MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsk2 Structured version   Visualization version   GIF version

Theorem tsk2 10452
Description: Two is an element of a nonempty Tarski class. (Contributed by FL, 22-Feb-2011.) (Proof shortened by Mario Carneiro, 20-Sep-2014.)
Assertion
Ref Expression
tsk2 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → 2o𝑇)

Proof of Theorem tsk2
StepHypRef Expression
1 tsk1 10451 . 2 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → 1o𝑇)
2 df-2o 8268 . . 3 2o = suc 1o
3 1on 8274 . . . 4 1o ∈ On
4 tsksuc 10449 . . . 4 ((𝑇 ∈ Tarski ∧ 1o ∈ On ∧ 1o𝑇) → suc 1o𝑇)
53, 4mp3an2 1447 . . 3 ((𝑇 ∈ Tarski ∧ 1o𝑇) → suc 1o𝑇)
62, 5eqeltrid 2843 . 2 ((𝑇 ∈ Tarski ∧ 1o𝑇) → 2o𝑇)
71, 6syldan 590 1 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → 2o𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  wne 2942  c0 4253  Oncon0 6251  suc csuc 6253  1oc1o 8260  2oc2o 8261  Tarskictsk 10435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-tr 5188  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-ord 6254  df-on 6255  df-suc 6257  df-1o 8267  df-2o 8268  df-tsk 10436
This theorem is referenced by:  2domtsk  10453
  Copyright terms: Public domain W3C validator