MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsk2 Structured version   Visualization version   GIF version

Theorem tsk2 10651
Description: Two is an element of a nonempty Tarski class. (Contributed by FL, 22-Feb-2011.) (Proof shortened by Mario Carneiro, 20-Sep-2014.)
Assertion
Ref Expression
tsk2 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → 2o𝑇)

Proof of Theorem tsk2
StepHypRef Expression
1 tsk1 10650 . 2 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → 1o𝑇)
2 df-2o 8381 . . 3 2o = suc 1o
3 1on 8392 . . . 4 1o ∈ On
4 tsksuc 10648 . . . 4 ((𝑇 ∈ Tarski ∧ 1o ∈ On ∧ 1o𝑇) → suc 1o𝑇)
53, 4mp3an2 1451 . . 3 ((𝑇 ∈ Tarski ∧ 1o𝑇) → suc 1o𝑇)
62, 5eqeltrid 2835 . 2 ((𝑇 ∈ Tarski ∧ 1o𝑇) → 2o𝑇)
71, 6syldan 591 1 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → 2o𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2111  wne 2928  c0 4278  Oncon0 6301  suc csuc 6303  1oc1o 8373  2oc2o 8374  Tarskictsk 10634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-tr 5194  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-ord 6304  df-on 6305  df-suc 6307  df-1o 8380  df-2o 8381  df-tsk 10635
This theorem is referenced by:  2domtsk  10652
  Copyright terms: Public domain W3C validator