Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trrelsuperreldg Structured version   Visualization version   GIF version

Theorem trrelsuperreldg 43237
Description: Concrete construction of a superclass of relation 𝑅 which is a transitive relation. (Contributed by RP, 25-Dec-2019.)
Hypotheses
Ref Expression
trrelsuperreldg.r (𝜑 → Rel 𝑅)
trrelsuperreldg.s (𝜑𝑆 = (dom 𝑅 × ran 𝑅))
Assertion
Ref Expression
trrelsuperreldg (𝜑 → (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆))

Proof of Theorem trrelsuperreldg
StepHypRef Expression
1 trrelsuperreldg.r . . . 4 (𝜑 → Rel 𝑅)
2 relssdmrn 6274 . . . 4 (Rel 𝑅𝑅 ⊆ (dom 𝑅 × ran 𝑅))
31, 2syl 17 . . 3 (𝜑𝑅 ⊆ (dom 𝑅 × ran 𝑅))
4 trrelsuperreldg.s . . 3 (𝜑𝑆 = (dom 𝑅 × ran 𝑅))
53, 4sseqtrrd 4018 . 2 (𝜑𝑅𝑆)
6 xptrrel 14963 . . . 4 ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)) ⊆ (dom 𝑅 × ran 𝑅)
76a1i 11 . . 3 (𝜑 → ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)) ⊆ (dom 𝑅 × ran 𝑅))
84, 4coeq12d 5867 . . 3 (𝜑 → (𝑆𝑆) = ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)))
97, 8, 43sstr4d 4024 . 2 (𝜑 → (𝑆𝑆) ⊆ 𝑆)
105, 9jca 510 1 (𝜑 → (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wss 3944   × cxp 5676  dom cdm 5678  ran crn 5679  ccom 5682  Rel wrel 5683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-br 5150  df-opab 5212  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator