![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tskint | Structured version Visualization version GIF version |
Description: The intersection of an element of a transitive Tarski class is an element of the class. (Contributed by FL, 17-Apr-2011.) (Revised by Mario Carneiro, 20-Sep-2014.) |
Ref | Expression |
---|---|
tskint | ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴 ∈ 𝑇 ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1l 1178 | . 2 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴 ∈ 𝑇 ∧ 𝐴 ≠ ∅) → 𝑇 ∈ Tarski) | |
2 | tskuni 10002 | . . . 4 ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝐴 ∈ 𝑇) → ∪ 𝐴 ∈ 𝑇) | |
3 | 2 | 3expa 1099 | . . 3 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴 ∈ 𝑇) → ∪ 𝐴 ∈ 𝑇) |
4 | 3 | 3adant3 1113 | . 2 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴 ∈ 𝑇 ∧ 𝐴 ≠ ∅) → ∪ 𝐴 ∈ 𝑇) |
5 | intssuni 4768 | . . 3 ⊢ (𝐴 ≠ ∅ → ∩ 𝐴 ⊆ ∪ 𝐴) | |
6 | 5 | 3ad2ant3 1116 | . 2 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴 ∈ 𝑇 ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ⊆ ∪ 𝐴) |
7 | tskss 9977 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ ∪ 𝐴 ∈ 𝑇 ∧ ∩ 𝐴 ⊆ ∪ 𝐴) → ∩ 𝐴 ∈ 𝑇) | |
8 | 1, 4, 6, 7 | syl3anc 1352 | 1 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴 ∈ 𝑇 ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 ∧ w3a 1069 ∈ wcel 2051 ≠ wne 2962 ⊆ wss 3824 ∅c0 4173 ∪ cuni 4709 ∩ cint 4746 Tr wtr 5027 Tarskictsk 9967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2745 ax-rep 5046 ax-sep 5057 ax-nul 5064 ax-pow 5116 ax-pr 5183 ax-un 7278 ax-inf2 8897 ax-ac2 9682 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2754 df-cleq 2766 df-clel 2841 df-nfc 2913 df-ne 2963 df-ral 3088 df-rex 3089 df-reu 3090 df-rmo 3091 df-rab 3092 df-v 3412 df-sbc 3677 df-csb 3782 df-dif 3827 df-un 3829 df-in 3831 df-ss 3838 df-pss 3840 df-nul 4174 df-if 4346 df-pw 4419 df-sn 4437 df-pr 4439 df-tp 4441 df-op 4443 df-uni 4710 df-int 4747 df-iun 4791 df-iin 4792 df-br 4927 df-opab 4989 df-mpt 5006 df-tr 5028 df-id 5309 df-eprel 5314 df-po 5323 df-so 5324 df-fr 5363 df-se 5364 df-we 5365 df-xp 5410 df-rel 5411 df-cnv 5412 df-co 5413 df-dm 5414 df-rn 5415 df-res 5416 df-ima 5417 df-pred 5984 df-ord 6030 df-on 6031 df-lim 6032 df-suc 6033 df-iota 6150 df-fun 6188 df-fn 6189 df-f 6190 df-f1 6191 df-fo 6192 df-f1o 6193 df-fv 6194 df-isom 6195 df-riota 6936 df-ov 6978 df-oprab 6979 df-mpo 6980 df-om 7396 df-1st 7500 df-2nd 7501 df-wrecs 7749 df-smo 7786 df-recs 7811 df-rdg 7849 df-1o 7904 df-2o 7905 df-oadd 7908 df-er 8088 df-map 8207 df-ixp 8259 df-en 8306 df-dom 8307 df-sdom 8308 df-fin 8309 df-oi 8768 df-har 8816 df-r1 8986 df-card 9161 df-aleph 9162 df-cf 9163 df-acn 9164 df-ac 9335 df-wina 9903 df-ina 9904 df-tsk 9968 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |