![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ufdprmidl | Structured version Visualization version GIF version |
Description: In a unique factorization domain 𝑅, a nonzero prime ideal 𝐽 contains a prime element 𝑝. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
Ref | Expression |
---|---|
isufd.i | ⊢ 𝐼 = (PrmIdeal‘𝑅) |
isufd.3 | ⊢ 𝑃 = (RPrime‘𝑅) |
isufd.0 | ⊢ 0 = (0g‘𝑅) |
ufdprmidl.2 | ⊢ (𝜑 → 𝑅 ∈ UFD) |
ufdprmidl.3 | ⊢ (𝜑 → 𝐽 ∈ 𝐼) |
ufdprmidl.4 | ⊢ (𝜑 → 𝐽 ≠ { 0 }) |
Ref | Expression |
---|---|
ufdprmidl | ⊢ (𝜑 → ∃𝑝 ∈ 𝑃 𝑝 ∈ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1 4220 | . . . . 5 ⊢ (𝑗 = 𝐽 → (𝑗 ∩ 𝑃) = (𝐽 ∩ 𝑃)) | |
2 | 1 | neeq1d 2997 | . . . 4 ⊢ (𝑗 = 𝐽 → ((𝑗 ∩ 𝑃) ≠ ∅ ↔ (𝐽 ∩ 𝑃) ≠ ∅)) |
3 | 2 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑗 = 𝐽) → ((𝑗 ∩ 𝑃) ≠ ∅ ↔ (𝐽 ∩ 𝑃) ≠ ∅)) |
4 | incom 4216 | . . . . 5 ⊢ (𝑃 ∩ 𝐽) = (𝐽 ∩ 𝑃) | |
5 | 4 | neeq1i 3002 | . . . 4 ⊢ ((𝑃 ∩ 𝐽) ≠ ∅ ↔ (𝐽 ∩ 𝑃) ≠ ∅) |
6 | inn0 4377 | . . . 4 ⊢ ((𝑃 ∩ 𝐽) ≠ ∅ ↔ ∃𝑝 ∈ 𝑃 𝑝 ∈ 𝐽) | |
7 | 5, 6 | bitr3i 277 | . . 3 ⊢ ((𝐽 ∩ 𝑃) ≠ ∅ ↔ ∃𝑝 ∈ 𝑃 𝑝 ∈ 𝐽) |
8 | 3, 7 | bitrdi 287 | . 2 ⊢ ((𝜑 ∧ 𝑗 = 𝐽) → ((𝑗 ∩ 𝑃) ≠ ∅ ↔ ∃𝑝 ∈ 𝑃 𝑝 ∈ 𝐽)) |
9 | ufdprmidl.3 | . . 3 ⊢ (𝜑 → 𝐽 ∈ 𝐼) | |
10 | ufdprmidl.4 | . . 3 ⊢ (𝜑 → 𝐽 ≠ { 0 }) | |
11 | 9, 10 | eldifsnd 4791 | . 2 ⊢ (𝜑 → 𝐽 ∈ (𝐼 ∖ {{ 0 }})) |
12 | ufdprmidl.2 | . . 3 ⊢ (𝜑 → 𝑅 ∈ UFD) | |
13 | isufd.i | . . . . 5 ⊢ 𝐼 = (PrmIdeal‘𝑅) | |
14 | isufd.3 | . . . . 5 ⊢ 𝑃 = (RPrime‘𝑅) | |
15 | isufd.0 | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
16 | 13, 14, 15 | isufd 33547 | . . . 4 ⊢ (𝑅 ∈ UFD ↔ (𝑅 ∈ IDomn ∧ ∀𝑗 ∈ (𝐼 ∖ {{ 0 }})(𝑗 ∩ 𝑃) ≠ ∅)) |
17 | 16 | simprbi 496 | . . 3 ⊢ (𝑅 ∈ UFD → ∀𝑗 ∈ (𝐼 ∖ {{ 0 }})(𝑗 ∩ 𝑃) ≠ ∅) |
18 | 12, 17 | syl 17 | . 2 ⊢ (𝜑 → ∀𝑗 ∈ (𝐼 ∖ {{ 0 }})(𝑗 ∩ 𝑃) ≠ ∅) |
19 | 8, 11, 18 | rspcdv2 3616 | 1 ⊢ (𝜑 → ∃𝑝 ∈ 𝑃 𝑝 ∈ 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ≠ wne 2937 ∀wral 3058 ∃wrex 3067 ∖ cdif 3959 ∩ cin 3961 ∅c0 4338 {csn 4630 ‘cfv 6562 0gc0g 17485 RPrimecrpm 20448 IDomncidom 20709 PrmIdealcprmidl 33442 UFDcufd 33545 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-11 2154 ax-12 2174 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-iota 6515 df-fv 6570 df-ufd 33546 |
This theorem is referenced by: 1arithufdlem1 33551 |
Copyright terms: Public domain | W3C validator |