MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tskr1om2 Structured version   Visualization version   GIF version

Theorem tskr1om2 10382
Description: A nonempty Tarski class contains the whole finite cumulative hierarchy. (This proof does not use ax-inf 9253.) (Contributed by NM, 22-Feb-2011.)
Assertion
Ref Expression
tskr1om2 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑅1 “ ω) ⊆ 𝑇)

Proof of Theorem tskr1om2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluni2 4823 . . 3 (𝑦 (𝑅1 “ ω) ↔ ∃𝑥 ∈ (𝑅1 “ ω)𝑦𝑥)
2 r1fnon 9383 . . . . . . . . 9 𝑅1 Fn On
3 fnfun 6479 . . . . . . . . 9 (𝑅1 Fn On → Fun 𝑅1)
42, 3ax-mp 5 . . . . . . . 8 Fun 𝑅1
5 fvelima 6778 . . . . . . . 8 ((Fun 𝑅1𝑥 ∈ (𝑅1 “ ω)) → ∃𝑦 ∈ ω (𝑅1𝑦) = 𝑥)
64, 5mpan 690 . . . . . . 7 (𝑥 ∈ (𝑅1 “ ω) → ∃𝑦 ∈ ω (𝑅1𝑦) = 𝑥)
7 r1tr 9392 . . . . . . . . 9 Tr (𝑅1𝑦)
8 treq 5167 . . . . . . . . 9 ((𝑅1𝑦) = 𝑥 → (Tr (𝑅1𝑦) ↔ Tr 𝑥))
97, 8mpbii 236 . . . . . . . 8 ((𝑅1𝑦) = 𝑥 → Tr 𝑥)
109rexlimivw 3201 . . . . . . 7 (∃𝑦 ∈ ω (𝑅1𝑦) = 𝑥 → Tr 𝑥)
11 trss 5170 . . . . . . 7 (Tr 𝑥 → (𝑦𝑥𝑦𝑥))
126, 10, 113syl 18 . . . . . 6 (𝑥 ∈ (𝑅1 “ ω) → (𝑦𝑥𝑦𝑥))
1312adantl 485 . . . . 5 (((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) ∧ 𝑥 ∈ (𝑅1 “ ω)) → (𝑦𝑥𝑦𝑥))
14 tskr1om 10381 . . . . . . . 8 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑅1 “ ω) ⊆ 𝑇)
1514sseld 3900 . . . . . . 7 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑥 ∈ (𝑅1 “ ω) → 𝑥𝑇))
16 tskss 10372 . . . . . . . . 9 ((𝑇 ∈ Tarski ∧ 𝑥𝑇𝑦𝑥) → 𝑦𝑇)
17163exp 1121 . . . . . . . 8 (𝑇 ∈ Tarski → (𝑥𝑇 → (𝑦𝑥𝑦𝑇)))
1817adantr 484 . . . . . . 7 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑥𝑇 → (𝑦𝑥𝑦𝑇)))
1915, 18syld 47 . . . . . 6 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑥 ∈ (𝑅1 “ ω) → (𝑦𝑥𝑦𝑇)))
2019imp 410 . . . . 5 (((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) ∧ 𝑥 ∈ (𝑅1 “ ω)) → (𝑦𝑥𝑦𝑇))
2113, 20syld 47 . . . 4 (((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) ∧ 𝑥 ∈ (𝑅1 “ ω)) → (𝑦𝑥𝑦𝑇))
2221rexlimdva 3203 . . 3 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (∃𝑥 ∈ (𝑅1 “ ω)𝑦𝑥𝑦𝑇))
231, 22syl5bi 245 . 2 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑦 (𝑅1 “ ω) → 𝑦𝑇))
2423ssrdv 3907 1 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑅1 “ ω) ⊆ 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  wne 2940  wrex 3062  wss 3866  c0 4237   cuni 4819  Tr wtr 5161  cima 5554  Oncon0 6213  Fun wfun 6374   Fn wfn 6375  cfv 6380  ωcom 7644  𝑅1cr1 9378  Tarskictsk 10362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-om 7645  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-r1 9380  df-tsk 10363
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator