Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trrelsuperreldg Structured version   Visualization version   GIF version

Theorem trrelsuperreldg 41313
Description: Concrete construction of a superclass of relation 𝑅 which is a transitive relation. (Contributed by RP, 25-Dec-2019.)
Hypotheses
Ref Expression
trrelsuperreldg.r (𝜑 → Rel 𝑅)
trrelsuperreldg.s (𝜑𝑆 = (dom 𝑅 × ran 𝑅))
Assertion
Ref Expression
trrelsuperreldg (𝜑 → (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆))

Proof of Theorem trrelsuperreldg
StepHypRef Expression
1 trrelsuperreldg.r . . . 4 (𝜑 → Rel 𝑅)
2 relssdmrn 6182 . . . 4 (Rel 𝑅𝑅 ⊆ (dom 𝑅 × ran 𝑅))
31, 2syl 17 . . 3 (𝜑𝑅 ⊆ (dom 𝑅 × ran 𝑅))
4 trrelsuperreldg.s . . 3 (𝜑𝑆 = (dom 𝑅 × ran 𝑅))
53, 4sseqtrrd 3967 . 2 (𝜑𝑅𝑆)
6 xptrrel 14732 . . . 4 ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)) ⊆ (dom 𝑅 × ran 𝑅)
76a1i 11 . . 3 (𝜑 → ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)) ⊆ (dom 𝑅 × ran 𝑅))
84, 4coeq12d 5782 . . 3 (𝜑 → (𝑆𝑆) = ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)))
97, 8, 43sstr4d 3973 . 2 (𝜑 → (𝑆𝑆) ⊆ 𝑆)
105, 9jca 513 1 (𝜑 → (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1539  wss 3892   × cxp 5594  dom cdm 5596  ran crn 5597  ccom 5600  Rel wrel 5601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3287  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-br 5082  df-opab 5144  df-xp 5602  df-rel 5603  df-cnv 5604  df-co 5605  df-dm 5606  df-rn 5607  df-res 5608
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator