Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ufdidom Structured version   Visualization version   GIF version

Theorem ufdidom 33510
Description: A nonzero unique factorization domain is an integral domain. (Contributed by Thierry Arnoux, 3-Jun-2025.)
Hypothesis
Ref Expression
ufdidom.2 (𝜑𝑅 ∈ UFD)
Assertion
Ref Expression
ufdidom (𝜑𝑅 ∈ IDomn)

Proof of Theorem ufdidom
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 ufdidom.2 . 2 (𝜑𝑅 ∈ UFD)
2 eqid 2734 . . . 4 (PrmIdeal‘𝑅) = (PrmIdeal‘𝑅)
3 eqid 2734 . . . 4 (RPrime‘𝑅) = (RPrime‘𝑅)
4 eqid 2734 . . . 4 (0g𝑅) = (0g𝑅)
52, 3, 4isufd 33508 . . 3 (𝑅 ∈ UFD ↔ (𝑅 ∈ IDomn ∧ ∀𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{(0g𝑅)}})(𝑖 ∩ (RPrime‘𝑅)) ≠ ∅))
65simplbi 497 . 2 (𝑅 ∈ UFD → 𝑅 ∈ IDomn)
71, 6syl 17 1 (𝜑𝑅 ∈ IDomn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  wne 2931  wral 3050  cdif 3928  cin 3930  c0 4313  {csn 4606  cfv 6541  0gc0g 17456  RPrimecrpm 20401  IDomncidom 20662  PrmIdealcprmidl 33403  UFDcufd 33506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-iota 6494  df-fv 6549  df-ufd 33507
This theorem is referenced by:  1arithufdlem1  33512  1arithufdlem2  33513  1arithufdlem3  33514  1arithufdlem4  33515  dfufd2  33518
  Copyright terms: Public domain W3C validator