| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tskr1om2 | Structured version Visualization version GIF version | ||
| Description: A nonempty Tarski class contains the whole finite cumulative hierarchy. (This proof does not use ax-inf 9537.) (Contributed by NM, 22-Feb-2011.) |
| Ref | Expression |
|---|---|
| tskr1om2 | ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → ∪ (𝑅1 “ ω) ⊆ 𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluni2 4864 | . . 3 ⊢ (𝑦 ∈ ∪ (𝑅1 “ ω) ↔ ∃𝑥 ∈ (𝑅1 “ ω)𝑦 ∈ 𝑥) | |
| 2 | r1fnon 9669 | . . . . . . . . 9 ⊢ 𝑅1 Fn On | |
| 3 | fnfun 6588 | . . . . . . . . 9 ⊢ (𝑅1 Fn On → Fun 𝑅1) | |
| 4 | 2, 3 | ax-mp 5 | . . . . . . . 8 ⊢ Fun 𝑅1 |
| 5 | fvelima 6895 | . . . . . . . 8 ⊢ ((Fun 𝑅1 ∧ 𝑥 ∈ (𝑅1 “ ω)) → ∃𝑦 ∈ ω (𝑅1‘𝑦) = 𝑥) | |
| 6 | 4, 5 | mpan 690 | . . . . . . 7 ⊢ (𝑥 ∈ (𝑅1 “ ω) → ∃𝑦 ∈ ω (𝑅1‘𝑦) = 𝑥) |
| 7 | r1tr 9678 | . . . . . . . . 9 ⊢ Tr (𝑅1‘𝑦) | |
| 8 | treq 5209 | . . . . . . . . 9 ⊢ ((𝑅1‘𝑦) = 𝑥 → (Tr (𝑅1‘𝑦) ↔ Tr 𝑥)) | |
| 9 | 7, 8 | mpbii 233 | . . . . . . . 8 ⊢ ((𝑅1‘𝑦) = 𝑥 → Tr 𝑥) |
| 10 | 9 | rexlimivw 3130 | . . . . . . 7 ⊢ (∃𝑦 ∈ ω (𝑅1‘𝑦) = 𝑥 → Tr 𝑥) |
| 11 | trss 5212 | . . . . . . 7 ⊢ (Tr 𝑥 → (𝑦 ∈ 𝑥 → 𝑦 ⊆ 𝑥)) | |
| 12 | 6, 10, 11 | 3syl 18 | . . . . . 6 ⊢ (𝑥 ∈ (𝑅1 “ ω) → (𝑦 ∈ 𝑥 → 𝑦 ⊆ 𝑥)) |
| 13 | 12 | adantl 481 | . . . . 5 ⊢ (((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) ∧ 𝑥 ∈ (𝑅1 “ ω)) → (𝑦 ∈ 𝑥 → 𝑦 ⊆ 𝑥)) |
| 14 | tskr1om 10667 | . . . . . . . 8 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑅1 “ ω) ⊆ 𝑇) | |
| 15 | 14 | sseld 3929 | . . . . . . 7 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑥 ∈ (𝑅1 “ ω) → 𝑥 ∈ 𝑇)) |
| 16 | tskss 10658 | . . . . . . . . 9 ⊢ ((𝑇 ∈ Tarski ∧ 𝑥 ∈ 𝑇 ∧ 𝑦 ⊆ 𝑥) → 𝑦 ∈ 𝑇) | |
| 17 | 16 | 3exp 1119 | . . . . . . . 8 ⊢ (𝑇 ∈ Tarski → (𝑥 ∈ 𝑇 → (𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝑇))) |
| 18 | 17 | adantr 480 | . . . . . . 7 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑥 ∈ 𝑇 → (𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝑇))) |
| 19 | 15, 18 | syld 47 | . . . . . 6 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑥 ∈ (𝑅1 “ ω) → (𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝑇))) |
| 20 | 19 | imp 406 | . . . . 5 ⊢ (((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) ∧ 𝑥 ∈ (𝑅1 “ ω)) → (𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝑇)) |
| 21 | 13, 20 | syld 47 | . . . 4 ⊢ (((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) ∧ 𝑥 ∈ (𝑅1 “ ω)) → (𝑦 ∈ 𝑥 → 𝑦 ∈ 𝑇)) |
| 22 | 21 | rexlimdva 3134 | . . 3 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (∃𝑥 ∈ (𝑅1 “ ω)𝑦 ∈ 𝑥 → 𝑦 ∈ 𝑇)) |
| 23 | 1, 22 | biimtrid 242 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑦 ∈ ∪ (𝑅1 “ ω) → 𝑦 ∈ 𝑇)) |
| 24 | 23 | ssrdv 3936 | 1 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → ∪ (𝑅1 “ ω) ⊆ 𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∃wrex 3057 ⊆ wss 3898 ∅c0 4282 ∪ cuni 4860 Tr wtr 5202 “ cima 5624 Oncon0 6313 Fun wfun 6482 Fn wfn 6483 ‘cfv 6488 ωcom 7804 𝑅1cr1 9664 Tarskictsk 10648 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-ov 7357 df-om 7805 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-r1 9666 df-tsk 10649 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |