MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tskssel Structured version   Visualization version   GIF version

Theorem tskssel 10717
Description: A part of a Tarski class strictly dominated by the class is an element of the class. JFM CLASSES2 th. 2. (Contributed by FL, 22-Feb-2011.) (Proof shortened by Mario Carneiro, 20-Sep-2014.)
Assertion
Ref Expression
tskssel ((𝑇 ∈ Tarski ∧ 𝐴𝑇𝐴𝑇) → 𝐴𝑇)

Proof of Theorem tskssel
StepHypRef Expression
1 sdomnen 8955 . . 3 (𝐴𝑇 → ¬ 𝐴𝑇)
213ad2ant3 1135 . 2 ((𝑇 ∈ Tarski ∧ 𝐴𝑇𝐴𝑇) → ¬ 𝐴𝑇)
3 tsken 10714 . . . 4 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → (𝐴𝑇𝐴𝑇))
433adant3 1132 . . 3 ((𝑇 ∈ Tarski ∧ 𝐴𝑇𝐴𝑇) → (𝐴𝑇𝐴𝑇))
54ord 864 . 2 ((𝑇 ∈ Tarski ∧ 𝐴𝑇𝐴𝑇) → (¬ 𝐴𝑇𝐴𝑇))
62, 5mpd 15 1 ((𝑇 ∈ Tarski ∧ 𝐴𝑇𝐴𝑇) → 𝐴𝑇)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 847  w3a 1086  wcel 2109  wss 3917   class class class wbr 5110  cen 8918  csdm 8920  Tarskictsk 10708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-sdom 8924  df-tsk 10709
This theorem is referenced by:  tskpr  10730  tskwe2  10733  tskord  10740  tskcard  10741  tskurn  10749
  Copyright terms: Public domain W3C validator