Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjim Structured version   Visualization version   GIF version

Theorem disjim 38899
Description: The "Divide et Aequivalere" Theorem: every disjoint relation generates equivalent cosets by the relation: generalization of the former prter1 38998, cf. eldisjim 38902. (Contributed by Peter Mazsa, 3-May-2019.) (Revised by Peter Mazsa, 17-Sep-2021.)
Assertion
Ref Expression
disjim ( Disj 𝑅 → EqvRel ≀ 𝑅)

Proof of Theorem disjim
Dummy variables 𝑢 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfdisjALTV4 38834 . . . 4 ( Disj 𝑅 ↔ (∀𝑦∃*𝑢 𝑢𝑅𝑦 ∧ Rel 𝑅))
21simplbi 497 . . 3 ( Disj 𝑅 → ∀𝑦∃*𝑢 𝑢𝑅𝑦)
3 trcoss 38604 . . 3 (∀𝑦∃*𝑢 𝑢𝑅𝑦 → ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
42, 3syl 17 . 2 ( Disj 𝑅 → ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
5 eqvrelcoss3 38734 . 2 ( EqvRel ≀ 𝑅 ↔ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
64, 5sylibr 234 1 ( Disj 𝑅 → EqvRel ≀ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1539  ∃*wmo 2535   class class class wbr 5093  Rel wrel 5624  ccoss 38242   EqvRel weqvrel 38259   Disj wdisjALTV 38276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-br 5094  df-opab 5156  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-coss 38533  df-refrel 38624  df-cnvrefrel 38639  df-symrel 38656  df-trrel 38690  df-eqvrel 38701  df-disjALTV 38823
This theorem is referenced by:  disjimi  38900  detlem  38901  eldisjim  38902  eldisjim2  38903  partim2  38925
  Copyright terms: Public domain W3C validator