![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > trrelsuperreldg | Structured version Visualization version GIF version |
Description: Concrete construction of a superclass of relation 𝑅 which is a transitive relation. (Contributed by RP, 25-Dec-2019.) |
Ref | Expression |
---|---|
trrelsuperreldg.r | ⊢ (𝜑 → Rel 𝑅) |
trrelsuperreldg.s | ⊢ (𝜑 → 𝑆 = (dom 𝑅 × ran 𝑅)) |
Ref | Expression |
---|---|
trrelsuperreldg | ⊢ (𝜑 → (𝑅 ⊆ 𝑆 ∧ (𝑆 ∘ 𝑆) ⊆ 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trrelsuperreldg.r | . . . 4 ⊢ (𝜑 → Rel 𝑅) | |
2 | relssdmrn 6296 | . . . 4 ⊢ (Rel 𝑅 → 𝑅 ⊆ (dom 𝑅 × ran 𝑅)) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → 𝑅 ⊆ (dom 𝑅 × ran 𝑅)) |
4 | trrelsuperreldg.s | . . 3 ⊢ (𝜑 → 𝑆 = (dom 𝑅 × ran 𝑅)) | |
5 | 3, 4 | sseqtrrd 4040 | . 2 ⊢ (𝜑 → 𝑅 ⊆ 𝑆) |
6 | xptrrel 15025 | . . . 4 ⊢ ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)) ⊆ (dom 𝑅 × ran 𝑅) | |
7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)) ⊆ (dom 𝑅 × ran 𝑅)) |
8 | 4, 4 | coeq12d 5882 | . . 3 ⊢ (𝜑 → (𝑆 ∘ 𝑆) = ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅))) |
9 | 7, 8, 4 | 3sstr4d 4046 | . 2 ⊢ (𝜑 → (𝑆 ∘ 𝑆) ⊆ 𝑆) |
10 | 5, 9 | jca 511 | 1 ⊢ (𝜑 → (𝑅 ⊆ 𝑆 ∧ (𝑆 ∘ 𝑆) ⊆ 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ⊆ wss 3966 × cxp 5691 dom cdm 5693 ran crn 5694 ∘ ccom 5697 Rel wrel 5698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-br 5152 df-opab 5214 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |