| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cnvtrrel | Structured version Visualization version GIF version | ||
| Description: The converse of a transitive relation is a transitive relation. (Contributed by RP, 25-Dec-2019.) |
| Ref | Expression |
|---|---|
| cnvtrrel | ⊢ ((𝑆 ∘ 𝑆) ⊆ 𝑆 ↔ (◡𝑆 ∘ ◡𝑆) ⊆ ◡𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvss 5811 | . . 3 ⊢ ((𝑆 ∘ 𝑆) ⊆ 𝑆 → ◡(𝑆 ∘ 𝑆) ⊆ ◡𝑆) | |
| 2 | cnvss 5811 | . . . 4 ⊢ (◡(𝑆 ∘ 𝑆) ⊆ ◡𝑆 → ◡◡(𝑆 ∘ 𝑆) ⊆ ◡◡𝑆) | |
| 3 | cnvco 5824 | . . . . . . . . 9 ⊢ ◡(𝑆 ∘ 𝑆) = (◡𝑆 ∘ ◡𝑆) | |
| 4 | 3 | cnveqi 5813 | . . . . . . . 8 ⊢ ◡◡(𝑆 ∘ 𝑆) = ◡(◡𝑆 ∘ ◡𝑆) |
| 5 | cnvco 5824 | . . . . . . . 8 ⊢ ◡(◡𝑆 ∘ ◡𝑆) = (◡◡𝑆 ∘ ◡◡𝑆) | |
| 6 | cocnvcnv1 6205 | . . . . . . . . 9 ⊢ (◡◡𝑆 ∘ ◡◡𝑆) = (𝑆 ∘ ◡◡𝑆) | |
| 7 | cocnvcnv2 6206 | . . . . . . . . 9 ⊢ (𝑆 ∘ ◡◡𝑆) = (𝑆 ∘ 𝑆) | |
| 8 | 6, 7 | eqtri 2754 | . . . . . . . 8 ⊢ (◡◡𝑆 ∘ ◡◡𝑆) = (𝑆 ∘ 𝑆) |
| 9 | 4, 5, 8 | 3eqtri 2758 | . . . . . . 7 ⊢ ◡◡(𝑆 ∘ 𝑆) = (𝑆 ∘ 𝑆) |
| 10 | 9 | sseq1i 3958 | . . . . . 6 ⊢ (◡◡(𝑆 ∘ 𝑆) ⊆ ◡◡𝑆 ↔ (𝑆 ∘ 𝑆) ⊆ ◡◡𝑆) |
| 11 | 10 | biimpi 216 | . . . . 5 ⊢ (◡◡(𝑆 ∘ 𝑆) ⊆ ◡◡𝑆 → (𝑆 ∘ 𝑆) ⊆ ◡◡𝑆) |
| 12 | cnvcnvss 6141 | . . . . 5 ⊢ ◡◡𝑆 ⊆ 𝑆 | |
| 13 | 11, 12 | sstrdi 3942 | . . . 4 ⊢ (◡◡(𝑆 ∘ 𝑆) ⊆ ◡◡𝑆 → (𝑆 ∘ 𝑆) ⊆ 𝑆) |
| 14 | 2, 13 | syl 17 | . . 3 ⊢ (◡(𝑆 ∘ 𝑆) ⊆ ◡𝑆 → (𝑆 ∘ 𝑆) ⊆ 𝑆) |
| 15 | 1, 14 | impbii 209 | . 2 ⊢ ((𝑆 ∘ 𝑆) ⊆ 𝑆 ↔ ◡(𝑆 ∘ 𝑆) ⊆ ◡𝑆) |
| 16 | 3 | sseq1i 3958 | . 2 ⊢ (◡(𝑆 ∘ 𝑆) ⊆ ◡𝑆 ↔ (◡𝑆 ∘ ◡𝑆) ⊆ ◡𝑆) |
| 17 | 15, 16 | bitri 275 | 1 ⊢ ((𝑆 ∘ 𝑆) ⊆ 𝑆 ↔ (◡𝑆 ∘ ◡𝑆) ⊆ ◡𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ⊆ wss 3897 ◡ccnv 5613 ∘ ccom 5618 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |