MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tskssel Structured version   Visualization version   GIF version

Theorem tskssel 10795
Description: A part of a Tarski class strictly dominated by the class is an element of the class. JFM CLASSES2 th. 2. (Contributed by FL, 22-Feb-2011.) (Proof shortened by Mario Carneiro, 20-Sep-2014.)
Assertion
Ref Expression
tskssel ((𝑇 ∈ Tarski ∧ 𝐴𝑇𝐴𝑇) → 𝐴𝑇)

Proof of Theorem tskssel
StepHypRef Expression
1 sdomnen 9020 . . 3 (𝐴𝑇 → ¬ 𝐴𝑇)
213ad2ant3 1134 . 2 ((𝑇 ∈ Tarski ∧ 𝐴𝑇𝐴𝑇) → ¬ 𝐴𝑇)
3 tsken 10792 . . . 4 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → (𝐴𝑇𝐴𝑇))
433adant3 1131 . . 3 ((𝑇 ∈ Tarski ∧ 𝐴𝑇𝐴𝑇) → (𝐴𝑇𝐴𝑇))
54ord 864 . 2 ((𝑇 ∈ Tarski ∧ 𝐴𝑇𝐴𝑇) → (¬ 𝐴𝑇𝐴𝑇))
62, 5mpd 15 1 ((𝑇 ∈ Tarski ∧ 𝐴𝑇𝐴𝑇) → 𝐴𝑇)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 847  w3a 1086  wcel 2106  wss 3963   class class class wbr 5148  cen 8981  csdm 8983  Tarskictsk 10786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-sdom 8987  df-tsk 10787
This theorem is referenced by:  tskpr  10808  tskwe2  10811  tskord  10818  tskcard  10819  tskurn  10827
  Copyright terms: Public domain W3C validator