| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tskr1om2 | Structured version Visualization version GIF version | ||
| Description: A nonempty Tarski class contains the whole finite cumulative hierarchy. (This proof does not use ax-inf 9657.) (Contributed by NM, 22-Feb-2011.) |
| Ref | Expression |
|---|---|
| tskr1om2 | ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → ∪ (𝑅1 “ ω) ⊆ 𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluni2 4892 | . . 3 ⊢ (𝑦 ∈ ∪ (𝑅1 “ ω) ↔ ∃𝑥 ∈ (𝑅1 “ ω)𝑦 ∈ 𝑥) | |
| 2 | r1fnon 9786 | . . . . . . . . 9 ⊢ 𝑅1 Fn On | |
| 3 | fnfun 6643 | . . . . . . . . 9 ⊢ (𝑅1 Fn On → Fun 𝑅1) | |
| 4 | 2, 3 | ax-mp 5 | . . . . . . . 8 ⊢ Fun 𝑅1 |
| 5 | fvelima 6949 | . . . . . . . 8 ⊢ ((Fun 𝑅1 ∧ 𝑥 ∈ (𝑅1 “ ω)) → ∃𝑦 ∈ ω (𝑅1‘𝑦) = 𝑥) | |
| 6 | 4, 5 | mpan 690 | . . . . . . 7 ⊢ (𝑥 ∈ (𝑅1 “ ω) → ∃𝑦 ∈ ω (𝑅1‘𝑦) = 𝑥) |
| 7 | r1tr 9795 | . . . . . . . . 9 ⊢ Tr (𝑅1‘𝑦) | |
| 8 | treq 5242 | . . . . . . . . 9 ⊢ ((𝑅1‘𝑦) = 𝑥 → (Tr (𝑅1‘𝑦) ↔ Tr 𝑥)) | |
| 9 | 7, 8 | mpbii 233 | . . . . . . . 8 ⊢ ((𝑅1‘𝑦) = 𝑥 → Tr 𝑥) |
| 10 | 9 | rexlimivw 3138 | . . . . . . 7 ⊢ (∃𝑦 ∈ ω (𝑅1‘𝑦) = 𝑥 → Tr 𝑥) |
| 11 | trss 5245 | . . . . . . 7 ⊢ (Tr 𝑥 → (𝑦 ∈ 𝑥 → 𝑦 ⊆ 𝑥)) | |
| 12 | 6, 10, 11 | 3syl 18 | . . . . . 6 ⊢ (𝑥 ∈ (𝑅1 “ ω) → (𝑦 ∈ 𝑥 → 𝑦 ⊆ 𝑥)) |
| 13 | 12 | adantl 481 | . . . . 5 ⊢ (((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) ∧ 𝑥 ∈ (𝑅1 “ ω)) → (𝑦 ∈ 𝑥 → 𝑦 ⊆ 𝑥)) |
| 14 | tskr1om 10786 | . . . . . . . 8 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑅1 “ ω) ⊆ 𝑇) | |
| 15 | 14 | sseld 3962 | . . . . . . 7 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑥 ∈ (𝑅1 “ ω) → 𝑥 ∈ 𝑇)) |
| 16 | tskss 10777 | . . . . . . . . 9 ⊢ ((𝑇 ∈ Tarski ∧ 𝑥 ∈ 𝑇 ∧ 𝑦 ⊆ 𝑥) → 𝑦 ∈ 𝑇) | |
| 17 | 16 | 3exp 1119 | . . . . . . . 8 ⊢ (𝑇 ∈ Tarski → (𝑥 ∈ 𝑇 → (𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝑇))) |
| 18 | 17 | adantr 480 | . . . . . . 7 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑥 ∈ 𝑇 → (𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝑇))) |
| 19 | 15, 18 | syld 47 | . . . . . 6 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑥 ∈ (𝑅1 “ ω) → (𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝑇))) |
| 20 | 19 | imp 406 | . . . . 5 ⊢ (((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) ∧ 𝑥 ∈ (𝑅1 “ ω)) → (𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝑇)) |
| 21 | 13, 20 | syld 47 | . . . 4 ⊢ (((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) ∧ 𝑥 ∈ (𝑅1 “ ω)) → (𝑦 ∈ 𝑥 → 𝑦 ∈ 𝑇)) |
| 22 | 21 | rexlimdva 3142 | . . 3 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (∃𝑥 ∈ (𝑅1 “ ω)𝑦 ∈ 𝑥 → 𝑦 ∈ 𝑇)) |
| 23 | 1, 22 | biimtrid 242 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑦 ∈ ∪ (𝑅1 “ ω) → 𝑦 ∈ 𝑇)) |
| 24 | 23 | ssrdv 3969 | 1 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → ∪ (𝑅1 “ ω) ⊆ 𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ∃wrex 3061 ⊆ wss 3931 ∅c0 4313 ∪ cuni 4888 Tr wtr 5234 “ cima 5662 Oncon0 6357 Fun wfun 6530 Fn wfn 6531 ‘cfv 6536 ωcom 7866 𝑅1cr1 9781 Tarskictsk 10767 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-r1 9783 df-tsk 10768 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |