![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjim | Structured version Visualization version GIF version |
Description: The "Divide et Aequivalere" Theorem: every disjoint relation generates equivalent cosets by the relation: generalization of the former prter1 37118, cf. eldisjim 37023. (Contributed by Peter Mazsa, 3-May-2019.) (Revised by Peter Mazsa, 17-Sep-2021.) |
Ref | Expression |
---|---|
disjim | ⊢ ( Disj 𝑅 → EqvRel ≀ 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdisjALTV4 36955 | . . . 4 ⊢ ( Disj 𝑅 ↔ (∀𝑦∃*𝑢 𝑢𝑅𝑦 ∧ Rel 𝑅)) | |
2 | 1 | simplbi 498 | . . 3 ⊢ ( Disj 𝑅 → ∀𝑦∃*𝑢 𝑢𝑅𝑦) |
3 | trcoss 36721 | . . 3 ⊢ (∀𝑦∃*𝑢 𝑢𝑅𝑦 → ∀𝑥∀𝑦∀𝑧((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥 ≀ 𝑅𝑧)) | |
4 | 2, 3 | syl 17 | . 2 ⊢ ( Disj 𝑅 → ∀𝑥∀𝑦∀𝑧((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥 ≀ 𝑅𝑧)) |
5 | eqvrelcoss3 36857 | . 2 ⊢ ( EqvRel ≀ 𝑅 ↔ ∀𝑥∀𝑦∀𝑧((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥 ≀ 𝑅𝑧)) | |
6 | 4, 5 | sylibr 233 | 1 ⊢ ( Disj 𝑅 → EqvRel ≀ 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∀wal 1538 ∃*wmo 2536 class class class wbr 5086 Rel wrel 5612 ≀ ccoss 36410 EqvRel weqvrel 36427 Disj wdisjALTV 36444 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5237 ax-nul 5244 ax-pr 5366 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3442 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4471 df-sn 4571 df-pr 4573 df-op 4577 df-br 5087 df-opab 5149 df-id 5506 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-coss 36650 df-refrel 36751 df-cnvrefrel 36766 df-symrel 36783 df-trrel 36813 df-eqvrel 36824 df-disjALTV 36944 |
This theorem is referenced by: disjimi 37021 detlem 37022 eldisjim 37023 eldisjim2 37024 partim2 37046 |
Copyright terms: Public domain | W3C validator |