![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > trrelsuperreldg | Structured version Visualization version GIF version |
Description: Concrete construction of a superclass of relation 𝑅 which is a transitive relation. (Contributed by RP, 25-Dec-2019.) |
Ref | Expression |
---|---|
trrelsuperreldg.r | ⊢ (𝜑 → Rel 𝑅) |
trrelsuperreldg.s | ⊢ (𝜑 → 𝑆 = (dom 𝑅 × ran 𝑅)) |
Ref | Expression |
---|---|
trrelsuperreldg | ⊢ (𝜑 → (𝑅 ⊆ 𝑆 ∧ (𝑆 ∘ 𝑆) ⊆ 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trrelsuperreldg.r | . . . 4 ⊢ (𝜑 → Rel 𝑅) | |
2 | relssdmrn 6257 | . . . 4 ⊢ (Rel 𝑅 → 𝑅 ⊆ (dom 𝑅 × ran 𝑅)) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → 𝑅 ⊆ (dom 𝑅 × ran 𝑅)) |
4 | trrelsuperreldg.s | . . 3 ⊢ (𝜑 → 𝑆 = (dom 𝑅 × ran 𝑅)) | |
5 | 3, 4 | sseqtrrd 4015 | . 2 ⊢ (𝜑 → 𝑅 ⊆ 𝑆) |
6 | xptrrel 14924 | . . . 4 ⊢ ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)) ⊆ (dom 𝑅 × ran 𝑅) | |
7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)) ⊆ (dom 𝑅 × ran 𝑅)) |
8 | 4, 4 | coeq12d 5854 | . . 3 ⊢ (𝜑 → (𝑆 ∘ 𝑆) = ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅))) |
9 | 7, 8, 4 | 3sstr4d 4021 | . 2 ⊢ (𝜑 → (𝑆 ∘ 𝑆) ⊆ 𝑆) |
10 | 5, 9 | jca 511 | 1 ⊢ (𝜑 → (𝑅 ⊆ 𝑆 ∧ (𝑆 ∘ 𝑆) ⊆ 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ⊆ wss 3940 × cxp 5664 dom cdm 5666 ran crn 5667 ∘ ccom 5670 Rel wrel 5671 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-br 5139 df-opab 5201 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |