Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ufdidom Structured version   Visualization version   GIF version

Theorem ufdidom 33513
Description: A nonzero unique factorization domain is an integral domain. (Contributed by Thierry Arnoux, 3-Jun-2025.)
Hypothesis
Ref Expression
ufdidom.2 (𝜑𝑅 ∈ UFD)
Assertion
Ref Expression
ufdidom (𝜑𝑅 ∈ IDomn)

Proof of Theorem ufdidom
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 ufdidom.2 . 2 (𝜑𝑅 ∈ UFD)
2 eqid 2733 . . . 4 (PrmIdeal‘𝑅) = (PrmIdeal‘𝑅)
3 eqid 2733 . . . 4 (RPrime‘𝑅) = (RPrime‘𝑅)
4 eqid 2733 . . . 4 (0g𝑅) = (0g𝑅)
52, 3, 4isufd 33511 . . 3 (𝑅 ∈ UFD ↔ (𝑅 ∈ IDomn ∧ ∀𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{(0g𝑅)}})(𝑖 ∩ (RPrime‘𝑅)) ≠ ∅))
65simplbi 497 . 2 (𝑅 ∈ UFD → 𝑅 ∈ IDomn)
71, 6syl 17 1 (𝜑𝑅 ∈ IDomn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2104  wne 2936  wral 3057  cdif 3960  cin 3962  c0 4339  {csn 4630  cfv 6558  0gc0g 17475  RPrimecrpm 20434  IDomncidom 20691  PrmIdealcprmidl 33406  UFDcufd 33509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1963  ax-7 2003  ax-8 2106  ax-9 2114  ax-ext 2704
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1087  df-tru 1538  df-fal 1548  df-ex 1775  df-sb 2061  df-clab 2711  df-cleq 2725  df-clel 2812  df-ne 2937  df-ral 3058  df-rab 3433  df-v 3479  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4915  df-br 5150  df-iota 6510  df-fv 6566  df-ufd 33510
This theorem is referenced by:  1arithufdlem1  33515  1arithufdlem2  33516  1arithufdlem3  33517  1arithufdlem4  33518  dfufd2  33521
  Copyright terms: Public domain W3C validator