![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tsk2 | Structured version Visualization version GIF version |
Description: Two is an element of a nonempty Tarski class. (Contributed by FL, 22-Feb-2011.) (Proof shortened by Mario Carneiro, 20-Sep-2014.) |
Ref | Expression |
---|---|
tsk2 | ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → 2o ∈ 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tsk1 10758 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → 1o ∈ 𝑇) | |
2 | df-2o 8466 | . . 3 ⊢ 2o = suc 1o | |
3 | 1on 8477 | . . . 4 ⊢ 1o ∈ On | |
4 | tsksuc 10756 | . . . 4 ⊢ ((𝑇 ∈ Tarski ∧ 1o ∈ On ∧ 1o ∈ 𝑇) → suc 1o ∈ 𝑇) | |
5 | 3, 4 | mp3an2 1449 | . . 3 ⊢ ((𝑇 ∈ Tarski ∧ 1o ∈ 𝑇) → suc 1o ∈ 𝑇) |
6 | 2, 5 | eqeltrid 2837 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ 1o ∈ 𝑇) → 2o ∈ 𝑇) |
7 | 1, 6 | syldan 591 | 1 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → 2o ∈ 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ≠ wne 2940 ∅c0 4322 Oncon0 6364 suc csuc 6366 1oc1o 8458 2oc2o 8459 Tarskictsk 10742 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-tr 5266 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-ord 6367 df-on 6368 df-suc 6370 df-1o 8465 df-2o 8466 df-tsk 10743 |
This theorem is referenced by: 2domtsk 10760 |
Copyright terms: Public domain | W3C validator |