| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > trrelsuperreldg | Structured version Visualization version GIF version | ||
| Description: Concrete construction of a superclass of relation 𝑅 which is a transitive relation. (Contributed by RP, 25-Dec-2019.) |
| Ref | Expression |
|---|---|
| trrelsuperreldg.r | ⊢ (𝜑 → Rel 𝑅) |
| trrelsuperreldg.s | ⊢ (𝜑 → 𝑆 = (dom 𝑅 × ran 𝑅)) |
| Ref | Expression |
|---|---|
| trrelsuperreldg | ⊢ (𝜑 → (𝑅 ⊆ 𝑆 ∧ (𝑆 ∘ 𝑆) ⊆ 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trrelsuperreldg.r | . . . 4 ⊢ (𝜑 → Rel 𝑅) | |
| 2 | relssdmrn 6268 | . . . 4 ⊢ (Rel 𝑅 → 𝑅 ⊆ (dom 𝑅 × ran 𝑅)) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → 𝑅 ⊆ (dom 𝑅 × ran 𝑅)) |
| 4 | trrelsuperreldg.s | . . 3 ⊢ (𝜑 → 𝑆 = (dom 𝑅 × ran 𝑅)) | |
| 5 | 3, 4 | sseqtrrd 4001 | . 2 ⊢ (𝜑 → 𝑅 ⊆ 𝑆) |
| 6 | xptrrel 15000 | . . . 4 ⊢ ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)) ⊆ (dom 𝑅 × ran 𝑅) | |
| 7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)) ⊆ (dom 𝑅 × ran 𝑅)) |
| 8 | 4, 4 | coeq12d 5855 | . . 3 ⊢ (𝜑 → (𝑆 ∘ 𝑆) = ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅))) |
| 9 | 7, 8, 4 | 3sstr4d 4019 | . 2 ⊢ (𝜑 → (𝑆 ∘ 𝑆) ⊆ 𝑆) |
| 10 | 5, 9 | jca 511 | 1 ⊢ (𝜑 → (𝑅 ⊆ 𝑆 ∧ (𝑆 ∘ 𝑆) ⊆ 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ⊆ wss 3931 × cxp 5663 dom cdm 5665 ran crn 5666 ∘ ccom 5669 Rel wrel 5670 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 df-opab 5186 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |