| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > disjim | Structured version Visualization version GIF version | ||
| Description: The "Divide et Aequivalere" Theorem: every disjoint relation generates equivalent cosets by the relation: generalization of the former prter1 38872, cf. eldisjim 38776. (Contributed by Peter Mazsa, 3-May-2019.) (Revised by Peter Mazsa, 17-Sep-2021.) |
| Ref | Expression |
|---|---|
| disjim | ⊢ ( Disj 𝑅 → EqvRel ≀ 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfdisjALTV4 38708 | . . . 4 ⊢ ( Disj 𝑅 ↔ (∀𝑦∃*𝑢 𝑢𝑅𝑦 ∧ Rel 𝑅)) | |
| 2 | 1 | simplbi 497 | . . 3 ⊢ ( Disj 𝑅 → ∀𝑦∃*𝑢 𝑢𝑅𝑦) |
| 3 | trcoss 38473 | . . 3 ⊢ (∀𝑦∃*𝑢 𝑢𝑅𝑦 → ∀𝑥∀𝑦∀𝑧((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥 ≀ 𝑅𝑧)) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ ( Disj 𝑅 → ∀𝑥∀𝑦∀𝑧((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥 ≀ 𝑅𝑧)) |
| 5 | eqvrelcoss3 38609 | . 2 ⊢ ( EqvRel ≀ 𝑅 ↔ ∀𝑥∀𝑦∀𝑧((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥 ≀ 𝑅𝑧)) | |
| 6 | 4, 5 | sylibr 234 | 1 ⊢ ( Disj 𝑅 → EqvRel ≀ 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 ∃*wmo 2531 class class class wbr 5107 Rel wrel 5643 ≀ ccoss 38169 EqvRel weqvrel 38186 Disj wdisjALTV 38203 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-coss 38402 df-refrel 38503 df-cnvrefrel 38518 df-symrel 38535 df-trrel 38565 df-eqvrel 38576 df-disjALTV 38697 |
| This theorem is referenced by: disjimi 38774 detlem 38775 eldisjim 38776 eldisjim2 38777 partim2 38799 |
| Copyright terms: Public domain | W3C validator |