![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjim | Structured version Visualization version GIF version |
Description: The "Divide et Aequivalere" Theorem: every disjoint relation generates equivalent cosets by the relation: generalization of the former prter1 38875, cf. eldisjim 38780. (Contributed by Peter Mazsa, 3-May-2019.) (Revised by Peter Mazsa, 17-Sep-2021.) |
Ref | Expression |
---|---|
disjim | ⊢ ( Disj 𝑅 → EqvRel ≀ 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdisjALTV4 38712 | . . . 4 ⊢ ( Disj 𝑅 ↔ (∀𝑦∃*𝑢 𝑢𝑅𝑦 ∧ Rel 𝑅)) | |
2 | 1 | simplbi 497 | . . 3 ⊢ ( Disj 𝑅 → ∀𝑦∃*𝑢 𝑢𝑅𝑦) |
3 | trcoss 38478 | . . 3 ⊢ (∀𝑦∃*𝑢 𝑢𝑅𝑦 → ∀𝑥∀𝑦∀𝑧((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥 ≀ 𝑅𝑧)) | |
4 | 2, 3 | syl 17 | . 2 ⊢ ( Disj 𝑅 → ∀𝑥∀𝑦∀𝑧((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥 ≀ 𝑅𝑧)) |
5 | eqvrelcoss3 38614 | . 2 ⊢ ( EqvRel ≀ 𝑅 ↔ ∀𝑥∀𝑦∀𝑧((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥 ≀ 𝑅𝑧)) | |
6 | 4, 5 | sylibr 234 | 1 ⊢ ( Disj 𝑅 → EqvRel ≀ 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1537 ∃*wmo 2538 class class class wbr 5151 Rel wrel 5698 ≀ ccoss 38176 EqvRel weqvrel 38193 Disj wdisjALTV 38210 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-br 5152 df-opab 5214 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-coss 38407 df-refrel 38508 df-cnvrefrel 38523 df-symrel 38540 df-trrel 38570 df-eqvrel 38581 df-disjALTV 38701 |
This theorem is referenced by: disjimi 38778 detlem 38779 eldisjim 38780 eldisjim2 38781 partim2 38803 |
Copyright terms: Public domain | W3C validator |