![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnvtrrel | Structured version Visualization version GIF version |
Description: The converse of a transitive relation is a transitive relation. (Contributed by Richard Penner, 25-Dec-2019.) |
Ref | Expression |
---|---|
cnvtrrel | ⊢ ((𝑆 ∘ 𝑆) ⊆ 𝑆 ↔ (◡𝑆 ∘ ◡𝑆) ⊆ ◡𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvss 5498 | . . 3 ⊢ ((𝑆 ∘ 𝑆) ⊆ 𝑆 → ◡(𝑆 ∘ 𝑆) ⊆ ◡𝑆) | |
2 | cnvss 5498 | . . . 4 ⊢ (◡(𝑆 ∘ 𝑆) ⊆ ◡𝑆 → ◡◡(𝑆 ∘ 𝑆) ⊆ ◡◡𝑆) | |
3 | cnvco 5511 | . . . . . . . . 9 ⊢ ◡(𝑆 ∘ 𝑆) = (◡𝑆 ∘ ◡𝑆) | |
4 | 3 | cnveqi 5500 | . . . . . . . 8 ⊢ ◡◡(𝑆 ∘ 𝑆) = ◡(◡𝑆 ∘ ◡𝑆) |
5 | cnvco 5511 | . . . . . . . 8 ⊢ ◡(◡𝑆 ∘ ◡𝑆) = (◡◡𝑆 ∘ ◡◡𝑆) | |
6 | cocnvcnv1 5865 | . . . . . . . . 9 ⊢ (◡◡𝑆 ∘ ◡◡𝑆) = (𝑆 ∘ ◡◡𝑆) | |
7 | cocnvcnv2 5866 | . . . . . . . . 9 ⊢ (𝑆 ∘ ◡◡𝑆) = (𝑆 ∘ 𝑆) | |
8 | 6, 7 | eqtri 2821 | . . . . . . . 8 ⊢ (◡◡𝑆 ∘ ◡◡𝑆) = (𝑆 ∘ 𝑆) |
9 | 4, 5, 8 | 3eqtri 2825 | . . . . . . 7 ⊢ ◡◡(𝑆 ∘ 𝑆) = (𝑆 ∘ 𝑆) |
10 | 9 | sseq1i 3825 | . . . . . 6 ⊢ (◡◡(𝑆 ∘ 𝑆) ⊆ ◡◡𝑆 ↔ (𝑆 ∘ 𝑆) ⊆ ◡◡𝑆) |
11 | 10 | biimpi 208 | . . . . 5 ⊢ (◡◡(𝑆 ∘ 𝑆) ⊆ ◡◡𝑆 → (𝑆 ∘ 𝑆) ⊆ ◡◡𝑆) |
12 | cnvcnvss 5805 | . . . . 5 ⊢ ◡◡𝑆 ⊆ 𝑆 | |
13 | 11, 12 | syl6ss 3810 | . . . 4 ⊢ (◡◡(𝑆 ∘ 𝑆) ⊆ ◡◡𝑆 → (𝑆 ∘ 𝑆) ⊆ 𝑆) |
14 | 2, 13 | syl 17 | . . 3 ⊢ (◡(𝑆 ∘ 𝑆) ⊆ ◡𝑆 → (𝑆 ∘ 𝑆) ⊆ 𝑆) |
15 | 1, 14 | impbii 201 | . 2 ⊢ ((𝑆 ∘ 𝑆) ⊆ 𝑆 ↔ ◡(𝑆 ∘ 𝑆) ⊆ ◡𝑆) |
16 | 3 | sseq1i 3825 | . 2 ⊢ (◡(𝑆 ∘ 𝑆) ⊆ ◡𝑆 ↔ (◡𝑆 ∘ ◡𝑆) ⊆ ◡𝑆) |
17 | 15, 16 | bitri 267 | 1 ⊢ ((𝑆 ∘ 𝑆) ⊆ 𝑆 ↔ (◡𝑆 ∘ ◡𝑆) ⊆ ◡𝑆) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ⊆ wss 3769 ◡ccnv 5311 ∘ ccom 5316 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-br 4844 df-opab 4906 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |