Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjim Structured version   Visualization version   GIF version

Theorem disjim 37639
Description: The "Divide et Aequivalere" Theorem: every disjoint relation generates equivalent cosets by the relation: generalization of the former prter1 37737, cf. eldisjim 37642. (Contributed by Peter Mazsa, 3-May-2019.) (Revised by Peter Mazsa, 17-Sep-2021.)
Assertion
Ref Expression
disjim ( Disj 𝑅 → EqvRel ≀ 𝑅)

Proof of Theorem disjim
Dummy variables 𝑢 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfdisjALTV4 37574 . . . 4 ( Disj 𝑅 ↔ (∀𝑦∃*𝑢 𝑢𝑅𝑦 ∧ Rel 𝑅))
21simplbi 498 . . 3 ( Disj 𝑅 → ∀𝑦∃*𝑢 𝑢𝑅𝑦)
3 trcoss 37340 . . 3 (∀𝑦∃*𝑢 𝑢𝑅𝑦 → ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
42, 3syl 17 . 2 ( Disj 𝑅 → ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
5 eqvrelcoss3 37476 . 2 ( EqvRel ≀ 𝑅 ↔ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
64, 5sylibr 233 1 ( Disj 𝑅 → EqvRel ≀ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wal 1539  ∃*wmo 2532   class class class wbr 5147  Rel wrel 5680  ccoss 37031   EqvRel weqvrel 37048   Disj wdisjALTV 37065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-coss 37269  df-refrel 37370  df-cnvrefrel 37385  df-symrel 37402  df-trrel 37432  df-eqvrel 37443  df-disjALTV 37563
This theorem is referenced by:  disjimi  37640  detlem  37641  eldisjim  37642  eldisjim2  37643  partim2  37665
  Copyright terms: Public domain W3C validator