| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 1arithufdlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for 1arithufd 33526. The set 𝑆 of elements which can be written as a product of primes is not empty. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
| Ref | Expression |
|---|---|
| 1arithufd.b | ⊢ 𝐵 = (Base‘𝑅) |
| 1arithufd.0 | ⊢ 0 = (0g‘𝑅) |
| 1arithufd.u | ⊢ 𝑈 = (Unit‘𝑅) |
| 1arithufd.p | ⊢ 𝑃 = (RPrime‘𝑅) |
| 1arithufd.m | ⊢ 𝑀 = (mulGrp‘𝑅) |
| 1arithufd.r | ⊢ (𝜑 → 𝑅 ∈ UFD) |
| 1arithufdlem.2 | ⊢ (𝜑 → ¬ 𝑅 ∈ DivRing) |
| 1arithufdlem.s | ⊢ 𝑆 = {𝑥 ∈ 𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)} |
| Ref | Expression |
|---|---|
| 1arithufdlem1 | ⊢ (𝜑 → 𝑆 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2734 | . . . . . . 7 ⊢ (𝑥 = 𝑝 → (𝑥 = (𝑀 Σg 𝑓) ↔ 𝑝 = (𝑀 Σg 𝑓))) | |
| 2 | 1 | rexbidv 3158 | . . . . . 6 ⊢ (𝑥 = 𝑝 → (∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓) ↔ ∃𝑓 ∈ Word 𝑃𝑝 = (𝑀 Σg 𝑓))) |
| 3 | 1arithufd.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
| 4 | 1arithufd.p | . . . . . . 7 ⊢ 𝑃 = (RPrime‘𝑅) | |
| 5 | 1arithufd.r | . . . . . . . . 9 ⊢ (𝜑 → 𝑅 ∈ UFD) | |
| 6 | 5 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑚 ≠ { 0 }) → 𝑅 ∈ UFD) |
| 7 | 6 | ad2antrr 726 | . . . . . . 7 ⊢ (((((𝜑 ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑚 ≠ { 0 }) ∧ 𝑝 ∈ 𝑃) ∧ 𝑝 ∈ 𝑚) → 𝑅 ∈ UFD) |
| 8 | simplr 768 | . . . . . . 7 ⊢ (((((𝜑 ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑚 ≠ { 0 }) ∧ 𝑝 ∈ 𝑃) ∧ 𝑝 ∈ 𝑚) → 𝑝 ∈ 𝑃) | |
| 9 | 3, 4, 7, 8 | rprmcl 33496 | . . . . . 6 ⊢ (((((𝜑 ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑚 ≠ { 0 }) ∧ 𝑝 ∈ 𝑃) ∧ 𝑝 ∈ 𝑚) → 𝑝 ∈ 𝐵) |
| 10 | oveq2 7398 | . . . . . . . 8 ⊢ (𝑓 = 〈“𝑝”〉 → (𝑀 Σg 𝑓) = (𝑀 Σg 〈“𝑝”〉)) | |
| 11 | 10 | eqeq2d 2741 | . . . . . . 7 ⊢ (𝑓 = 〈“𝑝”〉 → (𝑝 = (𝑀 Σg 𝑓) ↔ 𝑝 = (𝑀 Σg 〈“𝑝”〉))) |
| 12 | 8 | s1cld 14575 | . . . . . . 7 ⊢ (((((𝜑 ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑚 ≠ { 0 }) ∧ 𝑝 ∈ 𝑃) ∧ 𝑝 ∈ 𝑚) → 〈“𝑝”〉 ∈ Word 𝑃) |
| 13 | 1arithufd.m | . . . . . . . . . . 11 ⊢ 𝑀 = (mulGrp‘𝑅) | |
| 14 | 13, 3 | mgpbas 20061 | . . . . . . . . . 10 ⊢ 𝐵 = (Base‘𝑀) |
| 15 | 14 | gsumws1 18772 | . . . . . . . . 9 ⊢ (𝑝 ∈ 𝐵 → (𝑀 Σg 〈“𝑝”〉) = 𝑝) |
| 16 | 9, 15 | syl 17 | . . . . . . . 8 ⊢ (((((𝜑 ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑚 ≠ { 0 }) ∧ 𝑝 ∈ 𝑃) ∧ 𝑝 ∈ 𝑚) → (𝑀 Σg 〈“𝑝”〉) = 𝑝) |
| 17 | 16 | eqcomd 2736 | . . . . . . 7 ⊢ (((((𝜑 ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑚 ≠ { 0 }) ∧ 𝑝 ∈ 𝑃) ∧ 𝑝 ∈ 𝑚) → 𝑝 = (𝑀 Σg 〈“𝑝”〉)) |
| 18 | 11, 12, 17 | rspcedvdw 3594 | . . . . . 6 ⊢ (((((𝜑 ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑚 ≠ { 0 }) ∧ 𝑝 ∈ 𝑃) ∧ 𝑝 ∈ 𝑚) → ∃𝑓 ∈ Word 𝑃𝑝 = (𝑀 Σg 𝑓)) |
| 19 | 2, 9, 18 | elrabd 3664 | . . . . 5 ⊢ (((((𝜑 ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑚 ≠ { 0 }) ∧ 𝑝 ∈ 𝑃) ∧ 𝑝 ∈ 𝑚) → 𝑝 ∈ {𝑥 ∈ 𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)}) |
| 20 | 1arithufdlem.s | . . . . 5 ⊢ 𝑆 = {𝑥 ∈ 𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)} | |
| 21 | 19, 20 | eleqtrrdi 2840 | . . . 4 ⊢ (((((𝜑 ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑚 ≠ { 0 }) ∧ 𝑝 ∈ 𝑃) ∧ 𝑝 ∈ 𝑚) → 𝑝 ∈ 𝑆) |
| 22 | 21 | ne0d 4308 | . . 3 ⊢ (((((𝜑 ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑚 ≠ { 0 }) ∧ 𝑝 ∈ 𝑃) ∧ 𝑝 ∈ 𝑚) → 𝑆 ≠ ∅) |
| 23 | eqid 2730 | . . . 4 ⊢ (PrmIdeal‘𝑅) = (PrmIdeal‘𝑅) | |
| 24 | 1arithufd.0 | . . . 4 ⊢ 0 = (0g‘𝑅) | |
| 25 | 5 | ufdidom 33520 | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ IDomn) |
| 26 | 25 | idomcringd 20643 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ CRing) |
| 27 | 26 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑚 ≠ { 0 }) → 𝑅 ∈ CRing) |
| 28 | simplr 768 | . . . . 5 ⊢ (((𝜑 ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑚 ≠ { 0 }) → 𝑚 ∈ (MaxIdeal‘𝑅)) | |
| 29 | eqid 2730 | . . . . . 6 ⊢ (LSSum‘(mulGrp‘𝑅)) = (LSSum‘(mulGrp‘𝑅)) | |
| 30 | 29 | mxidlprm 33448 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) → 𝑚 ∈ (PrmIdeal‘𝑅)) |
| 31 | 27, 28, 30 | syl2anc 584 | . . . 4 ⊢ (((𝜑 ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑚 ≠ { 0 }) → 𝑚 ∈ (PrmIdeal‘𝑅)) |
| 32 | simpr 484 | . . . 4 ⊢ (((𝜑 ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑚 ≠ { 0 }) → 𝑚 ≠ { 0 }) | |
| 33 | 23, 4, 24, 6, 31, 32 | ufdprmidl 33519 | . . 3 ⊢ (((𝜑 ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑚 ≠ { 0 }) → ∃𝑝 ∈ 𝑃 𝑝 ∈ 𝑚) |
| 34 | 22, 33 | r19.29a 3142 | . 2 ⊢ (((𝜑 ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑚 ≠ { 0 }) → 𝑆 ≠ ∅) |
| 35 | 25 | idomdomd 20642 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Domn) |
| 36 | domnnzr 20622 | . . . 4 ⊢ (𝑅 ∈ Domn → 𝑅 ∈ NzRing) | |
| 37 | 35, 36 | syl 17 | . . 3 ⊢ (𝜑 → 𝑅 ∈ NzRing) |
| 38 | 1arithufdlem.2 | . . 3 ⊢ (𝜑 → ¬ 𝑅 ∈ DivRing) | |
| 39 | 24, 37, 38 | krullndrng 33459 | . 2 ⊢ (𝜑 → ∃𝑚 ∈ (MaxIdeal‘𝑅)𝑚 ≠ { 0 }) |
| 40 | 34, 39 | r19.29a 3142 | 1 ⊢ (𝜑 → 𝑆 ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∃wrex 3054 {crab 3408 ∅c0 4299 {csn 4592 ‘cfv 6514 (class class class)co 7390 Word cword 14485 〈“cs1 14567 Basecbs 17186 0gc0g 17409 Σg cgsu 17410 LSSumclsm 19571 mulGrpcmgp 20056 CRingccrg 20150 Unitcui 20271 RPrimecrpm 20348 NzRingcnzr 20428 Domncdomn 20608 DivRingcdr 20645 PrmIdealcprmidl 33413 MaxIdealcmxidl 33437 UFDcufd 33516 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-ac2 10423 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-rpss 7702 df-om 7846 df-1st 7971 df-2nd 7972 df-tpos 8208 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-oadd 8441 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-dju 9861 df-card 9899 df-ac 10076 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-n0 12450 df-xnn0 12523 df-z 12537 df-uz 12801 df-fz 13476 df-fzo 13623 df-seq 13974 df-hash 14303 df-word 14486 df-s1 14568 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-sca 17243 df-vsca 17244 df-ip 17245 df-0g 17411 df-gsum 17412 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-submnd 18718 df-grp 18875 df-minusg 18876 df-sbg 18877 df-subg 19062 df-cntz 19256 df-lsm 19573 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-cring 20152 df-oppr 20253 df-dvdsr 20273 df-unit 20274 df-invr 20304 df-rprm 20349 df-nzr 20429 df-subrg 20486 df-domn 20611 df-idom 20612 df-drng 20647 df-lmod 20775 df-lss 20845 df-lsp 20885 df-sra 21087 df-rgmod 21088 df-lidl 21125 df-rsp 21126 df-lpidl 21239 df-prmidl 33414 df-mxidl 33438 df-ufd 33517 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |