MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tskint Structured version   Visualization version   GIF version

Theorem tskint 10399
Description: The intersection of an element of a transitive Tarski class is an element of the class. (Contributed by FL, 17-Apr-2011.) (Revised by Mario Carneiro, 20-Sep-2014.)
Assertion
Ref Expression
tskint (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴𝑇𝐴 ≠ ∅) → 𝐴𝑇)

Proof of Theorem tskint
StepHypRef Expression
1 simp1l 1199 . 2 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴𝑇𝐴 ≠ ∅) → 𝑇 ∈ Tarski)
2 tskuni 10397 . . . 4 ((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) → 𝐴𝑇)
323expa 1120 . . 3 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴𝑇) → 𝐴𝑇)
433adant3 1134 . 2 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴𝑇𝐴 ≠ ∅) → 𝐴𝑇)
5 intssuni 4881 . . 3 (𝐴 ≠ ∅ → 𝐴 𝐴)
653ad2ant3 1137 . 2 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴𝑇𝐴 ≠ ∅) → 𝐴 𝐴)
7 tskss 10372 . 2 ((𝑇 ∈ Tarski ∧ 𝐴𝑇 𝐴 𝐴) → 𝐴𝑇)
81, 4, 6, 7syl3anc 1373 1 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴𝑇𝐴 ≠ ∅) → 𝐴𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089  wcel 2110  wne 2940  wss 3866  c0 4237   cuni 4819   cint 4859  Tr wtr 5161  Tarskictsk 10362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256  ax-ac2 10077
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-iin 4907  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-smo 8083  df-recs 8108  df-rdg 8146  df-1o 8202  df-2o 8203  df-er 8391  df-map 8510  df-ixp 8579  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-oi 9126  df-har 9173  df-r1 9380  df-card 9555  df-aleph 9556  df-cf 9557  df-acn 9558  df-ac 9730  df-wina 10298  df-ina 10299  df-tsk 10363
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator