![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjim | Structured version Visualization version GIF version |
Description: The "Divide et Aequivalere" Theorem: every disjoint relation generates equivalent cosets by the relation: generalization of the former prter1 37737, cf. eldisjim 37642. (Contributed by Peter Mazsa, 3-May-2019.) (Revised by Peter Mazsa, 17-Sep-2021.) |
Ref | Expression |
---|---|
disjim | ⊢ ( Disj 𝑅 → EqvRel ≀ 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdisjALTV4 37574 | . . . 4 ⊢ ( Disj 𝑅 ↔ (∀𝑦∃*𝑢 𝑢𝑅𝑦 ∧ Rel 𝑅)) | |
2 | 1 | simplbi 498 | . . 3 ⊢ ( Disj 𝑅 → ∀𝑦∃*𝑢 𝑢𝑅𝑦) |
3 | trcoss 37340 | . . 3 ⊢ (∀𝑦∃*𝑢 𝑢𝑅𝑦 → ∀𝑥∀𝑦∀𝑧((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥 ≀ 𝑅𝑧)) | |
4 | 2, 3 | syl 17 | . 2 ⊢ ( Disj 𝑅 → ∀𝑥∀𝑦∀𝑧((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥 ≀ 𝑅𝑧)) |
5 | eqvrelcoss3 37476 | . 2 ⊢ ( EqvRel ≀ 𝑅 ↔ ∀𝑥∀𝑦∀𝑧((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥 ≀ 𝑅𝑧)) | |
6 | 4, 5 | sylibr 233 | 1 ⊢ ( Disj 𝑅 → EqvRel ≀ 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∀wal 1539 ∃*wmo 2532 class class class wbr 5147 Rel wrel 5680 ≀ ccoss 37031 EqvRel weqvrel 37048 Disj wdisjALTV 37065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-coss 37269 df-refrel 37370 df-cnvrefrel 37385 df-symrel 37402 df-trrel 37432 df-eqvrel 37443 df-disjALTV 37563 |
This theorem is referenced by: disjimi 37640 detlem 37641 eldisjim 37642 eldisjim2 37643 partim2 37665 |
Copyright terms: Public domain | W3C validator |