MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsk2 Structured version   Visualization version   GIF version

Theorem tsk2 10803
Description: Two is an element of a nonempty Tarski class. (Contributed by FL, 22-Feb-2011.) (Proof shortened by Mario Carneiro, 20-Sep-2014.)
Assertion
Ref Expression
tsk2 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → 2o𝑇)

Proof of Theorem tsk2
StepHypRef Expression
1 tsk1 10802 . 2 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → 1o𝑇)
2 df-2o 8506 . . 3 2o = suc 1o
3 1on 8517 . . . 4 1o ∈ On
4 tsksuc 10800 . . . 4 ((𝑇 ∈ Tarski ∧ 1o ∈ On ∧ 1o𝑇) → suc 1o𝑇)
53, 4mp3an2 1448 . . 3 ((𝑇 ∈ Tarski ∧ 1o𝑇) → suc 1o𝑇)
62, 5eqeltrid 2843 . 2 ((𝑇 ∈ Tarski ∧ 1o𝑇) → 2o𝑇)
71, 6syldan 591 1 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → 2o𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2106  wne 2938  c0 4339  Oncon0 6386  suc csuc 6388  1oc1o 8498  2oc2o 8499  Tarskictsk 10786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-tr 5266  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-ord 6389  df-on 6390  df-suc 6392  df-1o 8505  df-2o 8506  df-tsk 10787
This theorem is referenced by:  2domtsk  10804
  Copyright terms: Public domain W3C validator