Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvtrrel Structured version   Visualization version   GIF version

Theorem cnvtrrel 43660
Description: The converse of a transitive relation is a transitive relation. (Contributed by RP, 25-Dec-2019.)
Assertion
Ref Expression
cnvtrrel ((𝑆𝑆) ⊆ 𝑆 ↔ (𝑆𝑆) ⊆ 𝑆)

Proof of Theorem cnvtrrel
StepHypRef Expression
1 cnvss 5863 . . 3 ((𝑆𝑆) ⊆ 𝑆(𝑆𝑆) ⊆ 𝑆)
2 cnvss 5863 . . . 4 ((𝑆𝑆) ⊆ 𝑆(𝑆𝑆) ⊆ 𝑆)
3 cnvco 5876 . . . . . . . . 9 (𝑆𝑆) = (𝑆𝑆)
43cnveqi 5865 . . . . . . . 8 (𝑆𝑆) = (𝑆𝑆)
5 cnvco 5876 . . . . . . . 8 (𝑆𝑆) = (𝑆𝑆)
6 cocnvcnv1 6257 . . . . . . . . 9 (𝑆𝑆) = (𝑆𝑆)
7 cocnvcnv2 6258 . . . . . . . . 9 (𝑆𝑆) = (𝑆𝑆)
86, 7eqtri 2757 . . . . . . . 8 (𝑆𝑆) = (𝑆𝑆)
94, 5, 83eqtri 2761 . . . . . . 7 (𝑆𝑆) = (𝑆𝑆)
109sseq1i 3992 . . . . . 6 ((𝑆𝑆) ⊆ 𝑆 ↔ (𝑆𝑆) ⊆ 𝑆)
1110biimpi 216 . . . . 5 ((𝑆𝑆) ⊆ 𝑆 → (𝑆𝑆) ⊆ 𝑆)
12 cnvcnvss 6194 . . . . 5 𝑆𝑆
1311, 12sstrdi 3976 . . . 4 ((𝑆𝑆) ⊆ 𝑆 → (𝑆𝑆) ⊆ 𝑆)
142, 13syl 17 . . 3 ((𝑆𝑆) ⊆ 𝑆 → (𝑆𝑆) ⊆ 𝑆)
151, 14impbii 209 . 2 ((𝑆𝑆) ⊆ 𝑆(𝑆𝑆) ⊆ 𝑆)
163sseq1i 3992 . 2 ((𝑆𝑆) ⊆ 𝑆 ↔ (𝑆𝑆) ⊆ 𝑆)
1715, 16bitri 275 1 ((𝑆𝑆) ⊆ 𝑆 ↔ (𝑆𝑆) ⊆ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wss 3931  ccnv 5664  ccom 5669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5124  df-opab 5186  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator