| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ufdidom | Structured version Visualization version GIF version | ||
| Description: A nonzero unique factorization domain is an integral domain. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
| Ref | Expression |
|---|---|
| ufdidom.2 | ⊢ (𝜑 → 𝑅 ∈ UFD) |
| Ref | Expression |
|---|---|
| ufdidom | ⊢ (𝜑 → 𝑅 ∈ IDomn) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ufdidom.2 | . 2 ⊢ (𝜑 → 𝑅 ∈ UFD) | |
| 2 | eqid 2730 | . . . 4 ⊢ (PrmIdeal‘𝑅) = (PrmIdeal‘𝑅) | |
| 3 | eqid 2730 | . . . 4 ⊢ (RPrime‘𝑅) = (RPrime‘𝑅) | |
| 4 | eqid 2730 | . . . 4 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 5 | 2, 3, 4 | isufd 33517 | . . 3 ⊢ (𝑅 ∈ UFD ↔ (𝑅 ∈ IDomn ∧ ∀𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{(0g‘𝑅)}})(𝑖 ∩ (RPrime‘𝑅)) ≠ ∅)) |
| 6 | 5 | simplbi 497 | . 2 ⊢ (𝑅 ∈ UFD → 𝑅 ∈ IDomn) |
| 7 | 1, 6 | syl 17 | 1 ⊢ (𝜑 → 𝑅 ∈ IDomn) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ≠ wne 2926 ∀wral 3045 ∖ cdif 3913 ∩ cin 3915 ∅c0 4298 {csn 4591 ‘cfv 6513 0gc0g 17408 RPrimecrpm 20347 IDomncidom 20608 PrmIdealcprmidl 33412 UFDcufd 33515 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-iota 6466 df-fv 6521 df-ufd 33516 |
| This theorem is referenced by: 1arithufdlem1 33521 1arithufdlem2 33522 1arithufdlem3 33523 1arithufdlem4 33524 dfufd2 33527 |
| Copyright terms: Public domain | W3C validator |