| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > disjim | Structured version Visualization version GIF version | ||
| Description: The "Divide et Aequivalere" Theorem: every disjoint relation generates equivalent cosets by the relation: generalization of the former prter1 38814, cf. eldisjim 38719. (Contributed by Peter Mazsa, 3-May-2019.) (Revised by Peter Mazsa, 17-Sep-2021.) |
| Ref | Expression |
|---|---|
| disjim | ⊢ ( Disj 𝑅 → EqvRel ≀ 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfdisjALTV4 38651 | . . . 4 ⊢ ( Disj 𝑅 ↔ (∀𝑦∃*𝑢 𝑢𝑅𝑦 ∧ Rel 𝑅)) | |
| 2 | 1 | simplbi 497 | . . 3 ⊢ ( Disj 𝑅 → ∀𝑦∃*𝑢 𝑢𝑅𝑦) |
| 3 | trcoss 38417 | . . 3 ⊢ (∀𝑦∃*𝑢 𝑢𝑅𝑦 → ∀𝑥∀𝑦∀𝑧((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥 ≀ 𝑅𝑧)) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ ( Disj 𝑅 → ∀𝑥∀𝑦∀𝑧((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥 ≀ 𝑅𝑧)) |
| 5 | eqvrelcoss3 38553 | . 2 ⊢ ( EqvRel ≀ 𝑅 ↔ ∀𝑥∀𝑦∀𝑧((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥 ≀ 𝑅𝑧)) | |
| 6 | 4, 5 | sylibr 234 | 1 ⊢ ( Disj 𝑅 → EqvRel ≀ 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1537 ∃*wmo 2536 class class class wbr 5123 Rel wrel 5670 ≀ ccoss 38116 EqvRel weqvrel 38133 Disj wdisjALTV 38150 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 df-opab 5186 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-coss 38346 df-refrel 38447 df-cnvrefrel 38462 df-symrel 38479 df-trrel 38509 df-eqvrel 38520 df-disjALTV 38640 |
| This theorem is referenced by: disjimi 38717 detlem 38718 eldisjim 38719 eldisjim2 38720 partim2 38742 |
| Copyright terms: Public domain | W3C validator |