![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnvtrrel | Structured version Visualization version GIF version |
Description: The converse of a transitive relation is a transitive relation. (Contributed by RP, 25-Dec-2019.) |
Ref | Expression |
---|---|
cnvtrrel | ⊢ ((𝑆 ∘ 𝑆) ⊆ 𝑆 ↔ (◡𝑆 ∘ ◡𝑆) ⊆ ◡𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvss 5862 | . . 3 ⊢ ((𝑆 ∘ 𝑆) ⊆ 𝑆 → ◡(𝑆 ∘ 𝑆) ⊆ ◡𝑆) | |
2 | cnvss 5862 | . . . 4 ⊢ (◡(𝑆 ∘ 𝑆) ⊆ ◡𝑆 → ◡◡(𝑆 ∘ 𝑆) ⊆ ◡◡𝑆) | |
3 | cnvco 5875 | . . . . . . . . 9 ⊢ ◡(𝑆 ∘ 𝑆) = (◡𝑆 ∘ ◡𝑆) | |
4 | 3 | cnveqi 5864 | . . . . . . . 8 ⊢ ◡◡(𝑆 ∘ 𝑆) = ◡(◡𝑆 ∘ ◡𝑆) |
5 | cnvco 5875 | . . . . . . . 8 ⊢ ◡(◡𝑆 ∘ ◡𝑆) = (◡◡𝑆 ∘ ◡◡𝑆) | |
6 | cocnvcnv1 6246 | . . . . . . . . 9 ⊢ (◡◡𝑆 ∘ ◡◡𝑆) = (𝑆 ∘ ◡◡𝑆) | |
7 | cocnvcnv2 6247 | . . . . . . . . 9 ⊢ (𝑆 ∘ ◡◡𝑆) = (𝑆 ∘ 𝑆) | |
8 | 6, 7 | eqtri 2752 | . . . . . . . 8 ⊢ (◡◡𝑆 ∘ ◡◡𝑆) = (𝑆 ∘ 𝑆) |
9 | 4, 5, 8 | 3eqtri 2756 | . . . . . . 7 ⊢ ◡◡(𝑆 ∘ 𝑆) = (𝑆 ∘ 𝑆) |
10 | 9 | sseq1i 4002 | . . . . . 6 ⊢ (◡◡(𝑆 ∘ 𝑆) ⊆ ◡◡𝑆 ↔ (𝑆 ∘ 𝑆) ⊆ ◡◡𝑆) |
11 | 10 | biimpi 215 | . . . . 5 ⊢ (◡◡(𝑆 ∘ 𝑆) ⊆ ◡◡𝑆 → (𝑆 ∘ 𝑆) ⊆ ◡◡𝑆) |
12 | cnvcnvss 6183 | . . . . 5 ⊢ ◡◡𝑆 ⊆ 𝑆 | |
13 | 11, 12 | sstrdi 3986 | . . . 4 ⊢ (◡◡(𝑆 ∘ 𝑆) ⊆ ◡◡𝑆 → (𝑆 ∘ 𝑆) ⊆ 𝑆) |
14 | 2, 13 | syl 17 | . . 3 ⊢ (◡(𝑆 ∘ 𝑆) ⊆ ◡𝑆 → (𝑆 ∘ 𝑆) ⊆ 𝑆) |
15 | 1, 14 | impbii 208 | . 2 ⊢ ((𝑆 ∘ 𝑆) ⊆ 𝑆 ↔ ◡(𝑆 ∘ 𝑆) ⊆ ◡𝑆) |
16 | 3 | sseq1i 4002 | . 2 ⊢ (◡(𝑆 ∘ 𝑆) ⊆ ◡𝑆 ↔ (◡𝑆 ∘ ◡𝑆) ⊆ ◡𝑆) |
17 | 15, 16 | bitri 275 | 1 ⊢ ((𝑆 ∘ 𝑆) ⊆ 𝑆 ↔ (◡𝑆 ∘ ◡𝑆) ⊆ ◡𝑆) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ⊆ wss 3940 ◡ccnv 5665 ∘ ccom 5670 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-br 5139 df-opab 5201 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |