Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ufdidom Structured version   Visualization version   GIF version

Theorem ufdidom 33486
Description: A nonzero unique factorization domain is an integral domain. (Contributed by Thierry Arnoux, 3-Jun-2025.)
Hypothesis
Ref Expression
ufdidom.2 (𝜑𝑅 ∈ UFD)
Assertion
Ref Expression
ufdidom (𝜑𝑅 ∈ IDomn)

Proof of Theorem ufdidom
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 ufdidom.2 . 2 (𝜑𝑅 ∈ UFD)
2 eqid 2729 . . . 4 (PrmIdeal‘𝑅) = (PrmIdeal‘𝑅)
3 eqid 2729 . . . 4 (RPrime‘𝑅) = (RPrime‘𝑅)
4 eqid 2729 . . . 4 (0g𝑅) = (0g𝑅)
52, 3, 4isufd 33484 . . 3 (𝑅 ∈ UFD ↔ (𝑅 ∈ IDomn ∧ ∀𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{(0g𝑅)}})(𝑖 ∩ (RPrime‘𝑅)) ≠ ∅))
65simplbi 497 . 2 (𝑅 ∈ UFD → 𝑅 ∈ IDomn)
71, 6syl 17 1 (𝜑𝑅 ∈ IDomn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wne 2925  wral 3044  cdif 3908  cin 3910  c0 4292  {csn 4585  cfv 6499  0gc0g 17378  RPrimecrpm 20317  IDomncidom 20578  PrmIdealcprmidl 33379  UFDcufd 33482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-iota 6452  df-fv 6507  df-ufd 33483
This theorem is referenced by:  1arithufdlem1  33488  1arithufdlem2  33489  1arithufdlem3  33490  1arithufdlem4  33491  dfufd2  33494
  Copyright terms: Public domain W3C validator