| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tsk2 | Structured version Visualization version GIF version | ||
| Description: Two is an element of a nonempty Tarski class. (Contributed by FL, 22-Feb-2011.) (Proof shortened by Mario Carneiro, 20-Sep-2014.) |
| Ref | Expression |
|---|---|
| tsk2 | ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → 2o ∈ 𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tsk1 10650 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → 1o ∈ 𝑇) | |
| 2 | df-2o 8381 | . . 3 ⊢ 2o = suc 1o | |
| 3 | 1on 8392 | . . . 4 ⊢ 1o ∈ On | |
| 4 | tsksuc 10648 | . . . 4 ⊢ ((𝑇 ∈ Tarski ∧ 1o ∈ On ∧ 1o ∈ 𝑇) → suc 1o ∈ 𝑇) | |
| 5 | 3, 4 | mp3an2 1451 | . . 3 ⊢ ((𝑇 ∈ Tarski ∧ 1o ∈ 𝑇) → suc 1o ∈ 𝑇) |
| 6 | 2, 5 | eqeltrid 2835 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ 1o ∈ 𝑇) → 2o ∈ 𝑇) |
| 7 | 1, 6 | syldan 591 | 1 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → 2o ∈ 𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 ≠ wne 2928 ∅c0 4278 Oncon0 6301 suc csuc 6303 1oc1o 8373 2oc2o 8374 Tarskictsk 10634 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-tr 5194 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-ord 6304 df-on 6305 df-suc 6307 df-1o 8380 df-2o 8381 df-tsk 10635 |
| This theorem is referenced by: 2domtsk 10652 |
| Copyright terms: Public domain | W3C validator |