Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnvtrrel | Structured version Visualization version GIF version |
Description: The converse of a transitive relation is a transitive relation. (Contributed by RP, 25-Dec-2019.) |
Ref | Expression |
---|---|
cnvtrrel | ⊢ ((𝑆 ∘ 𝑆) ⊆ 𝑆 ↔ (◡𝑆 ∘ ◡𝑆) ⊆ ◡𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvss 5715 | . . 3 ⊢ ((𝑆 ∘ 𝑆) ⊆ 𝑆 → ◡(𝑆 ∘ 𝑆) ⊆ ◡𝑆) | |
2 | cnvss 5715 | . . . 4 ⊢ (◡(𝑆 ∘ 𝑆) ⊆ ◡𝑆 → ◡◡(𝑆 ∘ 𝑆) ⊆ ◡◡𝑆) | |
3 | cnvco 5728 | . . . . . . . . 9 ⊢ ◡(𝑆 ∘ 𝑆) = (◡𝑆 ∘ ◡𝑆) | |
4 | 3 | cnveqi 5717 | . . . . . . . 8 ⊢ ◡◡(𝑆 ∘ 𝑆) = ◡(◡𝑆 ∘ ◡𝑆) |
5 | cnvco 5728 | . . . . . . . 8 ⊢ ◡(◡𝑆 ∘ ◡𝑆) = (◡◡𝑆 ∘ ◡◡𝑆) | |
6 | cocnvcnv1 6090 | . . . . . . . . 9 ⊢ (◡◡𝑆 ∘ ◡◡𝑆) = (𝑆 ∘ ◡◡𝑆) | |
7 | cocnvcnv2 6091 | . . . . . . . . 9 ⊢ (𝑆 ∘ ◡◡𝑆) = (𝑆 ∘ 𝑆) | |
8 | 6, 7 | eqtri 2761 | . . . . . . . 8 ⊢ (◡◡𝑆 ∘ ◡◡𝑆) = (𝑆 ∘ 𝑆) |
9 | 4, 5, 8 | 3eqtri 2765 | . . . . . . 7 ⊢ ◡◡(𝑆 ∘ 𝑆) = (𝑆 ∘ 𝑆) |
10 | 9 | sseq1i 3905 | . . . . . 6 ⊢ (◡◡(𝑆 ∘ 𝑆) ⊆ ◡◡𝑆 ↔ (𝑆 ∘ 𝑆) ⊆ ◡◡𝑆) |
11 | 10 | biimpi 219 | . . . . 5 ⊢ (◡◡(𝑆 ∘ 𝑆) ⊆ ◡◡𝑆 → (𝑆 ∘ 𝑆) ⊆ ◡◡𝑆) |
12 | cnvcnvss 6026 | . . . . 5 ⊢ ◡◡𝑆 ⊆ 𝑆 | |
13 | 11, 12 | sstrdi 3889 | . . . 4 ⊢ (◡◡(𝑆 ∘ 𝑆) ⊆ ◡◡𝑆 → (𝑆 ∘ 𝑆) ⊆ 𝑆) |
14 | 2, 13 | syl 17 | . . 3 ⊢ (◡(𝑆 ∘ 𝑆) ⊆ ◡𝑆 → (𝑆 ∘ 𝑆) ⊆ 𝑆) |
15 | 1, 14 | impbii 212 | . 2 ⊢ ((𝑆 ∘ 𝑆) ⊆ 𝑆 ↔ ◡(𝑆 ∘ 𝑆) ⊆ ◡𝑆) |
16 | 3 | sseq1i 3905 | . 2 ⊢ (◡(𝑆 ∘ 𝑆) ⊆ ◡𝑆 ↔ (◡𝑆 ∘ ◡𝑆) ⊆ ◡𝑆) |
17 | 15, 16 | bitri 278 | 1 ⊢ ((𝑆 ∘ 𝑆) ⊆ 𝑆 ↔ (◡𝑆 ∘ ◡𝑆) ⊆ ◡𝑆) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ⊆ wss 3843 ◡ccnv 5524 ∘ ccom 5529 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pr 5296 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2075 df-clab 2717 df-cleq 2730 df-clel 2811 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3400 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-sn 4517 df-pr 4519 df-op 4523 df-br 5031 df-opab 5093 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |