![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > txprel | Structured version Visualization version GIF version |
Description: A tail Cartesian product is a relationship. (Contributed by Scott Fenton, 31-Mar-2012.) |
Ref | Expression |
---|---|
txprel | ⊢ Rel (𝐴 ⊗ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | txpss3v 35842 | . . 3 ⊢ (𝐴 ⊗ 𝐵) ⊆ (V × (V × V)) | |
2 | xpss 5716 | . . 3 ⊢ (V × (V × V)) ⊆ (V × V) | |
3 | 1, 2 | sstri 4018 | . 2 ⊢ (𝐴 ⊗ 𝐵) ⊆ (V × V) |
4 | df-rel 5707 | . 2 ⊢ (Rel (𝐴 ⊗ 𝐵) ↔ (𝐴 ⊗ 𝐵) ⊆ (V × V)) | |
5 | 3, 4 | mpbir 231 | 1 ⊢ Rel (𝐴 ⊗ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3488 ⊆ wss 3976 × cxp 5698 Rel wrel 5705 ⊗ ctxp 35794 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-res 5712 df-txp 35818 |
This theorem is referenced by: pprodss4v 35848 |
Copyright terms: Public domain | W3C validator |