Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > trrelsuperreldg | Structured version Visualization version GIF version |
Description: Concrete construction of a superclass of relation 𝑅 which is a transitive relation. (Contributed by RP, 25-Dec-2019.) |
Ref | Expression |
---|---|
trrelsuperreldg.r | ⊢ (𝜑 → Rel 𝑅) |
trrelsuperreldg.s | ⊢ (𝜑 → 𝑆 = (dom 𝑅 × ran 𝑅)) |
Ref | Expression |
---|---|
trrelsuperreldg | ⊢ (𝜑 → (𝑅 ⊆ 𝑆 ∧ (𝑆 ∘ 𝑆) ⊆ 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trrelsuperreldg.r | . . . 4 ⊢ (𝜑 → Rel 𝑅) | |
2 | relssdmrn 6101 | . . . 4 ⊢ (Rel 𝑅 → 𝑅 ⊆ (dom 𝑅 × ran 𝑅)) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → 𝑅 ⊆ (dom 𝑅 × ran 𝑅)) |
4 | trrelsuperreldg.s | . . 3 ⊢ (𝜑 → 𝑆 = (dom 𝑅 × ran 𝑅)) | |
5 | 3, 4 | sseqtrrd 3918 | . 2 ⊢ (𝜑 → 𝑅 ⊆ 𝑆) |
6 | xptrrel 14429 | . . . 4 ⊢ ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)) ⊆ (dom 𝑅 × ran 𝑅) | |
7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)) ⊆ (dom 𝑅 × ran 𝑅)) |
8 | 4, 4 | coeq12d 5707 | . . 3 ⊢ (𝜑 → (𝑆 ∘ 𝑆) = ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅))) |
9 | 7, 8, 4 | 3sstr4d 3924 | . 2 ⊢ (𝜑 → (𝑆 ∘ 𝑆) ⊆ 𝑆) |
10 | 5, 9 | jca 515 | 1 ⊢ (𝜑 → (𝑅 ⊆ 𝑆 ∧ (𝑆 ∘ 𝑆) ⊆ 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ⊆ wss 3843 × cxp 5523 dom cdm 5525 ran crn 5526 ∘ ccom 5529 Rel wrel 5530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pr 5296 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3400 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-sn 4517 df-pr 4519 df-op 4523 df-br 5031 df-opab 5093 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |