Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ufdprmidl Structured version   Visualization version   GIF version

Theorem ufdprmidl 33534
Description: In a unique factorization domain 𝑅, a nonzero prime ideal 𝐽 contains a prime element 𝑝. (Contributed by Thierry Arnoux, 3-Jun-2025.)
Hypotheses
Ref Expression
isufd.i 𝐼 = (PrmIdeal‘𝑅)
isufd.3 𝑃 = (RPrime‘𝑅)
isufd.0 0 = (0g𝑅)
ufdprmidl.2 (𝜑𝑅 ∈ UFD)
ufdprmidl.3 (𝜑𝐽𝐼)
ufdprmidl.4 (𝜑𝐽 ≠ { 0 })
Assertion
Ref Expression
ufdprmidl (𝜑 → ∃𝑝𝑃 𝑝𝐽)
Distinct variable groups:   𝐽,𝑝   𝑃,𝑝
Allowed substitution hints:   𝜑(𝑝)   𝑅(𝑝)   𝐼(𝑝)   0 (𝑝)

Proof of Theorem ufdprmidl
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 ineq1 4234 . . . . 5 (𝑗 = 𝐽 → (𝑗𝑃) = (𝐽𝑃))
21neeq1d 3006 . . . 4 (𝑗 = 𝐽 → ((𝑗𝑃) ≠ ∅ ↔ (𝐽𝑃) ≠ ∅))
32adantl 481 . . 3 ((𝜑𝑗 = 𝐽) → ((𝑗𝑃) ≠ ∅ ↔ (𝐽𝑃) ≠ ∅))
4 incom 4230 . . . . 5 (𝑃𝐽) = (𝐽𝑃)
54neeq1i 3011 . . . 4 ((𝑃𝐽) ≠ ∅ ↔ (𝐽𝑃) ≠ ∅)
6 inn0 4395 . . . 4 ((𝑃𝐽) ≠ ∅ ↔ ∃𝑝𝑃 𝑝𝐽)
75, 6bitr3i 277 . . 3 ((𝐽𝑃) ≠ ∅ ↔ ∃𝑝𝑃 𝑝𝐽)
83, 7bitrdi 287 . 2 ((𝜑𝑗 = 𝐽) → ((𝑗𝑃) ≠ ∅ ↔ ∃𝑝𝑃 𝑝𝐽))
9 ufdprmidl.3 . . 3 (𝜑𝐽𝐼)
10 ufdprmidl.4 . . 3 (𝜑𝐽 ≠ { 0 })
119, 10eldifsnd 4812 . 2 (𝜑𝐽 ∈ (𝐼 ∖ {{ 0 }}))
12 ufdprmidl.2 . . 3 (𝜑𝑅 ∈ UFD)
13 isufd.i . . . . 5 𝐼 = (PrmIdeal‘𝑅)
14 isufd.3 . . . . 5 𝑃 = (RPrime‘𝑅)
15 isufd.0 . . . . 5 0 = (0g𝑅)
1613, 14, 15isufd 33533 . . . 4 (𝑅 ∈ UFD ↔ (𝑅 ∈ IDomn ∧ ∀𝑗 ∈ (𝐼 ∖ {{ 0 }})(𝑗𝑃) ≠ ∅))
1716simprbi 496 . . 3 (𝑅 ∈ UFD → ∀𝑗 ∈ (𝐼 ∖ {{ 0 }})(𝑗𝑃) ≠ ∅)
1812, 17syl 17 . 2 (𝜑 → ∀𝑗 ∈ (𝐼 ∖ {{ 0 }})(𝑗𝑃) ≠ ∅)
198, 11, 18rspcdv2 3630 1 (𝜑 → ∃𝑝𝑃 𝑝𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  cdif 3973  cin 3975  c0 4352  {csn 4648  cfv 6573  0gc0g 17499  RPrimecrpm 20458  IDomncidom 20715  PrmIdealcprmidl 33428  UFDcufd 33531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581  df-ufd 33532
This theorem is referenced by:  1arithufdlem1  33537
  Copyright terms: Public domain W3C validator