MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tskr1om2 Structured version   Visualization version   GIF version

Theorem tskr1om2 10455
Description: A nonempty Tarski class contains the whole finite cumulative hierarchy. (This proof does not use ax-inf 9326.) (Contributed by NM, 22-Feb-2011.)
Assertion
Ref Expression
tskr1om2 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑅1 “ ω) ⊆ 𝑇)

Proof of Theorem tskr1om2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluni2 4840 . . 3 (𝑦 (𝑅1 “ ω) ↔ ∃𝑥 ∈ (𝑅1 “ ω)𝑦𝑥)
2 r1fnon 9456 . . . . . . . . 9 𝑅1 Fn On
3 fnfun 6517 . . . . . . . . 9 (𝑅1 Fn On → Fun 𝑅1)
42, 3ax-mp 5 . . . . . . . 8 Fun 𝑅1
5 fvelima 6817 . . . . . . . 8 ((Fun 𝑅1𝑥 ∈ (𝑅1 “ ω)) → ∃𝑦 ∈ ω (𝑅1𝑦) = 𝑥)
64, 5mpan 686 . . . . . . 7 (𝑥 ∈ (𝑅1 “ ω) → ∃𝑦 ∈ ω (𝑅1𝑦) = 𝑥)
7 r1tr 9465 . . . . . . . . 9 Tr (𝑅1𝑦)
8 treq 5193 . . . . . . . . 9 ((𝑅1𝑦) = 𝑥 → (Tr (𝑅1𝑦) ↔ Tr 𝑥))
97, 8mpbii 232 . . . . . . . 8 ((𝑅1𝑦) = 𝑥 → Tr 𝑥)
109rexlimivw 3210 . . . . . . 7 (∃𝑦 ∈ ω (𝑅1𝑦) = 𝑥 → Tr 𝑥)
11 trss 5196 . . . . . . 7 (Tr 𝑥 → (𝑦𝑥𝑦𝑥))
126, 10, 113syl 18 . . . . . 6 (𝑥 ∈ (𝑅1 “ ω) → (𝑦𝑥𝑦𝑥))
1312adantl 481 . . . . 5 (((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) ∧ 𝑥 ∈ (𝑅1 “ ω)) → (𝑦𝑥𝑦𝑥))
14 tskr1om 10454 . . . . . . . 8 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑅1 “ ω) ⊆ 𝑇)
1514sseld 3916 . . . . . . 7 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑥 ∈ (𝑅1 “ ω) → 𝑥𝑇))
16 tskss 10445 . . . . . . . . 9 ((𝑇 ∈ Tarski ∧ 𝑥𝑇𝑦𝑥) → 𝑦𝑇)
17163exp 1117 . . . . . . . 8 (𝑇 ∈ Tarski → (𝑥𝑇 → (𝑦𝑥𝑦𝑇)))
1817adantr 480 . . . . . . 7 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑥𝑇 → (𝑦𝑥𝑦𝑇)))
1915, 18syld 47 . . . . . 6 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑥 ∈ (𝑅1 “ ω) → (𝑦𝑥𝑦𝑇)))
2019imp 406 . . . . 5 (((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) ∧ 𝑥 ∈ (𝑅1 “ ω)) → (𝑦𝑥𝑦𝑇))
2113, 20syld 47 . . . 4 (((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) ∧ 𝑥 ∈ (𝑅1 “ ω)) → (𝑦𝑥𝑦𝑇))
2221rexlimdva 3212 . . 3 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (∃𝑥 ∈ (𝑅1 “ ω)𝑦𝑥𝑦𝑇))
231, 22syl5bi 241 . 2 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑦 (𝑅1 “ ω) → 𝑦𝑇))
2423ssrdv 3923 1 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑅1 “ ω) ⊆ 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  wrex 3064  wss 3883  c0 4253   cuni 4836  Tr wtr 5187  cima 5583  Oncon0 6251  Fun wfun 6412   Fn wfn 6413  cfv 6418  ωcom 7687  𝑅1cr1 9451  Tarskictsk 10435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-r1 9453  df-tsk 10436
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator