Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tsk2 | Structured version Visualization version GIF version |
Description: Two is an element of a nonempty Tarski class. (Contributed by FL, 22-Feb-2011.) (Proof shortened by Mario Carneiro, 20-Sep-2014.) |
Ref | Expression |
---|---|
tsk2 | ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → 2o ∈ 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tsk1 10520 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → 1o ∈ 𝑇) | |
2 | df-2o 8298 | . . 3 ⊢ 2o = suc 1o | |
3 | 1on 8309 | . . . 4 ⊢ 1o ∈ On | |
4 | tsksuc 10518 | . . . 4 ⊢ ((𝑇 ∈ Tarski ∧ 1o ∈ On ∧ 1o ∈ 𝑇) → suc 1o ∈ 𝑇) | |
5 | 3, 4 | mp3an2 1448 | . . 3 ⊢ ((𝑇 ∈ Tarski ∧ 1o ∈ 𝑇) → suc 1o ∈ 𝑇) |
6 | 2, 5 | eqeltrid 2843 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ 1o ∈ 𝑇) → 2o ∈ 𝑇) |
7 | 1, 6 | syldan 591 | 1 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → 2o ∈ 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ≠ wne 2943 ∅c0 4256 Oncon0 6266 suc csuc 6268 1oc1o 8290 2oc2o 8291 Tarskictsk 10504 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-tr 5192 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-ord 6269 df-on 6270 df-suc 6272 df-1o 8297 df-2o 8298 df-tsk 10505 |
This theorem is referenced by: 2domtsk 10522 |
Copyright terms: Public domain | W3C validator |