Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvtrrel Structured version   Visualization version   GIF version

Theorem cnvtrrel 40844
Description: The converse of a transitive relation is a transitive relation. (Contributed by RP, 25-Dec-2019.)
Assertion
Ref Expression
cnvtrrel ((𝑆𝑆) ⊆ 𝑆 ↔ (𝑆𝑆) ⊆ 𝑆)

Proof of Theorem cnvtrrel
StepHypRef Expression
1 cnvss 5715 . . 3 ((𝑆𝑆) ⊆ 𝑆(𝑆𝑆) ⊆ 𝑆)
2 cnvss 5715 . . . 4 ((𝑆𝑆) ⊆ 𝑆(𝑆𝑆) ⊆ 𝑆)
3 cnvco 5728 . . . . . . . . 9 (𝑆𝑆) = (𝑆𝑆)
43cnveqi 5717 . . . . . . . 8 (𝑆𝑆) = (𝑆𝑆)
5 cnvco 5728 . . . . . . . 8 (𝑆𝑆) = (𝑆𝑆)
6 cocnvcnv1 6090 . . . . . . . . 9 (𝑆𝑆) = (𝑆𝑆)
7 cocnvcnv2 6091 . . . . . . . . 9 (𝑆𝑆) = (𝑆𝑆)
86, 7eqtri 2761 . . . . . . . 8 (𝑆𝑆) = (𝑆𝑆)
94, 5, 83eqtri 2765 . . . . . . 7 (𝑆𝑆) = (𝑆𝑆)
109sseq1i 3905 . . . . . 6 ((𝑆𝑆) ⊆ 𝑆 ↔ (𝑆𝑆) ⊆ 𝑆)
1110biimpi 219 . . . . 5 ((𝑆𝑆) ⊆ 𝑆 → (𝑆𝑆) ⊆ 𝑆)
12 cnvcnvss 6026 . . . . 5 𝑆𝑆
1311, 12sstrdi 3889 . . . 4 ((𝑆𝑆) ⊆ 𝑆 → (𝑆𝑆) ⊆ 𝑆)
142, 13syl 17 . . 3 ((𝑆𝑆) ⊆ 𝑆 → (𝑆𝑆) ⊆ 𝑆)
151, 14impbii 212 . 2 ((𝑆𝑆) ⊆ 𝑆(𝑆𝑆) ⊆ 𝑆)
163sseq1i 3905 . 2 ((𝑆𝑆) ⊆ 𝑆 ↔ (𝑆𝑆) ⊆ 𝑆)
1715, 16bitri 278 1 ((𝑆𝑆) ⊆ 𝑆 ↔ (𝑆𝑆) ⊆ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wb 209  wss 3843  ccnv 5524  ccom 5529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pr 5296
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-sb 2075  df-clab 2717  df-cleq 2730  df-clel 2811  df-ral 3058  df-rex 3059  df-rab 3062  df-v 3400  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-nul 4212  df-if 4415  df-sn 4517  df-pr 4519  df-op 4523  df-br 5031  df-opab 5093  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator