![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tskr1om2 | Structured version Visualization version GIF version |
Description: A nonempty Tarski class contains the whole finite cumulative hierarchy. (This proof does not use ax-inf 9628.) (Contributed by NM, 22-Feb-2011.) |
Ref | Expression |
---|---|
tskr1om2 | ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → ∪ (𝑅1 “ ω) ⊆ 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluni2 4903 | . . 3 ⊢ (𝑦 ∈ ∪ (𝑅1 “ ω) ↔ ∃𝑥 ∈ (𝑅1 “ ω)𝑦 ∈ 𝑥) | |
2 | r1fnon 9757 | . . . . . . . . 9 ⊢ 𝑅1 Fn On | |
3 | fnfun 6639 | . . . . . . . . 9 ⊢ (𝑅1 Fn On → Fun 𝑅1) | |
4 | 2, 3 | ax-mp 5 | . . . . . . . 8 ⊢ Fun 𝑅1 |
5 | fvelima 6947 | . . . . . . . 8 ⊢ ((Fun 𝑅1 ∧ 𝑥 ∈ (𝑅1 “ ω)) → ∃𝑦 ∈ ω (𝑅1‘𝑦) = 𝑥) | |
6 | 4, 5 | mpan 687 | . . . . . . 7 ⊢ (𝑥 ∈ (𝑅1 “ ω) → ∃𝑦 ∈ ω (𝑅1‘𝑦) = 𝑥) |
7 | r1tr 9766 | . . . . . . . . 9 ⊢ Tr (𝑅1‘𝑦) | |
8 | treq 5263 | . . . . . . . . 9 ⊢ ((𝑅1‘𝑦) = 𝑥 → (Tr (𝑅1‘𝑦) ↔ Tr 𝑥)) | |
9 | 7, 8 | mpbii 232 | . . . . . . . 8 ⊢ ((𝑅1‘𝑦) = 𝑥 → Tr 𝑥) |
10 | 9 | rexlimivw 3143 | . . . . . . 7 ⊢ (∃𝑦 ∈ ω (𝑅1‘𝑦) = 𝑥 → Tr 𝑥) |
11 | trss 5266 | . . . . . . 7 ⊢ (Tr 𝑥 → (𝑦 ∈ 𝑥 → 𝑦 ⊆ 𝑥)) | |
12 | 6, 10, 11 | 3syl 18 | . . . . . 6 ⊢ (𝑥 ∈ (𝑅1 “ ω) → (𝑦 ∈ 𝑥 → 𝑦 ⊆ 𝑥)) |
13 | 12 | adantl 481 | . . . . 5 ⊢ (((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) ∧ 𝑥 ∈ (𝑅1 “ ω)) → (𝑦 ∈ 𝑥 → 𝑦 ⊆ 𝑥)) |
14 | tskr1om 10757 | . . . . . . . 8 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑅1 “ ω) ⊆ 𝑇) | |
15 | 14 | sseld 3973 | . . . . . . 7 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑥 ∈ (𝑅1 “ ω) → 𝑥 ∈ 𝑇)) |
16 | tskss 10748 | . . . . . . . . 9 ⊢ ((𝑇 ∈ Tarski ∧ 𝑥 ∈ 𝑇 ∧ 𝑦 ⊆ 𝑥) → 𝑦 ∈ 𝑇) | |
17 | 16 | 3exp 1116 | . . . . . . . 8 ⊢ (𝑇 ∈ Tarski → (𝑥 ∈ 𝑇 → (𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝑇))) |
18 | 17 | adantr 480 | . . . . . . 7 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑥 ∈ 𝑇 → (𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝑇))) |
19 | 15, 18 | syld 47 | . . . . . 6 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑥 ∈ (𝑅1 “ ω) → (𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝑇))) |
20 | 19 | imp 406 | . . . . 5 ⊢ (((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) ∧ 𝑥 ∈ (𝑅1 “ ω)) → (𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝑇)) |
21 | 13, 20 | syld 47 | . . . 4 ⊢ (((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) ∧ 𝑥 ∈ (𝑅1 “ ω)) → (𝑦 ∈ 𝑥 → 𝑦 ∈ 𝑇)) |
22 | 21 | rexlimdva 3147 | . . 3 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (∃𝑥 ∈ (𝑅1 “ ω)𝑦 ∈ 𝑥 → 𝑦 ∈ 𝑇)) |
23 | 1, 22 | biimtrid 241 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑦 ∈ ∪ (𝑅1 “ ω) → 𝑦 ∈ 𝑇)) |
24 | 23 | ssrdv 3980 | 1 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → ∪ (𝑅1 “ ω) ⊆ 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ≠ wne 2932 ∃wrex 3062 ⊆ wss 3940 ∅c0 4314 ∪ cuni 4899 Tr wtr 5255 “ cima 5669 Oncon0 6354 Fun wfun 6527 Fn wfn 6528 ‘cfv 6533 ωcom 7848 𝑅1cr1 9752 Tarskictsk 10738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-ov 7404 df-om 7849 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-r1 9754 df-tsk 10739 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |