝜑 → ({-π, π} ∖ dom 𝐺) ∈ Fin)
33 unfi 9238 . . . . . . . . . . 11 ((((-π(,)π) ∖ dom 𝐺) ∈ Fin ∧ ({-π, π} ∖ dom 𝐺) ∈ Fin) → (((-π(,)π) ∖ dom 𝐺) ∪ ({-π, π} ∖ dom 𝐺)) ∈ Fin)
3429, 32, 33syl2anc 583 . . . . . . . . . 10 (𝜑 → (((-π(,)π) ∖ dom 𝐺) ∪ ({-π, π} ∖ dom 𝐺)) ∈ Fin)
3528, 34eqeltrid 2848 . . . . . . . . 9 (𝜑 → ((-π[,]π) ∖ dom 𝐺) ∈ Fin)
36 unfi 9238 . . . . . . . . 9 (({-π, π, (𝐸𝑋)} ∈ Fin ∧ ((-π[,]π) ∖ dom 𝐺) ∈ Fin) → ({-π, π, (𝐸𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺)) ∈ Fin)
3713, 35, 36syl2anc 583 . . . . . . . 8 (𝜑 → ({-π, π, (𝐸𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺)) ∈ Fin)
3811, 37eqeltrid 2848 . . . . . . 7 (𝜑𝐻 ∈ Fin)
39 hashcl 14405 . . . . . . 7 (𝐻 ∈ Fin → (♯‘𝐻) ∈ ℕ0)
4038, 39syl 17 . . . . . 6 (𝜑 → (♯‘𝐻) ∈ ℕ0)
4140nn0zd 12665 . . . . 5 (𝜑 → (♯‘𝐻) ∈ ℤ)
4215, 22ltneii 11403 . . . . . . 7 -π ≠ π
43 hashprg 14444 . . . . . . . 8 ((-π ∈ ℝ ∧ π ∈ ℝ) → (-π ≠ π ↔ (♯‘{-π, π}) = 2))
4415, 14, 43mp2an 691 . . . . . . 7 (-π ≠ π ↔ (♯‘{-π, π}) = 2)
4542, 44mpbi 230 . . . . . 6 (♯‘{-π, π}) = 2
4612elexi 3511 . . . . . . . . . 10 {-π, π, (𝐸𝑋)} ∈ V
47 ovex 7481 . . . . . . . . . . 11 (-π[,]π) ∈ V
48 difexg 5347 . . . . . . . . . . 11 ((-π[,]π) ∈ V → ((-π[,]π) ∖ dom 𝐺) ∈ V)
4947, 48ax-mp 5 . . . . . . . . . 10 ((-π[,]π) ∖ dom 𝐺) ∈ V
5046, 49unex 7779 . . . . . . . . 9 ({-π, π, (𝐸𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺)) ∈ V
5111, 50eqeltri 2840 . . . . . . . 8 𝐻 ∈ V
52 negex 11534 . . . . . . . . . . 11 -π ∈ V
5352tpid1 4793 . . . . . . . . . 10 -π ∈ {-π, π, (𝐸𝑋)}
5414elexi 3511 . . . . . . . . . . 11 π ∈ V
5554tpid2 4795 . . . . . . . . . 10 π ∈ {-π, π, (𝐸𝑋)}
56 prssi 4846 . . . . . . . . . 10 ((-π ∈ {-π, π, (𝐸𝑋)} ∧ π ∈ {-π, π, (𝐸𝑋)}) → {-π, π} ⊆ {-π, π, (𝐸𝑋)})
5753, 55, 56mp2an 691 . . . . . . . . 9 {-π, π} ⊆ {-π, π, (𝐸𝑋)}
58 ssun1 4201 . . . . . . . . . 10 {-π, π, (𝐸𝑋)} ⊆ ({-π, π, (𝐸𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺))
5958, 11sseqtrri 4046 . . . . . . . . 9 {-π, π, (𝐸𝑋)} ⊆ 𝐻
6057, 59sstri 4018 . . . . . . . 8 {-π, π} ⊆ 𝐻
61 hashss 14458 . . . . . . . 8 ((𝐻 ∈ V ∧ {-π, π} ⊆ 𝐻) → (♯‘{-π, π}) ≤ (♯‘𝐻))
6251, 60, 61mp2an 691 . . . . . . 7 (♯‘{-π, π}) ≤ (♯‘𝐻)
6362a1i 11 . . . . . 6 (𝜑 → (♯‘{-π, π}) ≤ (♯‘𝐻))
6445, 63eqbrtrrid 5202 . . . . 5 (𝜑 → 2 ≤ (♯‘𝐻))
65 eluz2 12909 . . . . 5 ((♯‘𝐻) ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ (♯‘𝐻) ∈ ℤ ∧ 2 ≤ (♯‘𝐻)))
6610, 41, 64, 65syl3anbrc 1343 . . . 4 (𝜑 → (♯‘𝐻) ∈ (ℤ‘2))
67 uz2m1nn 12988 . . . 4 ((♯‘𝐻) ∈ (ℤ‘2) → ((♯‘𝐻) − 1) ∈ ℕ)
6866, 67syl 17 . . 3 (𝜑 → ((♯‘𝐻) − 1) ∈ ℕ)
698, 68eqeltrid 2848 . 2 (𝜑𝑀 ∈ ℕ)
7015a1i 11 . . . . . . . . . . 11 (𝜑 → -π ∈ ℝ)
7114a1i 11 . . . . . . . . . . 11 (𝜑 → π ∈ ℝ)
72 negpitopissre 26600 . . . . . . . . . . . 12 (-π(,]π) ⊆ ℝ
7322a1i 11 . . . . . . . . . . . . . 14 (𝜑 → -π < π)
74 picn 26519 . . . . . . . . . . . . . . . 16 π ∈ ℂ
75742timesi 12431 . . . . . . . . . . . . . . 15 (2 · π) = (π + π)
7674, 74subnegi 11615 . . . . . . . . . . . . . . 15 (π − -π) = (π + π)
7775, 2, 763eqtr4i 2778 . . . . . . . . . . . . . 14 𝑇 = (π − -π)
78 fourierdlem114.e . . . . . . . . . . . . . 14 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((π − 𝑥) / 𝑇)) · 𝑇)))
7970, 71, 73, 77, 78fourierdlem4 46032 . . . . . . . . . . . . 13 (𝜑𝐸:ℝ⟶(-π(,]π))
8079, 4ffvelcdmd 7119 . . . . . . . . . . . 12 (𝜑 → (𝐸𝑋) ∈ (-π(,]π))
8172, 80sselid 4006 . . . . . . . . . . 11 (𝜑 → (𝐸𝑋) ∈ ℝ)
8270, 71, 813jca 1128 . . . . . . . . . 10 (𝜑 → (-π ∈ ℝ ∧ π ∈ ℝ ∧ (𝐸𝑋) ∈ ℝ))
83 fvex 6933 . . . . . . . . . . 11 (𝐸𝑋) ∈ V
8452, 54, 83tpss 4862 . . . . . . . . . 10 ((-π ∈ ℝ ∧ π ∈ ℝ ∧ (𝐸𝑋) ∈ ℝ) ↔ {-π, π, (𝐸𝑋)} ⊆ ℝ)
8582, 84sylib 218 . . . . . . . . 9 (𝜑 → {-π, π, (𝐸𝑋)} ⊆ ℝ)
86 iccssre 13489 . . . . . . . . . . 11 ((-π ∈ ℝ ∧ π ∈ ℝ) → (-π[,]π) ⊆ ℝ)
8715, 14, 86mp2an 691 . . . . . . . . . 10 (-π[,]π) ⊆ ℝ
88 ssdifss 4163 . . . . . . . . . 10 ((-π[,]π) ⊆ ℝ → ((-π[,]π) ∖ dom 𝐺) ⊆ ℝ)
8987, 88mp1i 13 . . . . . . . . 9 (𝜑 → ((-π[,]π) ∖ dom 𝐺) ⊆ ℝ)
9085, 89unssd 4215 . . . . . . . 8 (𝜑 → ({-π, π, (𝐸𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺)) ⊆ ℝ)
9111, 90eqsstrid 4057 . . . . . . 7 (𝜑𝐻 ⊆ ℝ)
92 fourierdlem114.q . . . . . . 7 𝑄 = (℩𝑔𝑔 Isom < , < ((0...𝑀), 𝐻))
9338, 91, 92, 8fourierdlem36 46064 . . . . . 6 (𝜑𝑄 Isom < , < ((0...𝑀), 𝐻))
94 isof1o 7359 . . . . . 6 (𝑄 Isom < , < ((0...𝑀), 𝐻) → 𝑄:(0...𝑀)–1-1-onto𝐻)
95 f1of 6862 . . . . . 6 (𝑄:(0...𝑀)–1-1-onto𝐻𝑄:(0...𝑀)⟶𝐻)
9693, 94, 953syl 18 . . . . 5 (𝜑𝑄:(0...𝑀)⟶𝐻)
9796, 91fssd 6764 . . . 4 (𝜑𝑄:(0...𝑀)⟶ℝ)
98 reex 11275 . . . . 5 ℝ ∈ V
99 ovex 7481 . . . . 5 (0...𝑀) ∈ V
10098, 99elmap 8929 . . . 4 (𝑄 ∈ (ℝ ↑m (0...𝑀)) ↔ 𝑄:(0...𝑀)⟶ℝ)
10197, 100sylibr 234 . . 3 (𝜑𝑄 ∈ (ℝ ↑m (0...𝑀)))
102 fveq2 6920 . . . . . . . . . . 11 (0 = 𝑖 → (𝑄‘0) = (𝑄𝑖))
103102adantl 481 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 0 = 𝑖) → (𝑄‘0) = (𝑄𝑖))
10497ffvelcdmda 7118 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0...𝑀)) → (𝑄𝑖) ∈ ℝ)
105104leidd 11856 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0...𝑀)) → (𝑄𝑖) ≤ (𝑄𝑖))
106105adantr 480 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 0 = 𝑖) → (𝑄𝑖) ≤ (𝑄𝑖))
107103, 106eqbrtrd 5188 . . . . . . . . 9 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 0 = 𝑖) → (𝑄‘0) ≤ (𝑄𝑖))
108 elfzelz 13584 . . . . . . . . . . . . 13 (𝑖 ∈ (0...𝑀) → 𝑖 ∈ ℤ)
109108zred 12747 . . . . . . . . . . . 12 (𝑖 ∈ (0...𝑀) → 𝑖 ∈ ℝ)
110109ad2antlr 726 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0...𝑀)) ∧ ¬ 0 = 𝑖) → 𝑖 ∈ ℝ)
111 elfzle1 13587 . . . . . . . . . . . 12 (𝑖 ∈ (0...𝑀) → 0 ≤ 𝑖)
112111ad2antlr 726 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0...𝑀)) ∧ ¬ 0 = 𝑖) → 0 ≤ 𝑖)
113 neqne 2954 . . . . . . . . . . . . 13 (¬ 0 = 𝑖 → 0 ≠ 𝑖)
114113necomd 3002 . . . . . . . . . . . 12 (¬ 0 = 𝑖𝑖 ≠ 0)
115114adantl 481 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0...𝑀)) ∧ ¬ 0 = 𝑖) → 𝑖 ≠ 0)
116110, 112, 115ne0gt0d 11427 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0...𝑀)) ∧ ¬ 0 = 𝑖) → 0 < 𝑖)
117 nnssnn0 12556 . . . . . . . . . . . . . . . . 17 ℕ ⊆ ℕ0
118 nn0uz 12945 . . . . . . . . . . . . . . . . 17 0 = (ℤ‘0)
119117, 118sseqtri 4045 . . . . . . . . . . . . . . . 16 ℕ ⊆ (ℤ‘0)
120119, 69sselid 4006 . . . . . . . . . . . . . . 15 (𝜑𝑀 ∈ (ℤ‘0))
121 eluzfz1 13591 . . . . . . . . . . . . . . 15 (𝑀 ∈ (ℤ‘0) → 0 ∈ (0...𝑀))
122120, 121syl 17 . . . . . . . . . . . . . 14 (𝜑 → 0 ∈ (0...𝑀))
12396, 122ffvelcdmd 7119 . . . . . . . . . . . . 13 (𝜑 → (𝑄‘0) ∈ 𝐻)
12491, 123sseldd 4009 . . . . . . . . . . . 12 (𝜑 → (𝑄‘0) ∈ ℝ)
125124ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 0 < 𝑖) → (𝑄‘0) ∈ ℝ)
126104adantr 480 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 0 < 𝑖) → (𝑄𝑖) ∈ ℝ)
127 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 0 < 𝑖) → 0 < 𝑖)
12893ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 0 < 𝑖) → 𝑄 Isom < , < ((0...𝑀), 𝐻))
129122anim1i 614 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0...𝑀)) → (0 ∈ (0...𝑀) ∧ 𝑖 ∈ (0...𝑀)))
130129adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 0 < 𝑖) → (0 ∈ (0...𝑀) ∧ 𝑖 ∈ (0...𝑀)))
131 isorel 7362 . . . . . . . . . . . . 13 ((𝑄 Isom < , < ((0...𝑀), 𝐻) ∧ (0 ∈ (0...𝑀) ∧ 𝑖 ∈ (0...𝑀))) → (0 < 𝑖 ↔ (𝑄‘0) < (𝑄𝑖)))
132128, 130, 131syl2anc 583 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 0 < 𝑖) → (0 < 𝑖 ↔ (𝑄‘0) < (𝑄𝑖)))
133127, 132mpbid 232 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 0 < 𝑖) → (𝑄‘0) < (𝑄𝑖))
134125, 126, 133ltled 11438 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 0 < 𝑖) → (𝑄‘0) ≤ (𝑄𝑖))
135116, 134syldan 590 . . . . . . . . 9 (((𝜑𝑖 ∈ (0...𝑀)) ∧ ¬ 0 = 𝑖) → (𝑄‘0) ≤ (𝑄𝑖))
136107, 135pm2.61dan 812 . . . . . . . 8 ((𝜑𝑖 ∈ (0...𝑀)) → (𝑄‘0) ≤ (𝑄𝑖))
137136adantr 480 . . . . . . 7 (((𝜑𝑖 ∈ (0...𝑀)) ∧ (𝑄𝑖) = -π) → (𝑄‘0) ≤ (𝑄𝑖))
138 simpr 484 . . . . . . 7 (((𝜑𝑖 ∈ (0...𝑀)) ∧ (𝑄𝑖) = -π) → (𝑄𝑖) = -π)
139137, 138breqtrd 5192 . . . . . 6 (((𝜑𝑖 ∈ (0...𝑀)) ∧ (𝑄𝑖) = -π) → (𝑄‘0) ≤ -π)
14070rexrd 11340 . . . . . . . 8 (𝜑 → -π ∈ ℝ*)
14171rexrd 11340 . . . . . . . 8 (𝜑 → π ∈ ℝ*)
142 lbicc2 13524 . . . . . . . . . . . . . 14 ((-π ∈ ℝ* ∧ π ∈ ℝ* ∧ -π ≤ π) → -π ∈ (-π[,]π))
14316, 17, 23, 142mp3an 1461 . . . . . . . . . . . . 13 -π ∈ (-π[,]π)
144143a1i 11 . . . . . . . . . . . 12 (𝜑 → -π ∈ (-π[,]π))
145 ubicc2 13525 . . . . . . . . . . . . . 14 ((-π ∈ ℝ* ∧ π ∈ ℝ* ∧ -π ≤ π) → π ∈ (-π[,]π))
14616, 17, 23, 145mp3an 1461 . . . . . . . . . . . . 13 π ∈ (-π[,]π)
147146a1i 11 . . . . . . . . . . . 12 (𝜑 → π ∈ (-π[,]π))
148 iocssicc 13497 . . . . . . . . . . . . 13 (-π(,]π) ⊆ (-π[,]π)
149148, 80sselid 4006 . . . . . . . . . . . 12 (𝜑 → (𝐸𝑋) ∈ (-π[,]π))
150 tpssi 4863 . . . . . . . . . . . 12 ((-π ∈ (-π[,]π) ∧ π ∈ (-π[,]π) ∧ (𝐸𝑋) ∈ (-π[,]π)) → {-π, π, (𝐸𝑋)} ⊆ (-π[,]π))
151144, 147, 149, 150syl3anc 1371 . . . . . . . . . . 11 (𝜑 → {-π, π, (𝐸𝑋)} ⊆ (-π[,]π))
152 difssd 4160 . . . . . . . . . . 11 (𝜑 → ((-π[,]π) ∖ dom 𝐺) ⊆ (-π[,]π))
153151, 152unssd 4215 . . . . . . . . . 10 (𝜑 → ({-π, π, (𝐸𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺)) ⊆ (-π[,]π))
15411, 153eqsstrid 4057 . . . . . . . . 9 (𝜑𝐻 ⊆ (-π[,]π))
155154, 123sseldd 4009 . . . . . . . 8 (𝜑 → (𝑄‘0) ∈ (-π[,]π))
156 iccgelb 13463 . . . . . . . 8 ((-π ∈ ℝ* ∧ π ∈ ℝ* ∧ (𝑄‘0) ∈ (-π[,]π)) → -π ≤ (𝑄‘0))
157140, 141, 155, 156syl3anc 1371 . . . . . . 7 (𝜑 → -π ≤ (𝑄‘0))
158157ad2antrr 725 . . . . . 6 (((𝜑𝑖 ∈ (0...𝑀)) ∧ (𝑄𝑖) = -π) → -π ≤ (𝑄‘0))
159124ad2antrr 725 . . . . . . 7 (((𝜑𝑖 ∈ (0...𝑀)) ∧ (𝑄𝑖) = -π) → (𝑄‘0) ∈ ℝ)
16015a1i 11 . . . . . . 7 (((𝜑𝑖 ∈ (0...𝑀)) ∧ (𝑄𝑖) = -π) → -π ∈ ℝ)
161159, 160letri3d 11432 . . . . . 6 (((𝜑𝑖 ∈ (0...𝑀)) ∧ (𝑄𝑖) = -π) → ((𝑄‘0) = -π ↔ ((𝑄‘0) ≤ -π ∧ -π ≤ (𝑄‘0))))
162139, 158, 161mpbir2and 712 . . . . 5 (((𝜑𝑖 ∈ (0...𝑀)) ∧ (𝑄𝑖) = -π) → (𝑄‘0) = -π)
16359, 53sselii 4005 . . . . . . 7 -π ∈ 𝐻
164 f1ofo 6869 . . . . . . . . 9 (𝑄:(0...𝑀)–1-1-onto𝐻𝑄:(0...𝑀)–onto𝐻)
16594, 164syl 17 . . . . . . . 8 (𝑄 Isom < , < ((0...𝑀), 𝐻) → 𝑄:(0...𝑀)–onto𝐻)
166 forn 6837 . . . . . . . 8 (𝑄:(0...𝑀)–onto𝐻 → ran 𝑄 = 𝐻)
16793, 165, 1663syl 18 . . . . . . 7 (𝜑 → ran 𝑄 = 𝐻)
168163, 167eleqtrrid 2851 . . . . . 6 (𝜑 → -π ∈ ran 𝑄)
169 ffn 6747 . . . . . . 7 (𝑄:(0...𝑀)⟶𝐻𝑄 Fn (0...𝑀))
170 fvelrnb 6982 . . . . . . 7 (𝑄 Fn (0...𝑀) → (-π ∈ ran 𝑄 ↔ ∃𝑖 ∈ (0...𝑀)(𝑄𝑖) = -π))
17196, 169, 1703syl 18 . . . . . 6 (𝜑 → (-π ∈ ran 𝑄 ↔ ∃𝑖 ∈ (0...𝑀)(𝑄𝑖) = -π))
172168, 171mpbid 232 . . . . 5 (𝜑 → ∃𝑖 ∈ (0...𝑀)(𝑄𝑖) = -π)
173162, 172r19.29a 3168 . . . 4 (𝜑 → (𝑄‘0) = -π)
17459, 55sselii 4005 . . . . . . 7 π ∈ 𝐻
175174, 167eleqtrrid 2851 . . . . . 6 (𝜑 → π ∈ ran 𝑄)
176 fvelrnb 6982 . . . . . . 7 (𝑄 Fn (0...𝑀) → (π ∈ ran 𝑄 ↔ ∃𝑖 ∈ (0...𝑀)(𝑄𝑖) = π))
17796, 169, 1763syl 18 . . . . . 6 (𝜑 → (π ∈ ran 𝑄 ↔ ∃𝑖 ∈ (0...𝑀)(𝑄𝑖) = π))
178175, 177mpbid 232 . . . . 5 (𝜑 → ∃𝑖 ∈ (0...𝑀)(𝑄𝑖) = π)
17996, 154fssd 6764 . . . . . . . . . 10 (𝜑𝑄:(0...𝑀)⟶(-π[,]π))
180 eluzfz2 13592 . . . . . . . . . . 11 (𝑀 ∈ (ℤ‘0) → 𝑀 ∈ (0...𝑀))
181120, 180syl 17 . . . . . . . . . 10 (𝜑𝑀 ∈ (0...𝑀))
182179, 181ffvelcdmd 7119 . . . . . . . . 9 (𝜑 → (𝑄𝑀) ∈ (-π[,]π))
183 iccleub 13462 . . . . . . . . 9 ((-π ∈ ℝ* ∧ π ∈ ℝ* ∧ (𝑄𝑀) ∈ (-π[,]π)) → (𝑄𝑀) ≤ π)
184140, 141, 182, 183syl3anc 1371 . . . . . . . 8 (𝜑 → (𝑄𝑀) ≤ π)
1851843ad2ant1 1133 . . . . . . 7 ((𝜑𝑖 ∈ (0...𝑀) ∧ (𝑄𝑖) = π) → (𝑄𝑀) ≤ π)
186 id 22 . . . . . . . . . 10 ((𝑄𝑖) = π → (𝑄𝑖) = π)
187186eqcomd 2746 . . . . . . . . 9 ((𝑄𝑖) = π → π = (𝑄𝑖))
1881873ad2ant3 1135 . . . . . . . 8 ((𝜑𝑖 ∈ (0...𝑀) ∧ (𝑄𝑖) = π) → π = (𝑄𝑖))
189105adantr 480 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑖 = 𝑀) → (𝑄𝑖) ≤ (𝑄𝑖))
190 fveq2 6920 . . . . . . . . . . . 12 (𝑖 = 𝑀 → (𝑄𝑖) = (𝑄𝑀))
191190adantl 481 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑖 = 𝑀) → (𝑄𝑖) = (𝑄𝑀))
192189, 191breqtrd 5192 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑖 = 𝑀) → (𝑄𝑖) ≤ (𝑄𝑀))
193109ad2antlr 726 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0...𝑀)) ∧ ¬ 𝑖 = 𝑀) → 𝑖 ∈ ℝ)
194 elfzel2 13582 . . . . . . . . . . . . . 14 (𝑖 ∈ (0...𝑀) → 𝑀 ∈ ℤ)
195194zred 12747 . . . . . . . . . . . . 13 (𝑖 ∈ (0...𝑀) → 𝑀 ∈ ℝ)
196195ad2antlr 726 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0...𝑀)) ∧ ¬ 𝑖 = 𝑀) → 𝑀 ∈ ℝ)
197 elfzle2 13588 . . . . . . . . . . . . 13 (𝑖 ∈ (0...𝑀) → 𝑖𝑀)
198197ad2antlr 726 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0...𝑀)) ∧ ¬ 𝑖 = 𝑀) → 𝑖𝑀)
199 neqne 2954 . . . . . . . . . . . . . 14 𝑖 = 𝑀𝑖𝑀)
200199necomd 3002 . . . . . . . . . . . . 13 𝑖 = 𝑀𝑀𝑖)
201200adantl 481 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0...𝑀)) ∧ ¬ 𝑖 = 𝑀) → 𝑀𝑖)
202193, 196, 198, 201leneltd 11444 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0...𝑀)) ∧ ¬ 𝑖 = 𝑀) → 𝑖 < 𝑀)
203104adantr 480 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑖 < 𝑀) → (𝑄𝑖) ∈ ℝ)
20487, 182sselid 4006 . . . . . . . . . . . . 13 (𝜑 → (𝑄𝑀) ∈ ℝ)
205204ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑖 < 𝑀) → (𝑄𝑀) ∈ ℝ)
206 simpr 484 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑖 < 𝑀) → 𝑖 < 𝑀)
20793ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑖 < 𝑀) → 𝑄 Isom < , < ((0...𝑀), 𝐻))
208 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0...𝑀)) → 𝑖 ∈ (0...𝑀))
209181adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0...𝑀)) → 𝑀 ∈ (0...𝑀))
210208, 209jca 511 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0...𝑀)) → (𝑖 ∈ (0...𝑀) ∧ 𝑀 ∈ (0...𝑀)))
211210adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑖 < 𝑀) → (𝑖 ∈ (0...𝑀) ∧ 𝑀 ∈ (0...𝑀)))
212 isorel 7362 . . . . . . . . . . . . . 14 ((𝑄 Isom < , < ((0...𝑀), 𝐻) ∧ (𝑖 ∈ (0...𝑀) ∧ 𝑀 ∈ (0...𝑀))) → (𝑖 < 𝑀 ↔ (𝑄𝑖) < (𝑄𝑀)))
213207, 211, 212syl2anc 583 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑖 < 𝑀) → (𝑖 < 𝑀 ↔ (𝑄𝑖) < (𝑄𝑀)))
214206, 213mpbid 232 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑖 < 𝑀) → (𝑄𝑖) < (𝑄𝑀))
215203, 205, 214ltled 11438 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑖 < 𝑀) → (𝑄𝑖) ≤ (𝑄𝑀))
216202, 215syldan 590 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0...𝑀)) ∧ ¬ 𝑖 = 𝑀) → (𝑄𝑖) ≤ (𝑄𝑀))
217192, 216pm2.61dan 812 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...𝑀)) → (𝑄𝑖) ≤ (𝑄𝑀))
2182173adant3 1132 . . . . . . . 8 ((𝜑𝑖 ∈ (0...𝑀) ∧ (𝑄𝑖) = π) → (𝑄𝑖) ≤ (𝑄𝑀))
219188, 218eqbrtrd 5188 . . . . . . 7 ((𝜑𝑖 ∈ (0...𝑀) ∧ (𝑄𝑖) = π) → π ≤ (𝑄𝑀))
2202043ad2ant1 1133 . . . . . . . 8 ((𝜑𝑖 ∈ (0...𝑀) ∧ (𝑄𝑖) = π) → (𝑄𝑀) ∈ ℝ)
22114a1i 11 . . . . . . . 8 ((𝜑𝑖 ∈ (0...𝑀) ∧ (𝑄𝑖) = π) → π ∈ ℝ)
222220, 221letri3d 11432 . . . . . . 7 ((𝜑𝑖 ∈ (0...𝑀) ∧ (𝑄𝑖) = π) → ((𝑄𝑀) = π ↔ ((𝑄𝑀) ≤ π ∧ π ≤ (𝑄𝑀))))
223185, 219, 222mpbir2and 712 . . . . . 6 ((𝜑𝑖 ∈ (0...𝑀) ∧ (𝑄𝑖) = π) → (𝑄𝑀) = π)
224223rexlimdv3a 3165 . . . . 5 (𝜑 → (∃𝑖 ∈ (0...𝑀)(𝑄𝑖) = π → (𝑄𝑀) = π))
225178, 224mpd 15 . . . 4 (𝜑 → (𝑄𝑀) = π)
226 elfzoelz 13716 . . . . . . . . 9 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ ℤ)
227226zred 12747 . . . . . . . 8 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ ℝ)
228227ltp1d 12225 . . . . . . 7 (𝑖 ∈ (0..^𝑀) → 𝑖 < (𝑖 + 1))
229228adantl 481 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 < (𝑖 + 1))
230 elfzofz 13732 . . . . . . . 8 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀))
231 fzofzp1 13814 . . . . . . . 8 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀))
232230, 231jca 511 . . . . . . 7 (𝑖 ∈ (0..^𝑀) → (𝑖 ∈ (0...𝑀) ∧ (𝑖 + 1) ∈ (0...𝑀)))
233 isorel 7362 . . . . . . 7 ((𝑄 Isom < , < ((0...𝑀), 𝐻) ∧ (𝑖 ∈ (0...𝑀) ∧ (𝑖 + 1) ∈ (0...𝑀))) → (𝑖 < (𝑖 + 1) ↔ (𝑄𝑖) < (𝑄‘(𝑖 + 1))))
23493, 232, 233syl2an 595 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑖 < (𝑖 + 1) ↔ (𝑄𝑖) < (𝑄‘(𝑖 + 1))))
235229, 234mpbid 232 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
236235ralrimiva 3152 . . . 4 (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))
237173, 225, 236jca31 514 . . 3 (𝜑 → (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))
2387fourierdlem2 46030 . . . 4 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
23969, 238syl 17 . . 3 (𝜑 → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
240101, 237, 239mpbir2and 712 . 2 (𝜑𝑄 ∈ (𝑃𝑀))
241 fourierdlem114.g . . . . 5 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π))
242241reseq1i 6005 . . . 4 (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (((ℝ D 𝐹) ↾ (-π(,)π)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
24316a1i 11 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → -π ∈ ℝ*)
24417a1i 11 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → π ∈ ℝ*)
245179adantr 480 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶(-π[,]π))
246 simpr 484 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0..^𝑀))
247243, 244, 245, 246fourierdlem27 46055 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ (-π(,)π))
248247resabs1d 6037 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (((ℝ D 𝐹) ↾ (-π(,)π)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
249242, 248eqtr2id 2793 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
250 fourierdlem114.gcn . . . 4 (𝜑𝐺 ∈ (dom 𝐺cn→ℂ))
251250, 7, 69, 240, 11, 167fourierdlem38 46066 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
252249, 251eqeltrd 2844 . 2 ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
253249oveq1d 7463 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) = ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
254250adantr 480 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐺 ∈ (dom 𝐺cn→ℂ))
255 fourierdlem114.rlim . . . . . 6 ((𝜑𝑥 ∈ ((-π[,)π) ∖ dom 𝐺)) → ((𝐺 ↾ (𝑥(,)+∞)) lim 𝑥) ≠ ∅)
256255adantlr 714 . . . . 5 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((-π[,)π) ∖ dom 𝐺)) → ((𝐺 ↾ (𝑥(,)+∞)) lim 𝑥) ≠ ∅)
257 fourierdlem114.llim . . . . . 6 ((𝜑𝑥 ∈ ((-π(,]π) ∖ dom 𝐺)) → ((𝐺 ↾ (-∞(,)𝑥)) lim 𝑥) ≠ ∅)
258257adantlr 714 . . . . 5 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((-π(,]π) ∖ dom 𝐺)) → ((𝐺 ↾ (-∞(,)𝑥)) lim 𝑥) ≠ ∅)
25993adantr 480 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄 Isom < , < ((0...𝑀), 𝐻))
260259, 94, 953syl 18 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶𝐻)
26181adantr 480 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐸𝑋) ∈ ℝ)
262259, 165, 1663syl 18 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → ran 𝑄 = 𝐻)
263254, 256, 258, 259, 260, 246, 235, 247, 261, 11, 262fourierdlem46 46073 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) ≠ ∅ ∧ ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) ≠ ∅))
264263simpld 494 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) ≠ ∅)
265253, 264eqnetrd 3014 . 2 ((𝜑𝑖 ∈ (0..^𝑀)) → (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) ≠ ∅)
266249oveq1d 7463 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) = ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
267263simprd 495 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) ≠ ∅)
268266, 267eqnetrd 3014 . 2 ((𝜑𝑖 ∈ (0..^𝑀)) → (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) ≠ ∅)
269 fourierdlem114.a . 2 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))
270 fourierdlem114.b . 2 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))
271 fourierdlem114.s . 2 𝑆 = (𝑛 ∈ ℕ ↦ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))))
27283tpid3 4798 . . . . 5 (𝐸𝑋) ∈ {-π, π, (𝐸𝑋)}
273 elun1 4205 . . . . 5 ((𝐸𝑋) ∈ {-π, π, (𝐸𝑋)} → (𝐸𝑋) ∈ ({-π, π, (𝐸𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺)))
274272, 273mp1i 13 . . . 4 (𝜑 → (𝐸𝑋) ∈ ({-π, π, (𝐸𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺)))
275274, 11eleqtrrdi 2855 . . 3 (𝜑 → (𝐸𝑋) ∈ 𝐻)
276275, 167eleqtrrd 2847 . 2 (𝜑 → (𝐸𝑋) ∈ ran 𝑄)
2771, 2, 3, 4, 5, 6, 7, 69, 240, 252, 265, 268, 269, 270, 271, 78, 276fourierdlem113 46140 1 (𝜑 → (seq1( + , 𝑆) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)) ∧ (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝐿 + 𝑅) / 2)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  {crab 3443  Vcvv 3488  cdif 3973  cun 3974  wss 3976  c0 4352  {cpr 4650  {ctp 4652   class class class wbr 5166  cmpt 5249  dom cdm 5700  ran crn 5701  cres 5702  cio 6523   Fn wfn 6568  wf 6569  ontowfo 6571  1-1-ontowf1o 6572  cfv 6573   Isom wiso 6574  (class class class)co 7448  m cmap 8884  Fincfn 9003  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  +∞cpnf 11321  -∞cmnf 11322  *cxr 11323   < clt 11324  cle 11325  cmin 11520  -cneg 11521   / cdiv 11947  cn 12293  2c2 12348  0cn0 12553  cz 12639  cuz 12903  (,)cioo 13407  (,]cioc 13408  [,)cico 13409  [,]cicc 13410  ...cfz 13567  ..^cfzo 13711  cfl 13841  seqcseq 14052  chash 14379  cli 15530  Σcsu 15734  sincsin 16111  cosccos 16112  πcpi 16114  cnccncf 24921  citg 25672   lim climc 25917   D cdv 25918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cc 10504  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-symdif 4272  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-disj 5134  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-omul 8527  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-acn 10011  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-xnn0 12626  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-ef 16115  df-sin 16117  df-cos 16118  df-pi 16120  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-t1 23343  df-haus 23344  df-cmp 23416  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-ovol 25518  df-vol 25519  df-mbf 25673  df-itg1 25674  df-itg2 25675  df-ibl 25676  df-itg 25677  df-0p 25724  df-ditg 25902  df-limc 25921  df-dv 25922
This theorem is referenced by:  fourierdlem115  46142
  Copyright terms: Public domain W3C validator