| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 1arithufdlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for 1arithufd 33519. The set 𝑆 of elements which can be written as a product of primes is not empty. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
| Ref | Expression |
|---|---|
| 1arithufd.b | ⊢ 𝐵 = (Base‘𝑅) |
| 1arithufd.0 | ⊢ 0 = (0g‘𝑅) |
| 1arithufd.u | ⊢ 𝑈 = (Unit‘𝑅) |
| 1arithufd.p | ⊢ 𝑃 = (RPrime‘𝑅) |
| 1arithufd.m | ⊢ 𝑀 = (mulGrp‘𝑅) |
| 1arithufd.r | ⊢ (𝜑 → 𝑅 ∈ UFD) |
| 1arithufdlem.2 | ⊢ (𝜑 → ¬ 𝑅 ∈ DivRing) |
| 1arithufdlem.s | ⊢ 𝑆 = {𝑥 ∈ 𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)} |
| Ref | Expression |
|---|---|
| 1arithufdlem1 | ⊢ (𝜑 → 𝑆 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2733 | . . . . . . 7 ⊢ (𝑥 = 𝑝 → (𝑥 = (𝑀 Σg 𝑓) ↔ 𝑝 = (𝑀 Σg 𝑓))) | |
| 2 | 1 | rexbidv 3157 | . . . . . 6 ⊢ (𝑥 = 𝑝 → (∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓) ↔ ∃𝑓 ∈ Word 𝑃𝑝 = (𝑀 Σg 𝑓))) |
| 3 | 1arithufd.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
| 4 | 1arithufd.p | . . . . . . 7 ⊢ 𝑃 = (RPrime‘𝑅) | |
| 5 | 1arithufd.r | . . . . . . . . 9 ⊢ (𝜑 → 𝑅 ∈ UFD) | |
| 6 | 5 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑚 ≠ { 0 }) → 𝑅 ∈ UFD) |
| 7 | 6 | ad2antrr 726 | . . . . . . 7 ⊢ (((((𝜑 ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑚 ≠ { 0 }) ∧ 𝑝 ∈ 𝑃) ∧ 𝑝 ∈ 𝑚) → 𝑅 ∈ UFD) |
| 8 | simplr 768 | . . . . . . 7 ⊢ (((((𝜑 ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑚 ≠ { 0 }) ∧ 𝑝 ∈ 𝑃) ∧ 𝑝 ∈ 𝑚) → 𝑝 ∈ 𝑃) | |
| 9 | 3, 4, 7, 8 | rprmcl 33489 | . . . . . 6 ⊢ (((((𝜑 ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑚 ≠ { 0 }) ∧ 𝑝 ∈ 𝑃) ∧ 𝑝 ∈ 𝑚) → 𝑝 ∈ 𝐵) |
| 10 | oveq2 7395 | . . . . . . . 8 ⊢ (𝑓 = 〈“𝑝”〉 → (𝑀 Σg 𝑓) = (𝑀 Σg 〈“𝑝”〉)) | |
| 11 | 10 | eqeq2d 2740 | . . . . . . 7 ⊢ (𝑓 = 〈“𝑝”〉 → (𝑝 = (𝑀 Σg 𝑓) ↔ 𝑝 = (𝑀 Σg 〈“𝑝”〉))) |
| 12 | 8 | s1cld 14568 | . . . . . . 7 ⊢ (((((𝜑 ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑚 ≠ { 0 }) ∧ 𝑝 ∈ 𝑃) ∧ 𝑝 ∈ 𝑚) → 〈“𝑝”〉 ∈ Word 𝑃) |
| 13 | 1arithufd.m | . . . . . . . . . . 11 ⊢ 𝑀 = (mulGrp‘𝑅) | |
| 14 | 13, 3 | mgpbas 20054 | . . . . . . . . . 10 ⊢ 𝐵 = (Base‘𝑀) |
| 15 | 14 | gsumws1 18765 | . . . . . . . . 9 ⊢ (𝑝 ∈ 𝐵 → (𝑀 Σg 〈“𝑝”〉) = 𝑝) |
| 16 | 9, 15 | syl 17 | . . . . . . . 8 ⊢ (((((𝜑 ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑚 ≠ { 0 }) ∧ 𝑝 ∈ 𝑃) ∧ 𝑝 ∈ 𝑚) → (𝑀 Σg 〈“𝑝”〉) = 𝑝) |
| 17 | 16 | eqcomd 2735 | . . . . . . 7 ⊢ (((((𝜑 ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑚 ≠ { 0 }) ∧ 𝑝 ∈ 𝑃) ∧ 𝑝 ∈ 𝑚) → 𝑝 = (𝑀 Σg 〈“𝑝”〉)) |
| 18 | 11, 12, 17 | rspcedvdw 3591 | . . . . . 6 ⊢ (((((𝜑 ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑚 ≠ { 0 }) ∧ 𝑝 ∈ 𝑃) ∧ 𝑝 ∈ 𝑚) → ∃𝑓 ∈ Word 𝑃𝑝 = (𝑀 Σg 𝑓)) |
| 19 | 2, 9, 18 | elrabd 3661 | . . . . 5 ⊢ (((((𝜑 ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑚 ≠ { 0 }) ∧ 𝑝 ∈ 𝑃) ∧ 𝑝 ∈ 𝑚) → 𝑝 ∈ {𝑥 ∈ 𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)}) |
| 20 | 1arithufdlem.s | . . . . 5 ⊢ 𝑆 = {𝑥 ∈ 𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)} | |
| 21 | 19, 20 | eleqtrrdi 2839 | . . . 4 ⊢ (((((𝜑 ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑚 ≠ { 0 }) ∧ 𝑝 ∈ 𝑃) ∧ 𝑝 ∈ 𝑚) → 𝑝 ∈ 𝑆) |
| 22 | 21 | ne0d 4305 | . . 3 ⊢ (((((𝜑 ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑚 ≠ { 0 }) ∧ 𝑝 ∈ 𝑃) ∧ 𝑝 ∈ 𝑚) → 𝑆 ≠ ∅) |
| 23 | eqid 2729 | . . . 4 ⊢ (PrmIdeal‘𝑅) = (PrmIdeal‘𝑅) | |
| 24 | 1arithufd.0 | . . . 4 ⊢ 0 = (0g‘𝑅) | |
| 25 | 5 | ufdidom 33513 | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ IDomn) |
| 26 | 25 | idomcringd 20636 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ CRing) |
| 27 | 26 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑚 ≠ { 0 }) → 𝑅 ∈ CRing) |
| 28 | simplr 768 | . . . . 5 ⊢ (((𝜑 ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑚 ≠ { 0 }) → 𝑚 ∈ (MaxIdeal‘𝑅)) | |
| 29 | eqid 2729 | . . . . . 6 ⊢ (LSSum‘(mulGrp‘𝑅)) = (LSSum‘(mulGrp‘𝑅)) | |
| 30 | 29 | mxidlprm 33441 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) → 𝑚 ∈ (PrmIdeal‘𝑅)) |
| 31 | 27, 28, 30 | syl2anc 584 | . . . 4 ⊢ (((𝜑 ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑚 ≠ { 0 }) → 𝑚 ∈ (PrmIdeal‘𝑅)) |
| 32 | simpr 484 | . . . 4 ⊢ (((𝜑 ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑚 ≠ { 0 }) → 𝑚 ≠ { 0 }) | |
| 33 | 23, 4, 24, 6, 31, 32 | ufdprmidl 33512 | . . 3 ⊢ (((𝜑 ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑚 ≠ { 0 }) → ∃𝑝 ∈ 𝑃 𝑝 ∈ 𝑚) |
| 34 | 22, 33 | r19.29a 3141 | . 2 ⊢ (((𝜑 ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) ∧ 𝑚 ≠ { 0 }) → 𝑆 ≠ ∅) |
| 35 | 25 | idomdomd 20635 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Domn) |
| 36 | domnnzr 20615 | . . . 4 ⊢ (𝑅 ∈ Domn → 𝑅 ∈ NzRing) | |
| 37 | 35, 36 | syl 17 | . . 3 ⊢ (𝜑 → 𝑅 ∈ NzRing) |
| 38 | 1arithufdlem.2 | . . 3 ⊢ (𝜑 → ¬ 𝑅 ∈ DivRing) | |
| 39 | 24, 37, 38 | krullndrng 33452 | . 2 ⊢ (𝜑 → ∃𝑚 ∈ (MaxIdeal‘𝑅)𝑚 ≠ { 0 }) |
| 40 | 34, 39 | r19.29a 3141 | 1 ⊢ (𝜑 → 𝑆 ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 {crab 3405 ∅c0 4296 {csn 4589 ‘cfv 6511 (class class class)co 7387 Word cword 14478 〈“cs1 14560 Basecbs 17179 0gc0g 17402 Σg cgsu 17403 LSSumclsm 19564 mulGrpcmgp 20049 CRingccrg 20143 Unitcui 20264 RPrimecrpm 20341 NzRingcnzr 20421 Domncdomn 20601 DivRingcdr 20638 PrmIdealcprmidl 33406 MaxIdealcmxidl 33430 UFDcufd 33509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-ac2 10416 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-rpss 7699 df-om 7843 df-1st 7968 df-2nd 7969 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-oadd 8438 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-dju 9854 df-card 9892 df-ac 10069 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-n0 12443 df-xnn0 12516 df-z 12530 df-uz 12794 df-fz 13469 df-fzo 13616 df-seq 13967 df-hash 14296 df-word 14479 df-s1 14561 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-ip 17238 df-0g 17404 df-gsum 17405 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-submnd 18711 df-grp 18868 df-minusg 18869 df-sbg 18870 df-subg 19055 df-cntz 19249 df-lsm 19566 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-cring 20145 df-oppr 20246 df-dvdsr 20266 df-unit 20267 df-invr 20297 df-rprm 20342 df-nzr 20422 df-subrg 20479 df-domn 20604 df-idom 20605 df-drng 20640 df-lmod 20768 df-lss 20838 df-lsp 20878 df-sra 21080 df-rgmod 21081 df-lidl 21118 df-rsp 21119 df-lpidl 21232 df-prmidl 33407 df-mxidl 33431 df-ufd 33510 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |