| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 1arithufdlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for 1arithufd 33520. The set 𝑆 of elements which can be written as a product of primes is not empty. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
| Ref | Expression |
|---|---|
| 1arithufd.b | ⊢ 𝐵 = (Base‘𝑅) |
| 1arithufd.0 | ⊢ 0 = (0g‘𝑅) |
| 1arithufd.u | ⊢ 𝑈 = (Unit‘𝑅) |
| 1arithufd.p | ⊢ 𝑃 = (RPrime‘𝑅) |
| 1arithufd.m | ⊢ 𝑀 = (mulGrp‘𝑅) |
| 1arithufd.r | ⊢ (𝜑 → 𝑅 ∈ UFD) |
| 1arithufdlem.2 | ⊢ (𝜑 → ¬ 𝑅 ∈ DivRing) |
| 1arithufdlem.s | ⊢ 𝑆 = {𝑥 ∈ 𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)} |
| Ref | Expression |
|---|---|
| 1arithufdlem1 | ⊢ (𝜑 → 𝑆 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2737 | . . . . . . 7 ⊢ (𝑥 = 𝑝 → (𝑥 = (𝑀 Σg 𝑓) ↔ 𝑝 = (𝑀 Σg 𝑓))) | |
| 2 | 1 | rexbidv 3157 | . . . . . 6 ⊢ (𝑥 = 𝑝 → (∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓) ↔ ∃𝑓 ∈ Word 𝑃𝑝 = (𝑀 Σg 𝑓))) |
| 3 | 1arithufd.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
| 4 | 1arithufd.p | . . . . . . 7 ⊢ 𝑃 = (RPrime‘𝑅) | |
| 5 | 1arithufd.r | . . . . . . . . 9 ⊢ (𝜑 → 𝑅 ∈ UFD) | |
| 6 | 5 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑚 ≠ { 0 }) → 𝑅 ∈ UFD) |
| 7 | 6 | ad2antrr 726 | . . . . . . 7 ⊢ (((((𝜑 ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑚 ≠ { 0 }) ∧ 𝑝 ∈ 𝑃) ∧ 𝑝 ∈ 𝑚) → 𝑅 ∈ UFD) |
| 8 | simplr 768 | . . . . . . 7 ⊢ (((((𝜑 ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑚 ≠ { 0 }) ∧ 𝑝 ∈ 𝑃) ∧ 𝑝 ∈ 𝑚) → 𝑝 ∈ 𝑃) | |
| 9 | 3, 4, 7, 8 | rprmcl 33490 | . . . . . 6 ⊢ (((((𝜑 ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑚 ≠ { 0 }) ∧ 𝑝 ∈ 𝑃) ∧ 𝑝 ∈ 𝑚) → 𝑝 ∈ 𝐵) |
| 10 | oveq2 7360 | . . . . . . . 8 ⊢ (𝑓 = 〈“𝑝”〉 → (𝑀 Σg 𝑓) = (𝑀 Σg 〈“𝑝”〉)) | |
| 11 | 10 | eqeq2d 2744 | . . . . . . 7 ⊢ (𝑓 = 〈“𝑝”〉 → (𝑝 = (𝑀 Σg 𝑓) ↔ 𝑝 = (𝑀 Σg 〈“𝑝”〉))) |
| 12 | 8 | s1cld 14513 | . . . . . . 7 ⊢ (((((𝜑 ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑚 ≠ { 0 }) ∧ 𝑝 ∈ 𝑃) ∧ 𝑝 ∈ 𝑚) → 〈“𝑝”〉 ∈ Word 𝑃) |
| 13 | 1arithufd.m | . . . . . . . . . . 11 ⊢ 𝑀 = (mulGrp‘𝑅) | |
| 14 | 13, 3 | mgpbas 20065 | . . . . . . . . . 10 ⊢ 𝐵 = (Base‘𝑀) |
| 15 | 14 | gsumws1 18748 | . . . . . . . . 9 ⊢ (𝑝 ∈ 𝐵 → (𝑀 Σg 〈“𝑝”〉) = 𝑝) |
| 16 | 9, 15 | syl 17 | . . . . . . . 8 ⊢ (((((𝜑 ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑚 ≠ { 0 }) ∧ 𝑝 ∈ 𝑃) ∧ 𝑝 ∈ 𝑚) → (𝑀 Σg 〈“𝑝”〉) = 𝑝) |
| 17 | 16 | eqcomd 2739 | . . . . . . 7 ⊢ (((((𝜑 ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑚 ≠ { 0 }) ∧ 𝑝 ∈ 𝑃) ∧ 𝑝 ∈ 𝑚) → 𝑝 = (𝑀 Σg 〈“𝑝”〉)) |
| 18 | 11, 12, 17 | rspcedvdw 3576 | . . . . . 6 ⊢ (((((𝜑 ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑚 ≠ { 0 }) ∧ 𝑝 ∈ 𝑃) ∧ 𝑝 ∈ 𝑚) → ∃𝑓 ∈ Word 𝑃𝑝 = (𝑀 Σg 𝑓)) |
| 19 | 2, 9, 18 | elrabd 3645 | . . . . 5 ⊢ (((((𝜑 ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑚 ≠ { 0 }) ∧ 𝑝 ∈ 𝑃) ∧ 𝑝 ∈ 𝑚) → 𝑝 ∈ {𝑥 ∈ 𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)}) |
| 20 | 1arithufdlem.s | . . . . 5 ⊢ 𝑆 = {𝑥 ∈ 𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)} | |
| 21 | 19, 20 | eleqtrrdi 2844 | . . . 4 ⊢ (((((𝜑 ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑚 ≠ { 0 }) ∧ 𝑝 ∈ 𝑃) ∧ 𝑝 ∈ 𝑚) → 𝑝 ∈ 𝑆) |
| 22 | 21 | ne0d 4291 | . . 3 ⊢ (((((𝜑 ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑚 ≠ { 0 }) ∧ 𝑝 ∈ 𝑃) ∧ 𝑝 ∈ 𝑚) → 𝑆 ≠ ∅) |
| 23 | eqid 2733 | . . . 4 ⊢ (PrmIdeal‘𝑅) = (PrmIdeal‘𝑅) | |
| 24 | 1arithufd.0 | . . . 4 ⊢ 0 = (0g‘𝑅) | |
| 25 | 5 | ufdidom 33514 | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ IDomn) |
| 26 | 25 | idomcringd 20644 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ CRing) |
| 27 | 26 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑚 ≠ { 0 }) → 𝑅 ∈ CRing) |
| 28 | simplr 768 | . . . . 5 ⊢ (((𝜑 ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑚 ≠ { 0 }) → 𝑚 ∈ (MaxIdeal‘𝑅)) | |
| 29 | eqid 2733 | . . . . . 6 ⊢ (LSSum‘(mulGrp‘𝑅)) = (LSSum‘(mulGrp‘𝑅)) | |
| 30 | 29 | mxidlprm 33442 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) → 𝑚 ∈ (PrmIdeal‘𝑅)) |
| 31 | 27, 28, 30 | syl2anc 584 | . . . 4 ⊢ (((𝜑 ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑚 ≠ { 0 }) → 𝑚 ∈ (PrmIdeal‘𝑅)) |
| 32 | simpr 484 | . . . 4 ⊢ (((𝜑 ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑚 ≠ { 0 }) → 𝑚 ≠ { 0 }) | |
| 33 | 23, 4, 24, 6, 31, 32 | ufdprmidl 33513 | . . 3 ⊢ (((𝜑 ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑚 ≠ { 0 }) → ∃𝑝 ∈ 𝑃 𝑝 ∈ 𝑚) |
| 34 | 22, 33 | r19.29a 3141 | . 2 ⊢ (((𝜑 ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑚 ≠ { 0 }) → 𝑆 ≠ ∅) |
| 35 | 25 | idomdomd 20643 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Domn) |
| 36 | domnnzr 20623 | . . . 4 ⊢ (𝑅 ∈ Domn → 𝑅 ∈ NzRing) | |
| 37 | 35, 36 | syl 17 | . . 3 ⊢ (𝜑 → 𝑅 ∈ NzRing) |
| 38 | 1arithufdlem.2 | . . 3 ⊢ (𝜑 → ¬ 𝑅 ∈ DivRing) | |
| 39 | 24, 37, 38 | krullndrng 33453 | . 2 ⊢ (𝜑 → ∃𝑚 ∈ (MaxIdeal‘𝑅)𝑚 ≠ { 0 }) |
| 40 | 34, 39 | r19.29a 3141 | 1 ⊢ (𝜑 → 𝑆 ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∃wrex 3057 {crab 3396 ∅c0 4282 {csn 4575 ‘cfv 6486 (class class class)co 7352 Word cword 14422 〈“cs1 14505 Basecbs 17122 0gc0g 17345 Σg cgsu 17346 LSSumclsm 19548 mulGrpcmgp 20060 CRingccrg 20154 Unitcui 20275 RPrimecrpm 20352 NzRingcnzr 20429 Domncdomn 20609 DivRingcdr 20646 PrmIdealcprmidl 33407 MaxIdealcmxidl 33431 UFDcufd 33510 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-ac2 10361 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-rpss 7662 df-om 7803 df-1st 7927 df-2nd 7928 df-tpos 8162 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-oadd 8395 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-dju 9801 df-card 9839 df-ac 10014 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-n0 12389 df-xnn0 12462 df-z 12476 df-uz 12739 df-fz 13410 df-fzo 13557 df-seq 13911 df-hash 14240 df-word 14423 df-s1 14506 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-mulr 17177 df-sca 17179 df-vsca 17180 df-ip 17181 df-0g 17347 df-gsum 17348 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-submnd 18694 df-grp 18851 df-minusg 18852 df-sbg 18853 df-subg 19038 df-cntz 19231 df-lsm 19550 df-cmn 19696 df-abl 19697 df-mgp 20061 df-rng 20073 df-ur 20102 df-ring 20155 df-cring 20156 df-oppr 20257 df-dvdsr 20277 df-unit 20278 df-invr 20308 df-rprm 20353 df-nzr 20430 df-subrg 20487 df-domn 20612 df-idom 20613 df-drng 20648 df-lmod 20797 df-lss 20867 df-lsp 20907 df-sra 21109 df-rgmod 21110 df-lidl 21147 df-rsp 21148 df-lpidl 21261 df-prmidl 33408 df-mxidl 33432 df-ufd 33511 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |