Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ufdidom Structured version   Visualization version   GIF version

Theorem ufdidom 33519
Description: A nonzero unique factorization domain is an integral domain. (Contributed by Thierry Arnoux, 3-Jun-2025.)
Hypothesis
Ref Expression
ufdidom.2 (𝜑𝑅 ∈ UFD)
Assertion
Ref Expression
ufdidom (𝜑𝑅 ∈ IDomn)

Proof of Theorem ufdidom
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 ufdidom.2 . 2 (𝜑𝑅 ∈ UFD)
2 eqid 2730 . . . 4 (PrmIdeal‘𝑅) = (PrmIdeal‘𝑅)
3 eqid 2730 . . . 4 (RPrime‘𝑅) = (RPrime‘𝑅)
4 eqid 2730 . . . 4 (0g𝑅) = (0g𝑅)
52, 3, 4isufd 33517 . . 3 (𝑅 ∈ UFD ↔ (𝑅 ∈ IDomn ∧ ∀𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{(0g𝑅)}})(𝑖 ∩ (RPrime‘𝑅)) ≠ ∅))
65simplbi 497 . 2 (𝑅 ∈ UFD → 𝑅 ∈ IDomn)
71, 6syl 17 1 (𝜑𝑅 ∈ IDomn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wne 2926  wral 3045  cdif 3913  cin 3915  c0 4298  {csn 4591  cfv 6513  0gc0g 17408  RPrimecrpm 20347  IDomncidom 20608  PrmIdealcprmidl 33412  UFDcufd 33515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-iota 6466  df-fv 6521  df-ufd 33516
This theorem is referenced by:  1arithufdlem1  33521  1arithufdlem2  33522  1arithufdlem3  33523  1arithufdlem4  33524  dfufd2  33527
  Copyright terms: Public domain W3C validator