![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ufdidom | Structured version Visualization version GIF version |
Description: A nonzero unique factorization domain is an integral domain. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
Ref | Expression |
---|---|
ufdidom.2 | ⊢ (𝜑 → 𝑅 ∈ UFD) |
Ref | Expression |
---|---|
ufdidom | ⊢ (𝜑 → 𝑅 ∈ IDomn) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ufdidom.2 | . 2 ⊢ (𝜑 → 𝑅 ∈ UFD) | |
2 | eqid 2733 | . . . 4 ⊢ (PrmIdeal‘𝑅) = (PrmIdeal‘𝑅) | |
3 | eqid 2733 | . . . 4 ⊢ (RPrime‘𝑅) = (RPrime‘𝑅) | |
4 | eqid 2733 | . . . 4 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
5 | 2, 3, 4 | isufd 33511 | . . 3 ⊢ (𝑅 ∈ UFD ↔ (𝑅 ∈ IDomn ∧ ∀𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{(0g‘𝑅)}})(𝑖 ∩ (RPrime‘𝑅)) ≠ ∅)) |
6 | 5 | simplbi 497 | . 2 ⊢ (𝑅 ∈ UFD → 𝑅 ∈ IDomn) |
7 | 1, 6 | syl 17 | 1 ⊢ (𝜑 → 𝑅 ∈ IDomn) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2104 ≠ wne 2936 ∀wral 3057 ∖ cdif 3960 ∩ cin 3962 ∅c0 4339 {csn 4630 ‘cfv 6558 0gc0g 17475 RPrimecrpm 20434 IDomncidom 20691 PrmIdealcprmidl 33406 UFDcufd 33509 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1963 ax-7 2003 ax-8 2106 ax-9 2114 ax-ext 2704 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1087 df-tru 1538 df-fal 1548 df-ex 1775 df-sb 2061 df-clab 2711 df-cleq 2725 df-clel 2812 df-ne 2937 df-ral 3058 df-rab 3433 df-v 3479 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4915 df-br 5150 df-iota 6510 df-fv 6566 df-ufd 33510 |
This theorem is referenced by: 1arithufdlem1 33515 1arithufdlem2 33516 1arithufdlem3 33517 1arithufdlem4 33518 dfufd2 33521 |
Copyright terms: Public domain | W3C validator |