Step | Hyp | Ref
| Expression |
1 | | simpr 483 |
. . 3
⊢ ((𝜑 ∧ 𝑅 ∈ NzRing) → 𝑅 ∈ NzRing) |
2 | | pidufd.1 |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ PID) |
3 | | df-pid 21250 |
. . . . . 6
⊢ PID =
(IDomn ∩ LPIR) |
4 | 2, 3 | eleqtrdi 2835 |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ (IDomn ∩ LPIR)) |
5 | 4 | elin1d 4196 |
. . . 4
⊢ (𝜑 → 𝑅 ∈ IDomn) |
6 | 5 | adantr 479 |
. . 3
⊢ ((𝜑 ∧ 𝑅 ∈ NzRing) → 𝑅 ∈ IDomn) |
7 | 5 | idomringd 21274 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑅 ∈ Ring) |
8 | 7 | ad2antrr 724 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑅 ∈ NzRing) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{(0g‘𝑅)}})) → 𝑅 ∈ Ring) |
9 | 8 | ad2antrr 724 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑅 ∈ NzRing) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖
{{(0g‘𝑅)}})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑖 = ((RSpan‘𝑅)‘{𝑥})) → 𝑅 ∈ Ring) |
10 | | simplr 767 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑅 ∈ NzRing) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖
{{(0g‘𝑅)}})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑖 = ((RSpan‘𝑅)‘{𝑥})) → 𝑥 ∈ (Base‘𝑅)) |
11 | | eqid 2725 |
. . . . . . . . . 10
⊢
(Base‘𝑅) =
(Base‘𝑅) |
12 | | eqid 2725 |
. . . . . . . . . 10
⊢
(RSpan‘𝑅) =
(RSpan‘𝑅) |
13 | 11, 12 | rspsnid 33183 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → 𝑥 ∈ ((RSpan‘𝑅)‘{𝑥})) |
14 | 9, 10, 13 | syl2anc 582 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑅 ∈ NzRing) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖
{{(0g‘𝑅)}})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑖 = ((RSpan‘𝑅)‘{𝑥})) → 𝑥 ∈ ((RSpan‘𝑅)‘{𝑥})) |
15 | | simpr 483 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑅 ∈ NzRing) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖
{{(0g‘𝑅)}})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑖 = ((RSpan‘𝑅)‘{𝑥})) → 𝑖 = ((RSpan‘𝑅)‘{𝑥})) |
16 | 14, 15 | eleqtrrd 2828 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑅 ∈ NzRing) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖
{{(0g‘𝑅)}})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑖 = ((RSpan‘𝑅)‘{𝑥})) → 𝑥 ∈ 𝑖) |
17 | | simpr 483 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑅 ∈ NzRing) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{(0g‘𝑅)}})) → 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{(0g‘𝑅)}})) |
18 | 17 | eldifad 3956 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑅 ∈ NzRing) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{(0g‘𝑅)}})) → 𝑖 ∈ (PrmIdeal‘𝑅)) |
19 | 18 | ad2antrr 724 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑅 ∈ NzRing) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖
{{(0g‘𝑅)}})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑖 = ((RSpan‘𝑅)‘{𝑥})) → 𝑖 ∈ (PrmIdeal‘𝑅)) |
20 | 15, 19 | eqeltrrd 2826 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑅 ∈ NzRing) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖
{{(0g‘𝑅)}})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑖 = ((RSpan‘𝑅)‘{𝑥})) → ((RSpan‘𝑅)‘{𝑥}) ∈ (PrmIdeal‘𝑅)) |
21 | | eqid 2725 |
. . . . . . . . 9
⊢
(0g‘𝑅) = (0g‘𝑅) |
22 | | eqid 2725 |
. . . . . . . . 9
⊢
(RPrime‘𝑅) =
(RPrime‘𝑅) |
23 | 6 | ad5ant12 754 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑅 ∈ NzRing) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖
{{(0g‘𝑅)}})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑖 = ((RSpan‘𝑅)‘{𝑥})) → 𝑅 ∈ IDomn) |
24 | | simplr 767 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑅 ∈ NzRing) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖
{{(0g‘𝑅)}})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑖 = ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑥 = (0g‘𝑅)) → 𝑖 = ((RSpan‘𝑅)‘{𝑥})) |
25 | | simpr 483 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑅 ∈ NzRing) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖
{{(0g‘𝑅)}})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑖 = ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑥 = (0g‘𝑅)) → 𝑥 = (0g‘𝑅)) |
26 | 25 | sneqd 4642 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑅 ∈ NzRing) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖
{{(0g‘𝑅)}})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑖 = ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑥 = (0g‘𝑅)) → {𝑥} = {(0g‘𝑅)}) |
27 | 26 | fveq2d 6900 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑅 ∈ NzRing) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖
{{(0g‘𝑅)}})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑖 = ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑥 = (0g‘𝑅)) → ((RSpan‘𝑅)‘{𝑥}) = ((RSpan‘𝑅)‘{(0g‘𝑅)})) |
28 | 12, 21 | rsp0 21146 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ Ring →
((RSpan‘𝑅)‘{(0g‘𝑅)}) =
{(0g‘𝑅)}) |
29 | 7, 28 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((RSpan‘𝑅)‘{(0g‘𝑅)}) =
{(0g‘𝑅)}) |
30 | 29 | ad5antr 732 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑅 ∈ NzRing) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖
{{(0g‘𝑅)}})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑖 = ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑥 = (0g‘𝑅)) → ((RSpan‘𝑅)‘{(0g‘𝑅)}) =
{(0g‘𝑅)}) |
31 | 24, 27, 30 | 3eqtrd 2769 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑅 ∈ NzRing) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖
{{(0g‘𝑅)}})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑖 = ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑥 = (0g‘𝑅)) → 𝑖 = {(0g‘𝑅)}) |
32 | | eldifsni 4795 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈ ((PrmIdeal‘𝑅) ∖
{{(0g‘𝑅)}}) → 𝑖 ≠ {(0g‘𝑅)}) |
33 | 32 | ad4antlr 731 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑅 ∈ NzRing) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖
{{(0g‘𝑅)}})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑖 = ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑥 = (0g‘𝑅)) → 𝑖 ≠ {(0g‘𝑅)}) |
34 | 33 | neneqd 2934 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑅 ∈ NzRing) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖
{{(0g‘𝑅)}})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑖 = ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑥 = (0g‘𝑅)) → ¬ 𝑖 = {(0g‘𝑅)}) |
35 | 31, 34 | pm2.65da 815 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑅 ∈ NzRing) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖
{{(0g‘𝑅)}})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑖 = ((RSpan‘𝑅)‘{𝑥})) → ¬ 𝑥 = (0g‘𝑅)) |
36 | 35 | neqned 2936 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑅 ∈ NzRing) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖
{{(0g‘𝑅)}})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑖 = ((RSpan‘𝑅)‘{𝑥})) → 𝑥 ≠ (0g‘𝑅)) |
37 | 21, 11, 22, 12, 23, 10, 36 | rsprprmprmidlb 33335 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑅 ∈ NzRing) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖
{{(0g‘𝑅)}})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑖 = ((RSpan‘𝑅)‘{𝑥})) → (𝑥 ∈ (RPrime‘𝑅) ↔ ((RSpan‘𝑅)‘{𝑥}) ∈ (PrmIdeal‘𝑅))) |
38 | 20, 37 | mpbird 256 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑅 ∈ NzRing) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖
{{(0g‘𝑅)}})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑖 = ((RSpan‘𝑅)‘{𝑥})) → 𝑥 ∈ (RPrime‘𝑅)) |
39 | 16, 38 | elind 4192 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑅 ∈ NzRing) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖
{{(0g‘𝑅)}})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑖 = ((RSpan‘𝑅)‘{𝑥})) → 𝑥 ∈ (𝑖 ∩ (RPrime‘𝑅))) |
40 | 39 | ne0d 4335 |
. . . . 5
⊢
(((((𝜑 ∧ 𝑅 ∈ NzRing) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖
{{(0g‘𝑅)}})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑖 = ((RSpan‘𝑅)‘{𝑥})) → (𝑖 ∩ (RPrime‘𝑅)) ≠ ∅) |
41 | | eqid 2725 |
. . . . . 6
⊢
(LIdeal‘𝑅) =
(LIdeal‘𝑅) |
42 | 4 | elin2d 4197 |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ LPIR) |
43 | 42 | ad2antrr 724 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑅 ∈ NzRing) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{(0g‘𝑅)}})) → 𝑅 ∈ LPIR) |
44 | | prmidlidl 33256 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) → 𝑖 ∈ (LIdeal‘𝑅)) |
45 | 8, 18, 44 | syl2anc 582 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑅 ∈ NzRing) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{(0g‘𝑅)}})) → 𝑖 ∈ (LIdeal‘𝑅)) |
46 | 11, 41, 12, 43, 45 | lpirlidllpi 33186 |
. . . . 5
⊢ (((𝜑 ∧ 𝑅 ∈ NzRing) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{(0g‘𝑅)}})) → ∃𝑥 ∈ (Base‘𝑅)𝑖 = ((RSpan‘𝑅)‘{𝑥})) |
47 | 40, 46 | r19.29a 3151 |
. . . 4
⊢ (((𝜑 ∧ 𝑅 ∈ NzRing) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{(0g‘𝑅)}})) → (𝑖 ∩ (RPrime‘𝑅)) ≠ ∅) |
48 | 47 | ralrimiva 3135 |
. . 3
⊢ ((𝜑 ∧ 𝑅 ∈ NzRing) → ∀𝑖 ∈ ((PrmIdeal‘𝑅) ∖
{{(0g‘𝑅)}})(𝑖 ∩ (RPrime‘𝑅)) ≠ ∅) |
49 | | eqid 2725 |
. . . . 5
⊢
(PrmIdeal‘𝑅) =
(PrmIdeal‘𝑅) |
50 | 49, 22, 21 | isufd2 33353 |
. . . 4
⊢ (𝑅 ∈ NzRing → (𝑅 ∈ UFD ↔ (𝑅 ∈ IDomn ∧
∀𝑖 ∈
((PrmIdeal‘𝑅) ∖
{{(0g‘𝑅)}})(𝑖 ∩ (RPrime‘𝑅)) ≠ ∅))) |
51 | 50 | biimpar 476 |
. . 3
⊢ ((𝑅 ∈ NzRing ∧ (𝑅 ∈ IDomn ∧
∀𝑖 ∈
((PrmIdeal‘𝑅) ∖
{{(0g‘𝑅)}})(𝑖 ∩ (RPrime‘𝑅)) ≠ ∅)) → 𝑅 ∈ UFD) |
52 | 1, 6, 48, 51 | syl12anc 835 |
. 2
⊢ ((𝜑 ∧ 𝑅 ∈ NzRing) → 𝑅 ∈ UFD) |
53 | 7 | adantr 479 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝑅 ∈ NzRing) → 𝑅 ∈ Ring) |
54 | | 0ringnnzr 20474 |
. . . . 5
⊢ (𝑅 ∈ Ring →
((♯‘(Base‘𝑅)) = 1 ↔ ¬ 𝑅 ∈ NzRing)) |
55 | 54 | biimpar 476 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ ¬ 𝑅 ∈ NzRing) →
(♯‘(Base‘𝑅)) = 1) |
56 | 7, 55 | sylan 578 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝑅 ∈ NzRing) →
(♯‘(Base‘𝑅)) = 1) |
57 | 11, 53, 56 | 0ringufd 33357 |
. 2
⊢ ((𝜑 ∧ ¬ 𝑅 ∈ NzRing) → 𝑅 ∈ UFD) |
58 | 52, 57 | pm2.61dan 811 |
1
⊢ (𝜑 → 𝑅 ∈ UFD) |