Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trrelsuperreldg Structured version   Visualization version   GIF version

Theorem trrelsuperreldg 41165
Description: Concrete construction of a superclass of relation 𝑅 which is a transitive relation. (Contributed by RP, 25-Dec-2019.)
Hypotheses
Ref Expression
trrelsuperreldg.r (𝜑 → Rel 𝑅)
trrelsuperreldg.s (𝜑𝑆 = (dom 𝑅 × ran 𝑅))
Assertion
Ref Expression
trrelsuperreldg (𝜑 → (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆))

Proof of Theorem trrelsuperreldg
StepHypRef Expression
1 trrelsuperreldg.r . . . 4 (𝜑 → Rel 𝑅)
2 relssdmrn 6161 . . . 4 (Rel 𝑅𝑅 ⊆ (dom 𝑅 × ran 𝑅))
31, 2syl 17 . . 3 (𝜑𝑅 ⊆ (dom 𝑅 × ran 𝑅))
4 trrelsuperreldg.s . . 3 (𝜑𝑆 = (dom 𝑅 × ran 𝑅))
53, 4sseqtrrd 3958 . 2 (𝜑𝑅𝑆)
6 xptrrel 14619 . . . 4 ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)) ⊆ (dom 𝑅 × ran 𝑅)
76a1i 11 . . 3 (𝜑 → ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)) ⊆ (dom 𝑅 × ran 𝑅))
84, 4coeq12d 5762 . . 3 (𝜑 → (𝑆𝑆) = ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)))
97, 8, 43sstr4d 3964 . 2 (𝜑 → (𝑆𝑆) ⊆ 𝑆)
105, 9jca 511 1 (𝜑 → (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wss 3883   × cxp 5578  dom cdm 5580  ran crn 5581  ccom 5584  Rel wrel 5585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator