Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem114 Structured version   Visualization version   GIF version

Theorem fourierdlem114 46235
Description: Fourier series convergence for periodic, piecewise smooth functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem114.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem114.t 𝑇 = (2 · π)
fourierdlem114.per ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
fourierdlem114.g 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π))
fourierdlem114.dmdv (𝜑 → ((-π(,)π) ∖ dom 𝐺) ∈ Fin)
fourierdlem114.gcn (𝜑𝐺 ∈ (dom 𝐺cn→ℂ))
fourierdlem114.rlim ((𝜑𝑥 ∈ ((-π[,)π) ∖ dom 𝐺)) → ((𝐺 ↾ (𝑥(,)+∞)) lim 𝑥) ≠ ∅)
fourierdlem114.llim ((𝜑𝑥 ∈ ((-π(,]π) ∖ dom 𝐺)) → ((𝐺 ↾ (-∞(,)𝑥)) lim 𝑥) ≠ ∅)
fourierdlem114.x (𝜑𝑋 ∈ ℝ)
fourierdlem114.l (𝜑𝐿 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
fourierdlem114.r (𝜑𝑅 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
fourierdlem114.a 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))
fourierdlem114.b 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))
fourierdlem114.s 𝑆 = (𝑛 ∈ ℕ ↦ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))))
fourierdlem114.p 𝑃 = (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑛) = π) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem114.e 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((π − 𝑥) / 𝑇)) · 𝑇)))
fourierdlem114.h 𝐻 = ({-π, π, (𝐸𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺))
fourierdlem114.m 𝑀 = ((♯‘𝐻) − 1)
fourierdlem114.q 𝑄 = (℩𝑔𝑔 Isom < , < ((0...𝑀), 𝐻))
Assertion
Ref Expression
fourierdlem114 (𝜑 → (seq1( + , 𝑆) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)) ∧ (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝐿 + 𝑅) / 2)))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝑥,𝐸   𝑖,𝐹,𝑛,𝑥   𝑖,𝐺,𝑥   𝑔,𝐻   𝑖,𝐿,𝑛   𝑔,𝑀   𝑖,𝑀,𝑛,𝑝   𝑥,𝑀   𝑄,𝑔   𝑄,𝑖,𝑛,𝑝   𝑥,𝑄   𝑅,𝑖,𝑛   𝑇,𝑖,𝑛,𝑝   𝑥,𝑇   𝑖,𝑋,𝑛,𝑝   𝑥,𝑋   𝜑,𝑔   𝜑,𝑖,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑝)   𝐴(𝑥,𝑔,𝑖,𝑝)   𝐵(𝑥,𝑔,𝑖,𝑝)   𝑃(𝑥,𝑔,𝑖,𝑛,𝑝)   𝑅(𝑥,𝑔,𝑝)   𝑆(𝑥,𝑔,𝑖,𝑛,𝑝)   𝑇(𝑔)   𝐸(𝑔,𝑖,𝑛,𝑝)   𝐹(𝑔,𝑝)   𝐺(𝑔,𝑛,𝑝)   𝐻(𝑥,𝑖,𝑛,𝑝)   𝐿(𝑥,𝑔,𝑝)   𝑋(𝑔)

Proof of Theorem fourierdlem114
StepHypRef Expression
1 fourierdlem114.f . 2 (𝜑𝐹:ℝ⟶ℝ)
2 fourierdlem114.t . 2 𝑇 = (2 · π)
3 fourierdlem114.per . 2 ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
4 fourierdlem114.x . 2 (𝜑𝑋 ∈ ℝ)
5 fourierdlem114.l . 2 (𝜑𝐿 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
6 fourierdlem114.r . 2 (𝜑𝑅 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
7 fourierdlem114.p . 2 𝑃 = (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑛) = π) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
8 fourierdlem114.m . . 3 𝑀 = ((♯‘𝐻) − 1)
9 2z 12649 . . . . . 6 2 ∈ ℤ
109a1i 11 . . . . 5 (𝜑 → 2 ∈ ℤ)
11 fourierdlem114.h . . . . . . . 8 𝐻 = ({-π, π, (𝐸𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺))
12 tpfi 9365 . . . . . . . . . 10 {-π, π, (𝐸𝑋)} ∈ Fin
1312a1i 11 . . . . . . . . 9 (𝜑 → {-π, π, (𝐸𝑋)} ∈ Fin)
14 pire 26500 . . . . . . . . . . . . . . 15 π ∈ ℝ
1514renegcli 11570 . . . . . . . . . . . . . 14 -π ∈ ℝ
1615rexri 11319 . . . . . . . . . . . . 13 -π ∈ ℝ*
1714rexri 11319 . . . . . . . . . . . . 13 π ∈ ℝ*
18 negpilt0 45292 . . . . . . . . . . . . . . 15 -π < 0
19 pipos 26502 . . . . . . . . . . . . . . 15 0 < π
20 0re 11263 . . . . . . . . . . . . . . . 16 0 ∈ ℝ
2115, 20, 14lttri 11387 . . . . . . . . . . . . . . 15 ((-π < 0 ∧ 0 < π) → -π < π)
2218, 19, 21mp2an 692 . . . . . . . . . . . . . 14 -π < π
2315, 14, 22ltleii 11384 . . . . . . . . . . . . 13 -π ≤ π
24 prunioo 13521 . . . . . . . . . . . . 13 ((-π ∈ ℝ* ∧ π ∈ ℝ* ∧ -π ≤ π) → ((-π(,)π) ∪ {-π, π}) = (-π[,]π))
2516, 17, 23, 24mp3an 1463 . . . . . . . . . . . 12 ((-π(,)π) ∪ {-π, π}) = (-π[,]π)
2625difeq1i 4122 . . . . . . . . . . 11 (((-π(,)π) ∪ {-π, π}) ∖ dom 𝐺) = ((-π[,]π) ∖ dom 𝐺)
27 difundir 4291 . . . . . . . . . . 11 (((-π(,)π) ∪ {-π, π}) ∖ dom 𝐺) = (((-π(,)π) ∖ dom 𝐺) ∪ ({-π, π} ∖ dom 𝐺))
2826, 27eqtr3i 2767 . . . . . . . . . 10 ((-π[,]π) ∖ dom 𝐺) = (((-π(,)π) ∖ dom 𝐺) ∪ ({-π, π} ∖ dom 𝐺))
29 fourierdlem114.dmdv . . . . . . . . . . 11 (𝜑 → ((-π(,)π) ∖ dom 𝐺) ∈ Fin)
30 prfi 9363 . . . . . . . . . . . 12 {-π, π} ∈ Fin
31 diffi 9215 . . . . . . . . . . . 12 ({-π, π} ∈ Fin → ({-π, π} ∖ dom 𝐺) ∈ Fin)
3230, 31mp1i 13 . . . . . . . . . . 11 (𝜑 → ({-π, π} ∖ dom 𝐺) ∈ Fin)
33 unfi 9211 . . . . . . . . . . 11 ((((-π(,)π) ∖ dom 𝐺) ∈ Fin ∧ ({-π, π} ∖ dom 𝐺) ∈ Fin) → (((-π(,)π) ∖ dom 𝐺) ∪ ({-π, π} ∖ dom 𝐺)) ∈ Fin)
3429, 32, 33syl2anc 584 . . . . . . . . . 10 (𝜑 → (((-π(,)π) ∖ dom 𝐺) ∪ ({-π, π} ∖ dom 𝐺)) ∈ Fin)
3528, 34eqeltrid 2845 . . . . . . . . 9 (𝜑 → ((-π[,]π) ∖ dom 𝐺) ∈ Fin)
36 unfi 9211 . . . . . . . . 9 (({-π, π, (𝐸𝑋)} ∈ Fin ∧ ((-π[,]π) ∖ dom 𝐺) ∈ Fin) → ({-π, π, (𝐸𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺)) ∈ Fin)
3713, 35, 36syl2anc 584 . . . . . . . 8 (𝜑 → ({-π, π, (𝐸𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺)) ∈ Fin)
3811, 37eqeltrid 2845 . . . . . . 7 (𝜑𝐻 ∈ Fin)
39 hashcl 14395 . . . . . . 7 (𝐻 ∈ Fin → (♯‘𝐻) ∈ ℕ0)
4038, 39syl 17 . . . . . 6 (𝜑 → (♯‘𝐻) ∈ ℕ0)
4140nn0zd 12639 . . . . 5 (𝜑 → (♯‘𝐻) ∈ ℤ)
4215, 22ltneii 11374 . . . . . . 7 -π ≠ π
43 hashprg 14434 . . . . . . . 8 ((-π ∈ ℝ ∧ π ∈ ℝ) → (-π ≠ π ↔ (♯‘{-π, π}) = 2))
4415, 14, 43mp2an 692 . . . . . . 7 (-π ≠ π ↔ (♯‘{-π, π}) = 2)
4542, 44mpbi 230 . . . . . 6 (♯‘{-π, π}) = 2
4612elexi 3503 . . . . . . . . . 10 {-π, π, (𝐸𝑋)} ∈ V
47 ovex 7464 . . . . . . . . . . 11 (-π[,]π) ∈ V
48 difexg 5329 . . . . . . . . . . 11 ((-π[,]π) ∈ V → ((-π[,]π) ∖ dom 𝐺) ∈ V)
4947, 48ax-mp 5 . . . . . . . . . 10 ((-π[,]π) ∖ dom 𝐺) ∈ V
5046, 49unex 7764 . . . . . . . . 9 ({-π, π, (𝐸𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺)) ∈ V
5111, 50eqeltri 2837 . . . . . . . 8 𝐻 ∈ V
52 negex 11506 . . . . . . . . . . 11 -π ∈ V
5352tpid1 4768 . . . . . . . . . 10 -π ∈ {-π, π, (𝐸𝑋)}
5414elexi 3503 . . . . . . . . . . 11 π ∈ V
5554tpid2 4770 . . . . . . . . . 10 π ∈ {-π, π, (𝐸𝑋)}
56 prssi 4821 . . . . . . . . . 10 ((-π ∈ {-π, π, (𝐸𝑋)} ∧ π ∈ {-π, π, (𝐸𝑋)}) → {-π, π} ⊆ {-π, π, (𝐸𝑋)})
5753, 55, 56mp2an 692 . . . . . . . . 9 {-π, π} ⊆ {-π, π, (𝐸𝑋)}
58 ssun1 4178 . . . . . . . . . 10 {-π, π, (𝐸𝑋)} ⊆ ({-π, π, (𝐸𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺))
5958, 11sseqtrri 4033 . . . . . . . . 9 {-π, π, (𝐸𝑋)} ⊆ 𝐻
6057, 59sstri 3993 . . . . . . . 8 {-π, π} ⊆ 𝐻
61 hashss 14448 . . . . . . . 8 ((𝐻 ∈ V ∧ {-π, π} ⊆ 𝐻) → (♯‘{-π, π}) ≤ (♯‘𝐻))
6251, 60, 61mp2an 692 . . . . . . 7 (♯‘{-π, π}) ≤ (♯‘𝐻)
6362a1i 11 . . . . . 6 (𝜑 → (♯‘{-π, π}) ≤ (♯‘𝐻))
6445, 63eqbrtrrid 5179 . . . . 5 (𝜑 → 2 ≤ (♯‘𝐻))
65 eluz2 12884 . . . . 5 ((♯‘𝐻) ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ (♯‘𝐻) ∈ ℤ ∧ 2 ≤ (♯‘𝐻)))
6610, 41, 64, 65syl3anbrc 1344 . . . 4 (𝜑 → (♯‘𝐻) ∈ (ℤ‘2))
67 uz2m1nn 12965 . . . 4 ((♯‘𝐻) ∈ (ℤ‘2) → ((♯‘𝐻) − 1) ∈ ℕ)
6866, 67syl 17 . . 3 (𝜑 → ((♯‘𝐻) − 1) ∈ ℕ)
698, 68eqeltrid 2845 . 2 (𝜑𝑀 ∈ ℕ)
7015a1i 11 . . . . . . . . . . 11 (𝜑 → -π ∈ ℝ)
7114a1i 11 . . . . . . . . . . 11 (𝜑 → π ∈ ℝ)
72 negpitopissre 26582 . . . . . . . . . . . 12 (-π(,]π) ⊆ ℝ
7322a1i 11 . . . . . . . . . . . . . 14 (𝜑 → -π < π)
74 picn 26501 . . . . . . . . . . . . . . . 16 π ∈ ℂ
75742timesi 12404 . . . . . . . . . . . . . . 15 (2 · π) = (π + π)
7674, 74subnegi 11588 . . . . . . . . . . . . . . 15 (π − -π) = (π + π)
7775, 2, 763eqtr4i 2775 . . . . . . . . . . . . . 14 𝑇 = (π − -π)
78 fourierdlem114.e . . . . . . . . . . . . . 14 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((π − 𝑥) / 𝑇)) · 𝑇)))
7970, 71, 73, 77, 78fourierdlem4 46126 . . . . . . . . . . . . 13 (𝜑𝐸:ℝ⟶(-π(,]π))
8079, 4ffvelcdmd 7105 . . . . . . . . . . . 12 (𝜑 → (𝐸𝑋) ∈ (-π(,]π))
8172, 80sselid 3981 . . . . . . . . . . 11 (𝜑 → (𝐸𝑋) ∈ ℝ)
8270, 71, 813jca 1129 . . . . . . . . . 10 (𝜑 → (-π ∈ ℝ ∧ π ∈ ℝ ∧ (𝐸𝑋) ∈ ℝ))
83 fvex 6919 . . . . . . . . . . 11 (𝐸𝑋) ∈ V
8452, 54, 83tpss 4837 . . . . . . . . . 10 ((-π ∈ ℝ ∧ π ∈ ℝ ∧ (𝐸𝑋) ∈ ℝ) ↔ {-π, π, (𝐸𝑋)} ⊆ ℝ)
8582, 84sylib 218 . . . . . . . . 9 (𝜑 → {-π, π, (𝐸𝑋)} ⊆ ℝ)
86 iccssre 13469 . . . . . . . . . . 11 ((-π ∈ ℝ ∧ π ∈ ℝ) → (-π[,]π) ⊆ ℝ)
8715, 14, 86mp2an 692 . . . . . . . . . 10 (-π[,]π) ⊆ ℝ
88 ssdifss 4140 . . . . . . . . . 10 ((-π[,]π) ⊆ ℝ → ((-π[,]π) ∖ dom 𝐺) ⊆ ℝ)
8987, 88mp1i 13 . . . . . . . . 9 (𝜑 → ((-π[,]π) ∖ dom 𝐺) ⊆ ℝ)
9085, 89unssd 4192 . . . . . . . 8 (𝜑 → ({-π, π, (𝐸𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺)) ⊆ ℝ)
9111, 90eqsstrid 4022 . . . . . . 7 (𝜑𝐻 ⊆ ℝ)
92 fourierdlem114.q . . . . . . 7 𝑄 = (℩𝑔𝑔 Isom < , < ((0...𝑀), 𝐻))
9338, 91, 92, 8fourierdlem36 46158 . . . . . 6 (𝜑𝑄 Isom < , < ((0...𝑀), 𝐻))
94 isof1o 7343 . . . . . 6 (𝑄 Isom < , < ((0...𝑀), 𝐻) → 𝑄:(0...𝑀)–1-1-onto𝐻)
95 f1of 6848 . . . . . 6 (𝑄:(0...𝑀)–1-1-onto𝐻𝑄:(0...𝑀)⟶𝐻)
9693, 94, 953syl 18 . . . . 5 (𝜑𝑄:(0...𝑀)⟶𝐻)
9796, 91fssd 6753 . . . 4 (𝜑𝑄:(0...𝑀)⟶ℝ)
98 reex 11246 . . . . 5 ℝ ∈ V
99 ovex 7464 . . . . 5 (0...𝑀) ∈ V
10098, 99elmap 8911 . . . 4 (𝑄 ∈ (ℝ ↑m (0...𝑀)) ↔ 𝑄:(0...𝑀)⟶ℝ)
10197, 100sylibr 234 . . 3 (𝜑𝑄 ∈ (ℝ ↑m (0...𝑀)))
102 fveq2 6906 . . . . . . . . . . 11 (0 = 𝑖 → (𝑄‘0) = (𝑄𝑖))
103102adantl 481 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 0 = 𝑖) → (𝑄‘0) = (𝑄𝑖))
10497ffvelcdmda 7104 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0...𝑀)) → (𝑄𝑖) ∈ ℝ)
105104leidd 11829 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0...𝑀)) → (𝑄𝑖) ≤ (𝑄𝑖))
106105adantr 480 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 0 = 𝑖) → (𝑄𝑖) ≤ (𝑄𝑖))
107103, 106eqbrtrd 5165 . . . . . . . . 9 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 0 = 𝑖) → (𝑄‘0) ≤ (𝑄𝑖))
108 elfzelz 13564 . . . . . . . . . . . . 13 (𝑖 ∈ (0...𝑀) → 𝑖 ∈ ℤ)
109108zred 12722 . . . . . . . . . . . 12 (𝑖 ∈ (0...𝑀) → 𝑖 ∈ ℝ)
110109ad2antlr 727 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0...𝑀)) ∧ ¬ 0 = 𝑖) → 𝑖 ∈ ℝ)
111 elfzle1 13567 . . . . . . . . . . . 12 (𝑖 ∈ (0...𝑀) → 0 ≤ 𝑖)
112111ad2antlr 727 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0...𝑀)) ∧ ¬ 0 = 𝑖) → 0 ≤ 𝑖)
113 neqne 2948 . . . . . . . . . . . . 13 (¬ 0 = 𝑖 → 0 ≠ 𝑖)
114113necomd 2996 . . . . . . . . . . . 12 (¬ 0 = 𝑖𝑖 ≠ 0)
115114adantl 481 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0...𝑀)) ∧ ¬ 0 = 𝑖) → 𝑖 ≠ 0)
116110, 112, 115ne0gt0d 11398 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0...𝑀)) ∧ ¬ 0 = 𝑖) → 0 < 𝑖)
117 nnssnn0 12529 . . . . . . . . . . . . . . . . 17 ℕ ⊆ ℕ0
118 nn0uz 12920 . . . . . . . . . . . . . . . . 17 0 = (ℤ‘0)
119117, 118sseqtri 4032 . . . . . . . . . . . . . . . 16 ℕ ⊆ (ℤ‘0)
120119, 69sselid 3981 . . . . . . . . . . . . . . 15 (𝜑𝑀 ∈ (ℤ‘0))
121 eluzfz1 13571 . . . . . . . . . . . . . . 15 (𝑀 ∈ (ℤ‘0) → 0 ∈ (0...𝑀))
122120, 121syl 17 . . . . . . . . . . . . . 14 (𝜑 → 0 ∈ (0...𝑀))
12396, 122ffvelcdmd 7105 . . . . . . . . . . . . 13 (𝜑 → (𝑄‘0) ∈ 𝐻)
12491, 123sseldd 3984 . . . . . . . . . . . 12 (𝜑 → (𝑄‘0) ∈ ℝ)
125124ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 0 < 𝑖) → (𝑄‘0) ∈ ℝ)
126104adantr 480 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 0 < 𝑖) → (𝑄𝑖) ∈ ℝ)
127 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 0 < 𝑖) → 0 < 𝑖)
12893ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 0 < 𝑖) → 𝑄 Isom < , < ((0...𝑀), 𝐻))
129122anim1i 615 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0...𝑀)) → (0 ∈ (0...𝑀) ∧ 𝑖 ∈ (0...𝑀)))
130129adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 0 < 𝑖) → (0 ∈ (0...𝑀) ∧ 𝑖 ∈ (0...𝑀)))
131 isorel 7346 . . . . . . . . . . . . 13 ((𝑄 Isom < , < ((0...𝑀), 𝐻) ∧ (0 ∈ (0...𝑀) ∧ 𝑖 ∈ (0...𝑀))) → (0 < 𝑖 ↔ (𝑄‘0) < (𝑄𝑖)))
132128, 130, 131syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 0 < 𝑖) → (0 < 𝑖 ↔ (𝑄‘0) < (𝑄𝑖)))
133127, 132mpbid 232 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 0 < 𝑖) → (𝑄‘0) < (𝑄𝑖))
134125, 126, 133ltled 11409 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 0 < 𝑖) → (𝑄‘0) ≤ (𝑄𝑖))
135116, 134syldan 591 . . . . . . . . 9 (((𝜑𝑖 ∈ (0...𝑀)) ∧ ¬ 0 = 𝑖) → (𝑄‘0) ≤ (𝑄𝑖))
136107, 135pm2.61dan 813 . . . . . . . 8 ((𝜑𝑖 ∈ (0...𝑀)) → (𝑄‘0) ≤ (𝑄𝑖))
137136adantr 480 . . . . . . 7 (((𝜑𝑖 ∈ (0...𝑀)) ∧ (𝑄𝑖) = -π) → (𝑄‘0) ≤ (𝑄𝑖))
138 simpr 484 . . . . . . 7 (((𝜑𝑖 ∈ (0...𝑀)) ∧ (𝑄𝑖) = -π) → (𝑄𝑖) = -π)
139137, 138breqtrd 5169 . . . . . 6 (((𝜑𝑖 ∈ (0...𝑀)) ∧ (𝑄𝑖) = -π) → (𝑄‘0) ≤ -π)
14070rexrd 11311 . . . . . . . 8 (𝜑 → -π ∈ ℝ*)
14171rexrd 11311 . . . . . . . 8 (𝜑 → π ∈ ℝ*)
142 lbicc2 13504 . . . . . . . . . . . . . 14 ((-π ∈ ℝ* ∧ π ∈ ℝ* ∧ -π ≤ π) → -π ∈ (-π[,]π))
14316, 17, 23, 142mp3an 1463 . . . . . . . . . . . . 13 -π ∈ (-π[,]π)
144143a1i 11 . . . . . . . . . . . 12 (𝜑 → -π ∈ (-π[,]π))
145 ubicc2 13505 . . . . . . . . . . . . . 14 ((-π ∈ ℝ* ∧ π ∈ ℝ* ∧ -π ≤ π) → π ∈ (-π[,]π))
14616, 17, 23, 145mp3an 1463 . . . . . . . . . . . . 13 π ∈ (-π[,]π)
147146a1i 11 . . . . . . . . . . . 12 (𝜑 → π ∈ (-π[,]π))
148 iocssicc 13477 . . . . . . . . . . . . 13 (-π(,]π) ⊆ (-π[,]π)
149148, 80sselid 3981 . . . . . . . . . . . 12 (𝜑 → (𝐸𝑋) ∈ (-π[,]π))
150 tpssi 4838 . . . . . . . . . . . 12 ((-π ∈ (-π[,]π) ∧ π ∈ (-π[,]π) ∧ (𝐸𝑋) ∈ (-π[,]π)) → {-π, π, (𝐸𝑋)} ⊆ (-π[,]π))
151144, 147, 149, 150syl3anc 1373 . . . . . . . . . . 11 (𝜑 → {-π, π, (𝐸𝑋)} ⊆ (-π[,]π))
152 difssd 4137 . . . . . . . . . . 11 (𝜑 → ((-π[,]π) ∖ dom 𝐺) ⊆ (-π[,]π))
153151, 152unssd 4192 . . . . . . . . . 10 (𝜑 → ({-π, π, (𝐸𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺)) ⊆ (-π[,]π))
15411, 153eqsstrid 4022 . . . . . . . . 9 (𝜑𝐻 ⊆ (-π[,]π))
155154, 123sseldd 3984 . . . . . . . 8 (𝜑 → (𝑄‘0) ∈ (-π[,]π))
156 iccgelb 13443 . . . . . . . 8 ((-π ∈ ℝ* ∧ π ∈ ℝ* ∧ (𝑄‘0) ∈ (-π[,]π)) → -π ≤ (𝑄‘0))
157140, 141, 155, 156syl3anc 1373 . . . . . . 7 (𝜑 → -π ≤ (𝑄‘0))
158157ad2antrr 726 . . . . . 6 (((𝜑𝑖 ∈ (0...𝑀)) ∧ (𝑄𝑖) = -π) → -π ≤ (𝑄‘0))
159124ad2antrr 726 . . . . . . 7 (((𝜑𝑖 ∈ (0...𝑀)) ∧ (𝑄𝑖) = -π) → (𝑄‘0) ∈ ℝ)
16015a1i 11 . . . . . . 7 (((𝜑𝑖 ∈ (0...𝑀)) ∧ (𝑄𝑖) = -π) → -π ∈ ℝ)
161159, 160letri3d 11403 . . . . . 6 (((𝜑𝑖 ∈ (0...𝑀)) ∧ (𝑄𝑖) = -π) → ((𝑄‘0) = -π ↔ ((𝑄‘0) ≤ -π ∧ -π ≤ (𝑄‘0))))
162139, 158, 161mpbir2and 713 . . . . 5 (((𝜑𝑖 ∈ (0...𝑀)) ∧ (𝑄𝑖) = -π) → (𝑄‘0) = -π)
16359, 53sselii 3980 . . . . . . 7 -π ∈ 𝐻
164 f1ofo 6855 . . . . . . . . 9 (𝑄:(0...𝑀)–1-1-onto𝐻𝑄:(0...𝑀)–onto𝐻)
16594, 164syl 17 . . . . . . . 8 (𝑄 Isom < , < ((0...𝑀), 𝐻) → 𝑄:(0...𝑀)–onto𝐻)
166 forn 6823 . . . . . . . 8 (𝑄:(0...𝑀)–onto𝐻 → ran 𝑄 = 𝐻)
16793, 165, 1663syl 18 . . . . . . 7 (𝜑 → ran 𝑄 = 𝐻)
168163, 167eleqtrrid 2848 . . . . . 6 (𝜑 → -π ∈ ran 𝑄)
169 ffn 6736 . . . . . . 7 (𝑄:(0...𝑀)⟶𝐻𝑄 Fn (0...𝑀))
170 fvelrnb 6969 . . . . . . 7 (𝑄 Fn (0...𝑀) → (-π ∈ ran 𝑄 ↔ ∃𝑖 ∈ (0...𝑀)(𝑄𝑖) = -π))
17196, 169, 1703syl 18 . . . . . 6 (𝜑 → (-π ∈ ran 𝑄 ↔ ∃𝑖 ∈ (0...𝑀)(𝑄𝑖) = -π))
172168, 171mpbid 232 . . . . 5 (𝜑 → ∃𝑖 ∈ (0...𝑀)(𝑄𝑖) = -π)
173162, 172r19.29a 3162 . . . 4 (𝜑 → (𝑄‘0) = -π)
17459, 55sselii 3980 . . . . . . 7 π ∈ 𝐻
175174, 167eleqtrrid 2848 . . . . . 6 (𝜑 → π ∈ ran 𝑄)
176 fvelrnb 6969 . . . . . . 7 (𝑄 Fn (0...𝑀) → (π ∈ ran 𝑄 ↔ ∃𝑖 ∈ (0...𝑀)(𝑄𝑖) = π))
17796, 169, 1763syl 18 . . . . . 6 (𝜑 → (π ∈ ran 𝑄 ↔ ∃𝑖 ∈ (0...𝑀)(𝑄𝑖) = π))
178175, 177mpbid 232 . . . . 5 (𝜑 → ∃𝑖 ∈ (0...𝑀)(𝑄𝑖) = π)
17996, 154fssd 6753 . . . . . . . . . 10 (𝜑𝑄:(0...𝑀)⟶(-π[,]π))
180 eluzfz2 13572 . . . . . . . . . . 11 (𝑀 ∈ (ℤ‘0) → 𝑀 ∈ (0...𝑀))
181120, 180syl 17 . . . . . . . . . 10 (𝜑𝑀 ∈ (0...𝑀))
182179, 181ffvelcdmd 7105 . . . . . . . . 9 (𝜑 → (𝑄𝑀) ∈ (-π[,]π))
183 iccleub 13442 . . . . . . . . 9 ((-π ∈ ℝ* ∧ π ∈ ℝ* ∧ (𝑄𝑀) ∈ (-π[,]π)) → (𝑄𝑀) ≤ π)
184140, 141, 182, 183syl3anc 1373 . . . . . . . 8 (𝜑 → (𝑄𝑀) ≤ π)
1851843ad2ant1 1134 . . . . . . 7 ((𝜑𝑖 ∈ (0...𝑀) ∧ (𝑄𝑖) = π) → (𝑄𝑀) ≤ π)
186 id 22 . . . . . . . . . 10 ((𝑄𝑖) = π → (𝑄𝑖) = π)
187186eqcomd 2743 . . . . . . . . 9 ((𝑄𝑖) = π → π = (𝑄𝑖))
1881873ad2ant3 1136 . . . . . . . 8 ((𝜑𝑖 ∈ (0...𝑀) ∧ (𝑄𝑖) = π) → π = (𝑄𝑖))
189105adantr 480 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑖 = 𝑀) → (𝑄𝑖) ≤ (𝑄𝑖))
190 fveq2 6906 . . . . . . . . . . . 12 (𝑖 = 𝑀 → (𝑄𝑖) = (𝑄𝑀))
191190adantl 481 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑖 = 𝑀) → (𝑄𝑖) = (𝑄𝑀))
192189, 191breqtrd 5169 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑖 = 𝑀) → (𝑄𝑖) ≤ (𝑄𝑀))
193109ad2antlr 727 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0...𝑀)) ∧ ¬ 𝑖 = 𝑀) → 𝑖 ∈ ℝ)
194 elfzel2 13562 . . . . . . . . . . . . . 14 (𝑖 ∈ (0...𝑀) → 𝑀 ∈ ℤ)
195194zred 12722 . . . . . . . . . . . . 13 (𝑖 ∈ (0...𝑀) → 𝑀 ∈ ℝ)
196195ad2antlr 727 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0...𝑀)) ∧ ¬ 𝑖 = 𝑀) → 𝑀 ∈ ℝ)
197 elfzle2 13568 . . . . . . . . . . . . 13 (𝑖 ∈ (0...𝑀) → 𝑖𝑀)
198197ad2antlr 727 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0...𝑀)) ∧ ¬ 𝑖 = 𝑀) → 𝑖𝑀)
199 neqne 2948 . . . . . . . . . . . . . 14 𝑖 = 𝑀𝑖𝑀)
200199necomd 2996 . . . . . . . . . . . . 13 𝑖 = 𝑀𝑀𝑖)
201200adantl 481 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0...𝑀)) ∧ ¬ 𝑖 = 𝑀) → 𝑀𝑖)
202193, 196, 198, 201leneltd 11415 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0...𝑀)) ∧ ¬ 𝑖 = 𝑀) → 𝑖 < 𝑀)
203104adantr 480 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑖 < 𝑀) → (𝑄𝑖) ∈ ℝ)
20487, 182sselid 3981 . . . . . . . . . . . . 13 (𝜑 → (𝑄𝑀) ∈ ℝ)
205204ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑖 < 𝑀) → (𝑄𝑀) ∈ ℝ)
206 simpr 484 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑖 < 𝑀) → 𝑖 < 𝑀)
20793ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑖 < 𝑀) → 𝑄 Isom < , < ((0...𝑀), 𝐻))
208 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0...𝑀)) → 𝑖 ∈ (0...𝑀))
209181adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0...𝑀)) → 𝑀 ∈ (0...𝑀))
210208, 209jca 511 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0...𝑀)) → (𝑖 ∈ (0...𝑀) ∧ 𝑀 ∈ (0...𝑀)))
211210adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑖 < 𝑀) → (𝑖 ∈ (0...𝑀) ∧ 𝑀 ∈ (0...𝑀)))
212 isorel 7346 . . . . . . . . . . . . . 14 ((𝑄 Isom < , < ((0...𝑀), 𝐻) ∧ (𝑖 ∈ (0...𝑀) ∧ 𝑀 ∈ (0...𝑀))) → (𝑖 < 𝑀 ↔ (𝑄𝑖) < (𝑄𝑀)))
213207, 211, 212syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑖 < 𝑀) → (𝑖 < 𝑀 ↔ (𝑄𝑖) < (𝑄𝑀)))
214206, 213mpbid 232 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑖 < 𝑀) → (𝑄𝑖) < (𝑄𝑀))
215203, 205, 214ltled 11409 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑖 < 𝑀) → (𝑄𝑖) ≤ (𝑄𝑀))
216202, 215syldan 591 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0...𝑀)) ∧ ¬ 𝑖 = 𝑀) → (𝑄𝑖) ≤ (𝑄𝑀))
217192, 216pm2.61dan 813 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...𝑀)) → (𝑄𝑖) ≤ (𝑄𝑀))
2182173adant3 1133 . . . . . . . 8 ((𝜑𝑖 ∈ (0...𝑀) ∧ (𝑄𝑖) = π) → (𝑄𝑖) ≤ (𝑄𝑀))
219188, 218eqbrtrd 5165 . . . . . . 7 ((𝜑𝑖 ∈ (0...𝑀) ∧ (𝑄𝑖) = π) → π ≤ (𝑄𝑀))
2202043ad2ant1 1134 . . . . . . . 8 ((𝜑𝑖 ∈ (0...𝑀) ∧ (𝑄𝑖) = π) → (𝑄𝑀) ∈ ℝ)
22114a1i 11 . . . . . . . 8 ((𝜑𝑖 ∈ (0...𝑀) ∧ (𝑄𝑖) = π) → π ∈ ℝ)
222220, 221letri3d 11403 . . . . . . 7 ((𝜑𝑖 ∈ (0...𝑀) ∧ (𝑄𝑖) = π) → ((𝑄𝑀) = π ↔ ((𝑄𝑀) ≤ π ∧ π ≤ (𝑄𝑀))))
223185, 219, 222mpbir2and 713 . . . . . 6 ((𝜑𝑖 ∈ (0...𝑀) ∧ (𝑄𝑖) = π) → (𝑄𝑀) = π)
224223rexlimdv3a 3159 . . . . 5 (𝜑 → (∃𝑖 ∈ (0...𝑀)(𝑄𝑖) = π → (𝑄𝑀) = π))
225178, 224mpd 15 . . . 4 (𝜑 → (𝑄𝑀) = π)
226 elfzoelz 13699 . . . . . . . . 9 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ ℤ)
227226zred 12722 . . . . . . . 8 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ ℝ)
228227ltp1d 12198 . . . . . . 7 (𝑖 ∈ (0..^𝑀) → 𝑖 < (𝑖 + 1))
229228adantl 481 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 < (𝑖 + 1))
230 elfzofz 13715 . . . . . . . 8 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀))
231 fzofzp1 13803 . . . . . . . 8 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀))
232230, 231jca 511 . . . . . . 7 (𝑖 ∈ (0..^𝑀) → (𝑖 ∈ (0...𝑀) ∧ (𝑖 + 1) ∈ (0...𝑀)))
233 isorel 7346 . . . . . . 7 ((𝑄 Isom < , < ((0...𝑀), 𝐻) ∧ (𝑖 ∈ (0...𝑀) ∧ (𝑖 + 1) ∈ (0...𝑀))) → (𝑖 < (𝑖 + 1) ↔ (𝑄𝑖) < (𝑄‘(𝑖 + 1))))
23493, 232, 233syl2an 596 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑖 < (𝑖 + 1) ↔ (𝑄𝑖) < (𝑄‘(𝑖 + 1))))
235229, 234mpbid 232 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
236235ralrimiva 3146 . . . 4 (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))
237173, 225, 236jca31 514 . . 3 (𝜑 → (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))
2387fourierdlem2 46124 . . . 4 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
23969, 238syl 17 . . 3 (𝜑 → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
240101, 237, 239mpbir2and 713 . 2 (𝜑𝑄 ∈ (𝑃𝑀))
241 fourierdlem114.g . . . . 5 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π))
242241reseq1i 5993 . . . 4 (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (((ℝ D 𝐹) ↾ (-π(,)π)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
24316a1i 11 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → -π ∈ ℝ*)
24417a1i 11 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → π ∈ ℝ*)
245179adantr 480 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶(-π[,]π))
246 simpr 484 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0..^𝑀))
247243, 244, 245, 246fourierdlem27 46149 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ (-π(,)π))
248247resabs1d 6026 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (((ℝ D 𝐹) ↾ (-π(,)π)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
249242, 248eqtr2id 2790 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
250 fourierdlem114.gcn . . . 4 (𝜑𝐺 ∈ (dom 𝐺cn→ℂ))
251250, 7, 69, 240, 11, 167fourierdlem38 46160 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
252249, 251eqeltrd 2841 . 2 ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
253249oveq1d 7446 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) = ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
254250adantr 480 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐺 ∈ (dom 𝐺cn→ℂ))
255 fourierdlem114.rlim . . . . . 6 ((𝜑𝑥 ∈ ((-π[,)π) ∖ dom 𝐺)) → ((𝐺 ↾ (𝑥(,)+∞)) lim 𝑥) ≠ ∅)
256255adantlr 715 . . . . 5 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((-π[,)π) ∖ dom 𝐺)) → ((𝐺 ↾ (𝑥(,)+∞)) lim 𝑥) ≠ ∅)
257 fourierdlem114.llim . . . . . 6 ((𝜑𝑥 ∈ ((-π(,]π) ∖ dom 𝐺)) → ((𝐺 ↾ (-∞(,)𝑥)) lim 𝑥) ≠ ∅)
258257adantlr 715 . . . . 5 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((-π(,]π) ∖ dom 𝐺)) → ((𝐺 ↾ (-∞(,)𝑥)) lim 𝑥) ≠ ∅)
25993adantr 480 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄 Isom < , < ((0...𝑀), 𝐻))
260259, 94, 953syl 18 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶𝐻)
26181adantr 480 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐸𝑋) ∈ ℝ)
262259, 165, 1663syl 18 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → ran 𝑄 = 𝐻)
263254, 256, 258, 259, 260, 246, 235, 247, 261, 11, 262fourierdlem46 46167 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) ≠ ∅ ∧ ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) ≠ ∅))
264263simpld 494 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) ≠ ∅)
265253, 264eqnetrd 3008 . 2 ((𝜑𝑖 ∈ (0..^𝑀)) → (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) ≠ ∅)
266249oveq1d 7446 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) = ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
267263simprd 495 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) ≠ ∅)
268266, 267eqnetrd 3008 . 2 ((𝜑𝑖 ∈ (0..^𝑀)) → (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) ≠ ∅)
269 fourierdlem114.a . 2 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))
270 fourierdlem114.b . 2 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))
271 fourierdlem114.s . 2 𝑆 = (𝑛 ∈ ℕ ↦ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))))
27283tpid3 4773 . . . . 5 (𝐸𝑋) ∈ {-π, π, (𝐸𝑋)}
273 elun1 4182 . . . . 5 ((𝐸𝑋) ∈ {-π, π, (𝐸𝑋)} → (𝐸𝑋) ∈ ({-π, π, (𝐸𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺)))
274272, 273mp1i 13 . . . 4 (𝜑 → (𝐸𝑋) ∈ ({-π, π, (𝐸𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺)))
275274, 11eleqtrrdi 2852 . . 3 (𝜑 → (𝐸𝑋) ∈ 𝐻)
276275, 167eleqtrrd 2844 . 2 (𝜑 → (𝐸𝑋) ∈ ran 𝑄)
2771, 2, 3, 4, 5, 6, 7, 69, 240, 252, 265, 268, 269, 270, 271, 78, 276fourierdlem113 46234 1 (𝜑 → (seq1( + , 𝑆) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)) ∧ (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝐿 + 𝑅) / 2)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wral 3061  wrex 3070  {crab 3436  Vcvv 3480  cdif 3948  cun 3949  wss 3951  c0 4333  {cpr 4628  {ctp 4630   class class class wbr 5143  cmpt 5225  dom cdm 5685  ran crn 5686  cres 5687  cio 6512   Fn wfn 6556  wf 6557  ontowfo 6559  1-1-ontowf1o 6560  cfv 6561   Isom wiso 6562  (class class class)co 7431  m cmap 8866  Fincfn 8985  cc 11153  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160  +∞cpnf 11292  -∞cmnf 11293  *cxr 11294   < clt 11295  cle 11296  cmin 11492  -cneg 11493   / cdiv 11920  cn 12266  2c2 12321  0cn0 12526  cz 12613  cuz 12878  (,)cioo 13387  (,]cioc 13388  [,)cico 13389  [,]cicc 13390  ...cfz 13547  ..^cfzo 13694  cfl 13830  seqcseq 14042  chash 14369  cli 15520  Σcsu 15722  sincsin 16099  cosccos 16100  πcpi 16102  cnccncf 24902  citg 25653   lim climc 25897   D cdv 25898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cc 10475  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-symdif 4253  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-disj 5111  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-omul 8511  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-dju 9941  df-card 9979  df-acn 9982  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-xnn0 12600  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-shft 15106  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-sum 15723  df-ef 16103  df-sin 16105  df-cos 16106  df-pi 16108  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-t1 23322  df-haus 23323  df-cmp 23395  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-ovol 25499  df-vol 25500  df-mbf 25654  df-itg1 25655  df-itg2 25656  df-ibl 25657  df-itg 25658  df-0p 25705  df-ditg 25882  df-limc 25901  df-dv 25902
This theorem is referenced by:  fourierdlem115  46236
  Copyright terms: Public domain W3C validator