| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tskssel | Structured version Visualization version GIF version | ||
| Description: A part of a Tarski class strictly dominated by the class is an element of the class. JFM CLASSES2 th. 2. (Contributed by FL, 22-Feb-2011.) (Proof shortened by Mario Carneiro, 20-Sep-2014.) |
| Ref | Expression |
|---|---|
| tskssel | ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ⊆ 𝑇 ∧ 𝐴 ≺ 𝑇) → 𝐴 ∈ 𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sdomnen 8955 | . . 3 ⊢ (𝐴 ≺ 𝑇 → ¬ 𝐴 ≈ 𝑇) | |
| 2 | 1 | 3ad2ant3 1135 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ⊆ 𝑇 ∧ 𝐴 ≺ 𝑇) → ¬ 𝐴 ≈ 𝑇) |
| 3 | tsken 10714 | . . . 4 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ⊆ 𝑇) → (𝐴 ≈ 𝑇 ∨ 𝐴 ∈ 𝑇)) | |
| 4 | 3 | 3adant3 1132 | . . 3 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ⊆ 𝑇 ∧ 𝐴 ≺ 𝑇) → (𝐴 ≈ 𝑇 ∨ 𝐴 ∈ 𝑇)) |
| 5 | 4 | ord 864 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ⊆ 𝑇 ∧ 𝐴 ≺ 𝑇) → (¬ 𝐴 ≈ 𝑇 → 𝐴 ∈ 𝑇)) |
| 6 | 2, 5 | mpd 15 | 1 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ⊆ 𝑇 ∧ 𝐴 ≺ 𝑇) → 𝐴 ∈ 𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 847 ∧ w3a 1086 ∈ wcel 2109 ⊆ wss 3917 class class class wbr 5110 ≈ cen 8918 ≺ csdm 8920 Tarskictsk 10708 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-sdom 8924 df-tsk 10709 |
| This theorem is referenced by: tskpr 10730 tskwe2 10733 tskord 10740 tskcard 10741 tskurn 10749 |
| Copyright terms: Public domain | W3C validator |