| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 1arithufdlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for 1arithufd 33563. The set 𝑆 of elements which can be written as a product of primes is not empty. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
| Ref | Expression |
|---|---|
| 1arithufd.b | ⊢ 𝐵 = (Base‘𝑅) |
| 1arithufd.0 | ⊢ 0 = (0g‘𝑅) |
| 1arithufd.u | ⊢ 𝑈 = (Unit‘𝑅) |
| 1arithufd.p | ⊢ 𝑃 = (RPrime‘𝑅) |
| 1arithufd.m | ⊢ 𝑀 = (mulGrp‘𝑅) |
| 1arithufd.r | ⊢ (𝜑 → 𝑅 ∈ UFD) |
| 1arithufdlem.2 | ⊢ (𝜑 → ¬ 𝑅 ∈ DivRing) |
| 1arithufdlem.s | ⊢ 𝑆 = {𝑥 ∈ 𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)} |
| Ref | Expression |
|---|---|
| 1arithufdlem1 | ⊢ (𝜑 → 𝑆 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2739 | . . . . . . 7 ⊢ (𝑥 = 𝑝 → (𝑥 = (𝑀 Σg 𝑓) ↔ 𝑝 = (𝑀 Σg 𝑓))) | |
| 2 | 1 | rexbidv 3164 | . . . . . 6 ⊢ (𝑥 = 𝑝 → (∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓) ↔ ∃𝑓 ∈ Word 𝑃𝑝 = (𝑀 Σg 𝑓))) |
| 3 | 1arithufd.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
| 4 | 1arithufd.p | . . . . . . 7 ⊢ 𝑃 = (RPrime‘𝑅) | |
| 5 | 1arithufd.r | . . . . . . . . 9 ⊢ (𝜑 → 𝑅 ∈ UFD) | |
| 6 | 5 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑚 ≠ { 0 }) → 𝑅 ∈ UFD) |
| 7 | 6 | ad2antrr 726 | . . . . . . 7 ⊢ (((((𝜑 ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑚 ≠ { 0 }) ∧ 𝑝 ∈ 𝑃) ∧ 𝑝 ∈ 𝑚) → 𝑅 ∈ UFD) |
| 8 | simplr 768 | . . . . . . 7 ⊢ (((((𝜑 ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑚 ≠ { 0 }) ∧ 𝑝 ∈ 𝑃) ∧ 𝑝 ∈ 𝑚) → 𝑝 ∈ 𝑃) | |
| 9 | 3, 4, 7, 8 | rprmcl 33533 | . . . . . 6 ⊢ (((((𝜑 ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑚 ≠ { 0 }) ∧ 𝑝 ∈ 𝑃) ∧ 𝑝 ∈ 𝑚) → 𝑝 ∈ 𝐵) |
| 10 | oveq2 7413 | . . . . . . . 8 ⊢ (𝑓 = 〈“𝑝”〉 → (𝑀 Σg 𝑓) = (𝑀 Σg 〈“𝑝”〉)) | |
| 11 | 10 | eqeq2d 2746 | . . . . . . 7 ⊢ (𝑓 = 〈“𝑝”〉 → (𝑝 = (𝑀 Σg 𝑓) ↔ 𝑝 = (𝑀 Σg 〈“𝑝”〉))) |
| 12 | 8 | s1cld 14621 | . . . . . . 7 ⊢ (((((𝜑 ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑚 ≠ { 0 }) ∧ 𝑝 ∈ 𝑃) ∧ 𝑝 ∈ 𝑚) → 〈“𝑝”〉 ∈ Word 𝑃) |
| 13 | 1arithufd.m | . . . . . . . . . . 11 ⊢ 𝑀 = (mulGrp‘𝑅) | |
| 14 | 13, 3 | mgpbas 20105 | . . . . . . . . . 10 ⊢ 𝐵 = (Base‘𝑀) |
| 15 | 14 | gsumws1 18816 | . . . . . . . . 9 ⊢ (𝑝 ∈ 𝐵 → (𝑀 Σg 〈“𝑝”〉) = 𝑝) |
| 16 | 9, 15 | syl 17 | . . . . . . . 8 ⊢ (((((𝜑 ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑚 ≠ { 0 }) ∧ 𝑝 ∈ 𝑃) ∧ 𝑝 ∈ 𝑚) → (𝑀 Σg 〈“𝑝”〉) = 𝑝) |
| 17 | 16 | eqcomd 2741 | . . . . . . 7 ⊢ (((((𝜑 ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑚 ≠ { 0 }) ∧ 𝑝 ∈ 𝑃) ∧ 𝑝 ∈ 𝑚) → 𝑝 = (𝑀 Σg 〈“𝑝”〉)) |
| 18 | 11, 12, 17 | rspcedvdw 3604 | . . . . . 6 ⊢ (((((𝜑 ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑚 ≠ { 0 }) ∧ 𝑝 ∈ 𝑃) ∧ 𝑝 ∈ 𝑚) → ∃𝑓 ∈ Word 𝑃𝑝 = (𝑀 Σg 𝑓)) |
| 19 | 2, 9, 18 | elrabd 3673 | . . . . 5 ⊢ (((((𝜑 ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑚 ≠ { 0 }) ∧ 𝑝 ∈ 𝑃) ∧ 𝑝 ∈ 𝑚) → 𝑝 ∈ {𝑥 ∈ 𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)}) |
| 20 | 1arithufdlem.s | . . . . 5 ⊢ 𝑆 = {𝑥 ∈ 𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)} | |
| 21 | 19, 20 | eleqtrrdi 2845 | . . . 4 ⊢ (((((𝜑 ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑚 ≠ { 0 }) ∧ 𝑝 ∈ 𝑃) ∧ 𝑝 ∈ 𝑚) → 𝑝 ∈ 𝑆) |
| 22 | 21 | ne0d 4317 | . . 3 ⊢ (((((𝜑 ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑚 ≠ { 0 }) ∧ 𝑝 ∈ 𝑃) ∧ 𝑝 ∈ 𝑚) → 𝑆 ≠ ∅) |
| 23 | eqid 2735 | . . . 4 ⊢ (PrmIdeal‘𝑅) = (PrmIdeal‘𝑅) | |
| 24 | 1arithufd.0 | . . . 4 ⊢ 0 = (0g‘𝑅) | |
| 25 | 5 | ufdidom 33557 | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ IDomn) |
| 26 | 25 | idomcringd 20687 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ CRing) |
| 27 | 26 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑚 ≠ { 0 }) → 𝑅 ∈ CRing) |
| 28 | simplr 768 | . . . . 5 ⊢ (((𝜑 ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑚 ≠ { 0 }) → 𝑚 ∈ (MaxIdeal‘𝑅)) | |
| 29 | eqid 2735 | . . . . . 6 ⊢ (LSSum‘(mulGrp‘𝑅)) = (LSSum‘(mulGrp‘𝑅)) | |
| 30 | 29 | mxidlprm 33485 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) → 𝑚 ∈ (PrmIdeal‘𝑅)) |
| 31 | 27, 28, 30 | syl2anc 584 | . . . 4 ⊢ (((𝜑 ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑚 ≠ { 0 }) → 𝑚 ∈ (PrmIdeal‘𝑅)) |
| 32 | simpr 484 | . . . 4 ⊢ (((𝜑 ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑚 ≠ { 0 }) → 𝑚 ≠ { 0 }) | |
| 33 | 23, 4, 24, 6, 31, 32 | ufdprmidl 33556 | . . 3 ⊢ (((𝜑 ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑚 ≠ { 0 }) → ∃𝑝 ∈ 𝑃 𝑝 ∈ 𝑚) |
| 34 | 22, 33 | r19.29a 3148 | . 2 ⊢ (((𝜑 ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑚 ≠ { 0 }) → 𝑆 ≠ ∅) |
| 35 | 25 | idomdomd 20686 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Domn) |
| 36 | domnnzr 20666 | . . . 4 ⊢ (𝑅 ∈ Domn → 𝑅 ∈ NzRing) | |
| 37 | 35, 36 | syl 17 | . . 3 ⊢ (𝜑 → 𝑅 ∈ NzRing) |
| 38 | 1arithufdlem.2 | . . 3 ⊢ (𝜑 → ¬ 𝑅 ∈ DivRing) | |
| 39 | 24, 37, 38 | krullndrng 33496 | . 2 ⊢ (𝜑 → ∃𝑚 ∈ (MaxIdeal‘𝑅)𝑚 ≠ { 0 }) |
| 40 | 34, 39 | r19.29a 3148 | 1 ⊢ (𝜑 → 𝑆 ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∃wrex 3060 {crab 3415 ∅c0 4308 {csn 4601 ‘cfv 6531 (class class class)co 7405 Word cword 14531 〈“cs1 14613 Basecbs 17228 0gc0g 17453 Σg cgsu 17454 LSSumclsm 19615 mulGrpcmgp 20100 CRingccrg 20194 Unitcui 20315 RPrimecrpm 20392 NzRingcnzr 20472 Domncdomn 20652 DivRingcdr 20689 PrmIdealcprmidl 33450 MaxIdealcmxidl 33474 UFDcufd 33553 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-ac2 10477 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-rpss 7717 df-om 7862 df-1st 7988 df-2nd 7989 df-tpos 8225 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-oadd 8484 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-dju 9915 df-card 9953 df-ac 10130 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-n0 12502 df-xnn0 12575 df-z 12589 df-uz 12853 df-fz 13525 df-fzo 13672 df-seq 14020 df-hash 14349 df-word 14532 df-s1 14614 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-sca 17287 df-vsca 17288 df-ip 17289 df-0g 17455 df-gsum 17456 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-submnd 18762 df-grp 18919 df-minusg 18920 df-sbg 18921 df-subg 19106 df-cntz 19300 df-lsm 19617 df-cmn 19763 df-abl 19764 df-mgp 20101 df-rng 20113 df-ur 20142 df-ring 20195 df-cring 20196 df-oppr 20297 df-dvdsr 20317 df-unit 20318 df-invr 20348 df-rprm 20393 df-nzr 20473 df-subrg 20530 df-domn 20655 df-idom 20656 df-drng 20691 df-lmod 20819 df-lss 20889 df-lsp 20929 df-sra 21131 df-rgmod 21132 df-lidl 21169 df-rsp 21170 df-lpidl 21283 df-prmidl 33451 df-mxidl 33475 df-ufd 33554 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |