MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tskssel Structured version   Visualization version   GIF version

Theorem tskssel 10748
Description: A part of a Tarski class strictly dominated by the class is an element of the class. JFM CLASSES2 th. 2. (Contributed by FL, 22-Feb-2011.) (Proof shortened by Mario Carneiro, 20-Sep-2014.)
Assertion
Ref Expression
tskssel ((𝑇 ∈ Tarski ∧ 𝐴𝑇𝐴𝑇) → 𝐴𝑇)

Proof of Theorem tskssel
StepHypRef Expression
1 sdomnen 8973 . . 3 (𝐴𝑇 → ¬ 𝐴𝑇)
213ad2ant3 1136 . 2 ((𝑇 ∈ Tarski ∧ 𝐴𝑇𝐴𝑇) → ¬ 𝐴𝑇)
3 tsken 10745 . . . 4 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → (𝐴𝑇𝐴𝑇))
433adant3 1133 . . 3 ((𝑇 ∈ Tarski ∧ 𝐴𝑇𝐴𝑇) → (𝐴𝑇𝐴𝑇))
54ord 863 . 2 ((𝑇 ∈ Tarski ∧ 𝐴𝑇𝐴𝑇) → (¬ 𝐴𝑇𝐴𝑇))
62, 5mpd 15 1 ((𝑇 ∈ Tarski ∧ 𝐴𝑇𝐴𝑇) → 𝐴𝑇)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 846  w3a 1088  wcel 2107  wss 3947   class class class wbr 5147  cen 8932  csdm 8934  Tarskictsk 10739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5298
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-sdom 8938  df-tsk 10740
This theorem is referenced by:  tskpr  10761  tskwe2  10764  tskord  10771  tskcard  10772  tskurn  10780
  Copyright terms: Public domain W3C validator