MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsk2 Structured version   Visualization version   GIF version

Theorem tsk2 10521
Description: Two is an element of a nonempty Tarski class. (Contributed by FL, 22-Feb-2011.) (Proof shortened by Mario Carneiro, 20-Sep-2014.)
Assertion
Ref Expression
tsk2 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → 2o𝑇)

Proof of Theorem tsk2
StepHypRef Expression
1 tsk1 10520 . 2 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → 1o𝑇)
2 df-2o 8298 . . 3 2o = suc 1o
3 1on 8309 . . . 4 1o ∈ On
4 tsksuc 10518 . . . 4 ((𝑇 ∈ Tarski ∧ 1o ∈ On ∧ 1o𝑇) → suc 1o𝑇)
53, 4mp3an2 1448 . . 3 ((𝑇 ∈ Tarski ∧ 1o𝑇) → suc 1o𝑇)
62, 5eqeltrid 2843 . 2 ((𝑇 ∈ Tarski ∧ 1o𝑇) → 2o𝑇)
71, 6syldan 591 1 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → 2o𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106  wne 2943  c0 4256  Oncon0 6266  suc csuc 6268  1oc1o 8290  2oc2o 8291  Tarskictsk 10504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-tr 5192  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-ord 6269  df-on 6270  df-suc 6272  df-1o 8297  df-2o 8298  df-tsk 10505
This theorem is referenced by:  2domtsk  10522
  Copyright terms: Public domain W3C validator