| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ufdidom | Structured version Visualization version GIF version | ||
| Description: A nonzero unique factorization domain is an integral domain. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
| Ref | Expression |
|---|---|
| ufdidom.2 | ⊢ (𝜑 → 𝑅 ∈ UFD) |
| Ref | Expression |
|---|---|
| ufdidom | ⊢ (𝜑 → 𝑅 ∈ IDomn) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ufdidom.2 | . 2 ⊢ (𝜑 → 𝑅 ∈ UFD) | |
| 2 | eqid 2734 | . . . 4 ⊢ (PrmIdeal‘𝑅) = (PrmIdeal‘𝑅) | |
| 3 | eqid 2734 | . . . 4 ⊢ (RPrime‘𝑅) = (RPrime‘𝑅) | |
| 4 | eqid 2734 | . . . 4 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 5 | 2, 3, 4 | isufd 33508 | . . 3 ⊢ (𝑅 ∈ UFD ↔ (𝑅 ∈ IDomn ∧ ∀𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{(0g‘𝑅)}})(𝑖 ∩ (RPrime‘𝑅)) ≠ ∅)) |
| 6 | 5 | simplbi 497 | . 2 ⊢ (𝑅 ∈ UFD → 𝑅 ∈ IDomn) |
| 7 | 1, 6 | syl 17 | 1 ⊢ (𝜑 → 𝑅 ∈ IDomn) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 ≠ wne 2931 ∀wral 3050 ∖ cdif 3928 ∩ cin 3930 ∅c0 4313 {csn 4606 ‘cfv 6541 0gc0g 17456 RPrimecrpm 20401 IDomncidom 20662 PrmIdealcprmidl 33403 UFDcufd 33506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-iota 6494 df-fv 6549 df-ufd 33507 |
| This theorem is referenced by: 1arithufdlem1 33512 1arithufdlem2 33513 1arithufdlem3 33514 1arithufdlem4 33515 dfufd2 33518 |
| Copyright terms: Public domain | W3C validator |