| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ufdidom | Structured version Visualization version GIF version | ||
| Description: A nonzero unique factorization domain is an integral domain. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
| Ref | Expression |
|---|---|
| ufdidom.2 | ⊢ (𝜑 → 𝑅 ∈ UFD) |
| Ref | Expression |
|---|---|
| ufdidom | ⊢ (𝜑 → 𝑅 ∈ IDomn) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ufdidom.2 | . 2 ⊢ (𝜑 → 𝑅 ∈ UFD) | |
| 2 | eqid 2729 | . . . 4 ⊢ (PrmIdeal‘𝑅) = (PrmIdeal‘𝑅) | |
| 3 | eqid 2729 | . . . 4 ⊢ (RPrime‘𝑅) = (RPrime‘𝑅) | |
| 4 | eqid 2729 | . . . 4 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 5 | 2, 3, 4 | isufd 33484 | . . 3 ⊢ (𝑅 ∈ UFD ↔ (𝑅 ∈ IDomn ∧ ∀𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{(0g‘𝑅)}})(𝑖 ∩ (RPrime‘𝑅)) ≠ ∅)) |
| 6 | 5 | simplbi 497 | . 2 ⊢ (𝑅 ∈ UFD → 𝑅 ∈ IDomn) |
| 7 | 1, 6 | syl 17 | 1 ⊢ (𝜑 → 𝑅 ∈ IDomn) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∖ cdif 3908 ∩ cin 3910 ∅c0 4292 {csn 4585 ‘cfv 6499 0gc0g 17378 RPrimecrpm 20317 IDomncidom 20578 PrmIdealcprmidl 33379 UFDcufd 33482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-iota 6452 df-fv 6507 df-ufd 33483 |
| This theorem is referenced by: 1arithufdlem1 33488 1arithufdlem2 33489 1arithufdlem3 33490 1arithufdlem4 33491 dfufd2 33494 |
| Copyright terms: Public domain | W3C validator |