![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > txprel | Structured version Visualization version GIF version |
Description: A tail Cartesian product is a relationship. (Contributed by Scott Fenton, 31-Mar-2012.) |
Ref | Expression |
---|---|
txprel | ⊢ Rel (𝐴 ⊗ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | txpss3v 32897 | . . 3 ⊢ (𝐴 ⊗ 𝐵) ⊆ (V × (V × V)) | |
2 | xpss 5419 | . . 3 ⊢ (V × (V × V)) ⊆ (V × V) | |
3 | 1, 2 | sstri 3860 | . 2 ⊢ (𝐴 ⊗ 𝐵) ⊆ (V × V) |
4 | df-rel 5410 | . 2 ⊢ (Rel (𝐴 ⊗ 𝐵) ↔ (𝐴 ⊗ 𝐵) ⊆ (V × V)) | |
5 | 3, 4 | mpbir 223 | 1 ⊢ Rel (𝐴 ⊗ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3408 ⊆ wss 3822 × cxp 5401 Rel wrel 5408 ⊗ ctxp 32849 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2743 ax-sep 5056 ax-nul 5063 ax-pr 5182 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ral 3086 df-rex 3087 df-rab 3090 df-v 3410 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-nul 4173 df-if 4345 df-sn 4436 df-pr 4438 df-op 4442 df-br 4926 df-opab 4988 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-res 5415 df-txp 32873 |
This theorem is referenced by: pprodss4v 32903 |
Copyright terms: Public domain | W3C validator |