Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvtrrel Structured version   Visualization version   GIF version

Theorem cnvtrrel 43632
Description: The converse of a transitive relation is a transitive relation. (Contributed by RP, 25-Dec-2019.)
Assertion
Ref Expression
cnvtrrel ((𝑆𝑆) ⊆ 𝑆 ↔ (𝑆𝑆) ⊆ 𝑆)

Proof of Theorem cnvtrrel
StepHypRef Expression
1 cnvss 5826 . . 3 ((𝑆𝑆) ⊆ 𝑆(𝑆𝑆) ⊆ 𝑆)
2 cnvss 5826 . . . 4 ((𝑆𝑆) ⊆ 𝑆(𝑆𝑆) ⊆ 𝑆)
3 cnvco 5839 . . . . . . . . 9 (𝑆𝑆) = (𝑆𝑆)
43cnveqi 5828 . . . . . . . 8 (𝑆𝑆) = (𝑆𝑆)
5 cnvco 5839 . . . . . . . 8 (𝑆𝑆) = (𝑆𝑆)
6 cocnvcnv1 6218 . . . . . . . . 9 (𝑆𝑆) = (𝑆𝑆)
7 cocnvcnv2 6219 . . . . . . . . 9 (𝑆𝑆) = (𝑆𝑆)
86, 7eqtri 2752 . . . . . . . 8 (𝑆𝑆) = (𝑆𝑆)
94, 5, 83eqtri 2756 . . . . . . 7 (𝑆𝑆) = (𝑆𝑆)
109sseq1i 3972 . . . . . 6 ((𝑆𝑆) ⊆ 𝑆 ↔ (𝑆𝑆) ⊆ 𝑆)
1110biimpi 216 . . . . 5 ((𝑆𝑆) ⊆ 𝑆 → (𝑆𝑆) ⊆ 𝑆)
12 cnvcnvss 6155 . . . . 5 𝑆𝑆
1311, 12sstrdi 3956 . . . 4 ((𝑆𝑆) ⊆ 𝑆 → (𝑆𝑆) ⊆ 𝑆)
142, 13syl 17 . . 3 ((𝑆𝑆) ⊆ 𝑆 → (𝑆𝑆) ⊆ 𝑆)
151, 14impbii 209 . 2 ((𝑆𝑆) ⊆ 𝑆(𝑆𝑆) ⊆ 𝑆)
163sseq1i 3972 . 2 ((𝑆𝑆) ⊆ 𝑆 ↔ (𝑆𝑆) ⊆ 𝑆)
1715, 16bitri 275 1 ((𝑆𝑆) ⊆ 𝑆 ↔ (𝑆𝑆) ⊆ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wss 3911  ccnv 5630  ccom 5635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator