MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tskr1om2 Structured version   Visualization version   GIF version

Theorem tskr1om2 10703
Description: A nonempty Tarski class contains the whole finite cumulative hierarchy. (This proof does not use ax-inf 9573.) (Contributed by NM, 22-Feb-2011.)
Assertion
Ref Expression
tskr1om2 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑅1 “ ω) ⊆ 𝑇)

Proof of Theorem tskr1om2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluni2 4869 . . 3 (𝑦 (𝑅1 “ ω) ↔ ∃𝑥 ∈ (𝑅1 “ ω)𝑦𝑥)
2 r1fnon 9702 . . . . . . . . 9 𝑅1 Fn On
3 fnfun 6602 . . . . . . . . 9 (𝑅1 Fn On → Fun 𝑅1)
42, 3ax-mp 5 . . . . . . . 8 Fun 𝑅1
5 fvelima 6908 . . . . . . . 8 ((Fun 𝑅1𝑥 ∈ (𝑅1 “ ω)) → ∃𝑦 ∈ ω (𝑅1𝑦) = 𝑥)
64, 5mpan 688 . . . . . . 7 (𝑥 ∈ (𝑅1 “ ω) → ∃𝑦 ∈ ω (𝑅1𝑦) = 𝑥)
7 r1tr 9711 . . . . . . . . 9 Tr (𝑅1𝑦)
8 treq 5230 . . . . . . . . 9 ((𝑅1𝑦) = 𝑥 → (Tr (𝑅1𝑦) ↔ Tr 𝑥))
97, 8mpbii 232 . . . . . . . 8 ((𝑅1𝑦) = 𝑥 → Tr 𝑥)
109rexlimivw 3148 . . . . . . 7 (∃𝑦 ∈ ω (𝑅1𝑦) = 𝑥 → Tr 𝑥)
11 trss 5233 . . . . . . 7 (Tr 𝑥 → (𝑦𝑥𝑦𝑥))
126, 10, 113syl 18 . . . . . 6 (𝑥 ∈ (𝑅1 “ ω) → (𝑦𝑥𝑦𝑥))
1312adantl 482 . . . . 5 (((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) ∧ 𝑥 ∈ (𝑅1 “ ω)) → (𝑦𝑥𝑦𝑥))
14 tskr1om 10702 . . . . . . . 8 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑅1 “ ω) ⊆ 𝑇)
1514sseld 3943 . . . . . . 7 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑥 ∈ (𝑅1 “ ω) → 𝑥𝑇))
16 tskss 10693 . . . . . . . . 9 ((𝑇 ∈ Tarski ∧ 𝑥𝑇𝑦𝑥) → 𝑦𝑇)
17163exp 1119 . . . . . . . 8 (𝑇 ∈ Tarski → (𝑥𝑇 → (𝑦𝑥𝑦𝑇)))
1817adantr 481 . . . . . . 7 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑥𝑇 → (𝑦𝑥𝑦𝑇)))
1915, 18syld 47 . . . . . 6 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑥 ∈ (𝑅1 “ ω) → (𝑦𝑥𝑦𝑇)))
2019imp 407 . . . . 5 (((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) ∧ 𝑥 ∈ (𝑅1 “ ω)) → (𝑦𝑥𝑦𝑇))
2113, 20syld 47 . . . 4 (((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) ∧ 𝑥 ∈ (𝑅1 “ ω)) → (𝑦𝑥𝑦𝑇))
2221rexlimdva 3152 . . 3 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (∃𝑥 ∈ (𝑅1 “ ω)𝑦𝑥𝑦𝑇))
231, 22biimtrid 241 . 2 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑦 (𝑅1 “ ω) → 𝑦𝑇))
2423ssrdv 3950 1 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑅1 “ ω) ⊆ 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wne 2943  wrex 3073  wss 3910  c0 4282   cuni 4865  Tr wtr 5222  cima 5636  Oncon0 6317  Fun wfun 6490   Fn wfn 6491  cfv 6496  ωcom 7801  𝑅1cr1 9697  Tarskictsk 10683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7671
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-ov 7359  df-om 7802  df-2nd 7921  df-frecs 8211  df-wrecs 8242  df-recs 8316  df-rdg 8355  df-r1 9699  df-tsk 10684
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator