![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tskr1om2 | Structured version Visualization version GIF version |
Description: A nonempty Tarski class contains the whole finite cumulative hierarchy. (This proof does not use ax-inf 9573.) (Contributed by NM, 22-Feb-2011.) |
Ref | Expression |
---|---|
tskr1om2 | ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → ∪ (𝑅1 “ ω) ⊆ 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluni2 4869 | . . 3 ⊢ (𝑦 ∈ ∪ (𝑅1 “ ω) ↔ ∃𝑥 ∈ (𝑅1 “ ω)𝑦 ∈ 𝑥) | |
2 | r1fnon 9702 | . . . . . . . . 9 ⊢ 𝑅1 Fn On | |
3 | fnfun 6602 | . . . . . . . . 9 ⊢ (𝑅1 Fn On → Fun 𝑅1) | |
4 | 2, 3 | ax-mp 5 | . . . . . . . 8 ⊢ Fun 𝑅1 |
5 | fvelima 6908 | . . . . . . . 8 ⊢ ((Fun 𝑅1 ∧ 𝑥 ∈ (𝑅1 “ ω)) → ∃𝑦 ∈ ω (𝑅1‘𝑦) = 𝑥) | |
6 | 4, 5 | mpan 688 | . . . . . . 7 ⊢ (𝑥 ∈ (𝑅1 “ ω) → ∃𝑦 ∈ ω (𝑅1‘𝑦) = 𝑥) |
7 | r1tr 9711 | . . . . . . . . 9 ⊢ Tr (𝑅1‘𝑦) | |
8 | treq 5230 | . . . . . . . . 9 ⊢ ((𝑅1‘𝑦) = 𝑥 → (Tr (𝑅1‘𝑦) ↔ Tr 𝑥)) | |
9 | 7, 8 | mpbii 232 | . . . . . . . 8 ⊢ ((𝑅1‘𝑦) = 𝑥 → Tr 𝑥) |
10 | 9 | rexlimivw 3148 | . . . . . . 7 ⊢ (∃𝑦 ∈ ω (𝑅1‘𝑦) = 𝑥 → Tr 𝑥) |
11 | trss 5233 | . . . . . . 7 ⊢ (Tr 𝑥 → (𝑦 ∈ 𝑥 → 𝑦 ⊆ 𝑥)) | |
12 | 6, 10, 11 | 3syl 18 | . . . . . 6 ⊢ (𝑥 ∈ (𝑅1 “ ω) → (𝑦 ∈ 𝑥 → 𝑦 ⊆ 𝑥)) |
13 | 12 | adantl 482 | . . . . 5 ⊢ (((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) ∧ 𝑥 ∈ (𝑅1 “ ω)) → (𝑦 ∈ 𝑥 → 𝑦 ⊆ 𝑥)) |
14 | tskr1om 10702 | . . . . . . . 8 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑅1 “ ω) ⊆ 𝑇) | |
15 | 14 | sseld 3943 | . . . . . . 7 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑥 ∈ (𝑅1 “ ω) → 𝑥 ∈ 𝑇)) |
16 | tskss 10693 | . . . . . . . . 9 ⊢ ((𝑇 ∈ Tarski ∧ 𝑥 ∈ 𝑇 ∧ 𝑦 ⊆ 𝑥) → 𝑦 ∈ 𝑇) | |
17 | 16 | 3exp 1119 | . . . . . . . 8 ⊢ (𝑇 ∈ Tarski → (𝑥 ∈ 𝑇 → (𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝑇))) |
18 | 17 | adantr 481 | . . . . . . 7 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑥 ∈ 𝑇 → (𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝑇))) |
19 | 15, 18 | syld 47 | . . . . . 6 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑥 ∈ (𝑅1 “ ω) → (𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝑇))) |
20 | 19 | imp 407 | . . . . 5 ⊢ (((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) ∧ 𝑥 ∈ (𝑅1 “ ω)) → (𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝑇)) |
21 | 13, 20 | syld 47 | . . . 4 ⊢ (((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) ∧ 𝑥 ∈ (𝑅1 “ ω)) → (𝑦 ∈ 𝑥 → 𝑦 ∈ 𝑇)) |
22 | 21 | rexlimdva 3152 | . . 3 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (∃𝑥 ∈ (𝑅1 “ ω)𝑦 ∈ 𝑥 → 𝑦 ∈ 𝑇)) |
23 | 1, 22 | biimtrid 241 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑦 ∈ ∪ (𝑅1 “ ω) → 𝑦 ∈ 𝑇)) |
24 | 23 | ssrdv 3950 | 1 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → ∪ (𝑅1 “ ω) ⊆ 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ≠ wne 2943 ∃wrex 3073 ⊆ wss 3910 ∅c0 4282 ∪ cuni 4865 Tr wtr 5222 “ cima 5636 Oncon0 6317 Fun wfun 6490 Fn wfn 6491 ‘cfv 6496 ωcom 7801 𝑅1cr1 9697 Tarskictsk 10683 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7671 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-ral 3065 df-rex 3074 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-ov 7359 df-om 7802 df-2nd 7921 df-frecs 8211 df-wrecs 8242 df-recs 8316 df-rdg 8355 df-r1 9699 df-tsk 10684 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |