Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tskr1om2 | Structured version Visualization version GIF version |
Description: A nonempty Tarski class contains the whole finite cumulative hierarchy. (This proof does not use ax-inf 9396.) (Contributed by NM, 22-Feb-2011.) |
Ref | Expression |
---|---|
tskr1om2 | ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → ∪ (𝑅1 “ ω) ⊆ 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluni2 4843 | . . 3 ⊢ (𝑦 ∈ ∪ (𝑅1 “ ω) ↔ ∃𝑥 ∈ (𝑅1 “ ω)𝑦 ∈ 𝑥) | |
2 | r1fnon 9525 | . . . . . . . . 9 ⊢ 𝑅1 Fn On | |
3 | fnfun 6533 | . . . . . . . . 9 ⊢ (𝑅1 Fn On → Fun 𝑅1) | |
4 | 2, 3 | ax-mp 5 | . . . . . . . 8 ⊢ Fun 𝑅1 |
5 | fvelima 6835 | . . . . . . . 8 ⊢ ((Fun 𝑅1 ∧ 𝑥 ∈ (𝑅1 “ ω)) → ∃𝑦 ∈ ω (𝑅1‘𝑦) = 𝑥) | |
6 | 4, 5 | mpan 687 | . . . . . . 7 ⊢ (𝑥 ∈ (𝑅1 “ ω) → ∃𝑦 ∈ ω (𝑅1‘𝑦) = 𝑥) |
7 | r1tr 9534 | . . . . . . . . 9 ⊢ Tr (𝑅1‘𝑦) | |
8 | treq 5197 | . . . . . . . . 9 ⊢ ((𝑅1‘𝑦) = 𝑥 → (Tr (𝑅1‘𝑦) ↔ Tr 𝑥)) | |
9 | 7, 8 | mpbii 232 | . . . . . . . 8 ⊢ ((𝑅1‘𝑦) = 𝑥 → Tr 𝑥) |
10 | 9 | rexlimivw 3211 | . . . . . . 7 ⊢ (∃𝑦 ∈ ω (𝑅1‘𝑦) = 𝑥 → Tr 𝑥) |
11 | trss 5200 | . . . . . . 7 ⊢ (Tr 𝑥 → (𝑦 ∈ 𝑥 → 𝑦 ⊆ 𝑥)) | |
12 | 6, 10, 11 | 3syl 18 | . . . . . 6 ⊢ (𝑥 ∈ (𝑅1 “ ω) → (𝑦 ∈ 𝑥 → 𝑦 ⊆ 𝑥)) |
13 | 12 | adantl 482 | . . . . 5 ⊢ (((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) ∧ 𝑥 ∈ (𝑅1 “ ω)) → (𝑦 ∈ 𝑥 → 𝑦 ⊆ 𝑥)) |
14 | tskr1om 10523 | . . . . . . . 8 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑅1 “ ω) ⊆ 𝑇) | |
15 | 14 | sseld 3920 | . . . . . . 7 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑥 ∈ (𝑅1 “ ω) → 𝑥 ∈ 𝑇)) |
16 | tskss 10514 | . . . . . . . . 9 ⊢ ((𝑇 ∈ Tarski ∧ 𝑥 ∈ 𝑇 ∧ 𝑦 ⊆ 𝑥) → 𝑦 ∈ 𝑇) | |
17 | 16 | 3exp 1118 | . . . . . . . 8 ⊢ (𝑇 ∈ Tarski → (𝑥 ∈ 𝑇 → (𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝑇))) |
18 | 17 | adantr 481 | . . . . . . 7 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑥 ∈ 𝑇 → (𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝑇))) |
19 | 15, 18 | syld 47 | . . . . . 6 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑥 ∈ (𝑅1 “ ω) → (𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝑇))) |
20 | 19 | imp 407 | . . . . 5 ⊢ (((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) ∧ 𝑥 ∈ (𝑅1 “ ω)) → (𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝑇)) |
21 | 13, 20 | syld 47 | . . . 4 ⊢ (((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) ∧ 𝑥 ∈ (𝑅1 “ ω)) → (𝑦 ∈ 𝑥 → 𝑦 ∈ 𝑇)) |
22 | 21 | rexlimdva 3213 | . . 3 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (∃𝑥 ∈ (𝑅1 “ ω)𝑦 ∈ 𝑥 → 𝑦 ∈ 𝑇)) |
23 | 1, 22 | syl5bi 241 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑦 ∈ ∪ (𝑅1 “ ω) → 𝑦 ∈ 𝑇)) |
24 | 23 | ssrdv 3927 | 1 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → ∪ (𝑅1 “ ω) ⊆ 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∃wrex 3065 ⊆ wss 3887 ∅c0 4256 ∪ cuni 4839 Tr wtr 5191 “ cima 5592 Oncon0 6266 Fun wfun 6427 Fn wfn 6428 ‘cfv 6433 ωcom 7712 𝑅1cr1 9520 Tarskictsk 10504 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-r1 9522 df-tsk 10505 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |