| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ufdidom | Structured version Visualization version GIF version | ||
| Description: A nonzero unique factorization domain is an integral domain. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
| Ref | Expression |
|---|---|
| ufdidom.2 | ⊢ (𝜑 → 𝑅 ∈ UFD) |
| Ref | Expression |
|---|---|
| ufdidom | ⊢ (𝜑 → 𝑅 ∈ IDomn) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ufdidom.2 | . 2 ⊢ (𝜑 → 𝑅 ∈ UFD) | |
| 2 | eqid 2730 | . . . 4 ⊢ (PrmIdeal‘𝑅) = (PrmIdeal‘𝑅) | |
| 3 | eqid 2730 | . . . 4 ⊢ (RPrime‘𝑅) = (RPrime‘𝑅) | |
| 4 | eqid 2730 | . . . 4 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 5 | 2, 3, 4 | isufd 33495 | . . 3 ⊢ (𝑅 ∈ UFD ↔ (𝑅 ∈ IDomn ∧ ∀𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{(0g‘𝑅)}})(𝑖 ∩ (RPrime‘𝑅)) ≠ ∅)) |
| 6 | 5 | simplbi 497 | . 2 ⊢ (𝑅 ∈ UFD → 𝑅 ∈ IDomn) |
| 7 | 1, 6 | syl 17 | 1 ⊢ (𝜑 → 𝑅 ∈ IDomn) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2110 ≠ wne 2926 ∀wral 3045 ∖ cdif 3897 ∩ cin 3899 ∅c0 4281 {csn 4574 ‘cfv 6477 0gc0g 17335 RPrimecrpm 20343 IDomncidom 20601 PrmIdealcprmidl 33390 UFDcufd 33493 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-iota 6433 df-fv 6485 df-ufd 33494 |
| This theorem is referenced by: 1arithufdlem1 33499 1arithufdlem2 33500 1arithufdlem3 33501 1arithufdlem4 33502 dfufd2 33505 |
| Copyright terms: Public domain | W3C validator |