Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trrelsuperreldg Structured version   Visualization version   GIF version

Theorem trrelsuperreldg 43571
Description: Concrete construction of a superclass of relation 𝑅 which is a transitive relation. (Contributed by RP, 25-Dec-2019.)
Hypotheses
Ref Expression
trrelsuperreldg.r (𝜑 → Rel 𝑅)
trrelsuperreldg.s (𝜑𝑆 = (dom 𝑅 × ran 𝑅))
Assertion
Ref Expression
trrelsuperreldg (𝜑 → (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆))

Proof of Theorem trrelsuperreldg
StepHypRef Expression
1 trrelsuperreldg.r . . . 4 (𝜑 → Rel 𝑅)
2 relssdmrn 6298 . . . 4 (Rel 𝑅𝑅 ⊆ (dom 𝑅 × ran 𝑅))
31, 2syl 17 . . 3 (𝜑𝑅 ⊆ (dom 𝑅 × ran 𝑅))
4 trrelsuperreldg.s . . 3 (𝜑𝑆 = (dom 𝑅 × ran 𝑅))
53, 4sseqtrrd 4044 . 2 (𝜑𝑅𝑆)
6 xptrrel 15025 . . . 4 ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)) ⊆ (dom 𝑅 × ran 𝑅)
76a1i 11 . . 3 (𝜑 → ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)) ⊆ (dom 𝑅 × ran 𝑅))
84, 4coeq12d 5888 . . 3 (𝜑 → (𝑆𝑆) = ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)))
97, 8, 43sstr4d 4050 . 2 (𝜑 → (𝑆𝑆) ⊆ 𝑆)
105, 9jca 511 1 (𝜑 → (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wss 3970   × cxp 5697  dom cdm 5699  ran crn 5700  ccom 5703  Rel wrel 5704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2105  ax-9 2113  ax-10 2136  ax-11 2153  ax-12 2173  ax-ext 2705  ax-sep 5320  ax-nul 5327  ax-pr 5450
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2712  df-cleq 2726  df-clel 2813  df-ne 2943  df-ral 3064  df-rex 3073  df-rab 3439  df-v 3484  df-dif 3973  df-un 3975  df-in 3977  df-ss 3987  df-nul 4348  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5170  df-opab 5232  df-xp 5705  df-rel 5706  df-cnv 5707  df-co 5708  df-dm 5709  df-rn 5710  df-res 5711
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator