Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pidufd Structured version   Visualization version   GIF version

Theorem pidufd 33551
Description: Every principal ideal domain is a unique factorization domain. (Contributed by Thierry Arnoux, 3-Jun-2025.)
Hypothesis
Ref Expression
pidufd.1 (𝜑𝑅 ∈ PID)
Assertion
Ref Expression
pidufd (𝜑𝑅 ∈ UFD)

Proof of Theorem pidufd
Dummy variables 𝑖 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pidufd.1 . . . 4 (𝜑𝑅 ∈ PID)
2 df-pid 21365 . . . 4 PID = (IDomn ∩ LPIR)
31, 2eleqtrdi 2849 . . 3 (𝜑𝑅 ∈ (IDomn ∩ LPIR))
43elin1d 4214 . 2 (𝜑𝑅 ∈ IDomn)
54idomringd 20745 . . . . . . . . 9 (𝜑𝑅 ∈ Ring)
65ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{(0g𝑅)}})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑖 = ((RSpan‘𝑅)‘{𝑥})) → 𝑅 ∈ Ring)
7 simplr 769 . . . . . . . 8 ((((𝜑𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{(0g𝑅)}})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑖 = ((RSpan‘𝑅)‘{𝑥})) → 𝑥 ∈ (Base‘𝑅))
8 eqid 2735 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
9 eqid 2735 . . . . . . . . 9 (RSpan‘𝑅) = (RSpan‘𝑅)
108, 9rspsnid 33379 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → 𝑥 ∈ ((RSpan‘𝑅)‘{𝑥}))
116, 7, 10syl2anc 584 . . . . . . 7 ((((𝜑𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{(0g𝑅)}})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑖 = ((RSpan‘𝑅)‘{𝑥})) → 𝑥 ∈ ((RSpan‘𝑅)‘{𝑥}))
12 simpr 484 . . . . . . 7 ((((𝜑𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{(0g𝑅)}})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑖 = ((RSpan‘𝑅)‘{𝑥})) → 𝑖 = ((RSpan‘𝑅)‘{𝑥}))
1311, 12eleqtrrd 2842 . . . . . 6 ((((𝜑𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{(0g𝑅)}})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑖 = ((RSpan‘𝑅)‘{𝑥})) → 𝑥𝑖)
14 simpr 484 . . . . . . . . . 10 ((𝜑𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{(0g𝑅)}})) → 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{(0g𝑅)}}))
1514eldifad 3975 . . . . . . . . 9 ((𝜑𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{(0g𝑅)}})) → 𝑖 ∈ (PrmIdeal‘𝑅))
1615ad2antrr 726 . . . . . . . 8 ((((𝜑𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{(0g𝑅)}})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑖 = ((RSpan‘𝑅)‘{𝑥})) → 𝑖 ∈ (PrmIdeal‘𝑅))
1712, 16eqeltrrd 2840 . . . . . . 7 ((((𝜑𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{(0g𝑅)}})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑖 = ((RSpan‘𝑅)‘{𝑥})) → ((RSpan‘𝑅)‘{𝑥}) ∈ (PrmIdeal‘𝑅))
18 eqid 2735 . . . . . . . 8 (0g𝑅) = (0g𝑅)
19 eqid 2735 . . . . . . . 8 (RPrime‘𝑅) = (RPrime‘𝑅)
204ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{(0g𝑅)}})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑖 = ((RSpan‘𝑅)‘{𝑥})) → 𝑅 ∈ IDomn)
21 simplr 769 . . . . . . . . . . 11 (((((𝜑𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{(0g𝑅)}})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑖 = ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑥 = (0g𝑅)) → 𝑖 = ((RSpan‘𝑅)‘{𝑥}))
22 simpr 484 . . . . . . . . . . . . 13 (((((𝜑𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{(0g𝑅)}})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑖 = ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑥 = (0g𝑅)) → 𝑥 = (0g𝑅))
2322sneqd 4643 . . . . . . . . . . . 12 (((((𝜑𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{(0g𝑅)}})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑖 = ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑥 = (0g𝑅)) → {𝑥} = {(0g𝑅)})
2423fveq2d 6911 . . . . . . . . . . 11 (((((𝜑𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{(0g𝑅)}})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑖 = ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑥 = (0g𝑅)) → ((RSpan‘𝑅)‘{𝑥}) = ((RSpan‘𝑅)‘{(0g𝑅)}))
259, 18rsp0 21266 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → ((RSpan‘𝑅)‘{(0g𝑅)}) = {(0g𝑅)})
265, 25syl 17 . . . . . . . . . . . 12 (𝜑 → ((RSpan‘𝑅)‘{(0g𝑅)}) = {(0g𝑅)})
2726ad4antr 732 . . . . . . . . . . 11 (((((𝜑𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{(0g𝑅)}})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑖 = ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑥 = (0g𝑅)) → ((RSpan‘𝑅)‘{(0g𝑅)}) = {(0g𝑅)})
2821, 24, 273eqtrd 2779 . . . . . . . . . 10 (((((𝜑𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{(0g𝑅)}})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑖 = ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑥 = (0g𝑅)) → 𝑖 = {(0g𝑅)})
29 eldifsni 4795 . . . . . . . . . . . 12 (𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{(0g𝑅)}}) → 𝑖 ≠ {(0g𝑅)})
3029ad4antlr 733 . . . . . . . . . . 11 (((((𝜑𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{(0g𝑅)}})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑖 = ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑥 = (0g𝑅)) → 𝑖 ≠ {(0g𝑅)})
3130neneqd 2943 . . . . . . . . . 10 (((((𝜑𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{(0g𝑅)}})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑖 = ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑥 = (0g𝑅)) → ¬ 𝑖 = {(0g𝑅)})
3228, 31pm2.65da 817 . . . . . . . . 9 ((((𝜑𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{(0g𝑅)}})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑖 = ((RSpan‘𝑅)‘{𝑥})) → ¬ 𝑥 = (0g𝑅))
3332neqned 2945 . . . . . . . 8 ((((𝜑𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{(0g𝑅)}})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑖 = ((RSpan‘𝑅)‘{𝑥})) → 𝑥 ≠ (0g𝑅))
3418, 8, 19, 9, 20, 7, 33rsprprmprmidlb 33531 . . . . . . 7 ((((𝜑𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{(0g𝑅)}})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑖 = ((RSpan‘𝑅)‘{𝑥})) → (𝑥 ∈ (RPrime‘𝑅) ↔ ((RSpan‘𝑅)‘{𝑥}) ∈ (PrmIdeal‘𝑅)))
3517, 34mpbird 257 . . . . . 6 ((((𝜑𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{(0g𝑅)}})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑖 = ((RSpan‘𝑅)‘{𝑥})) → 𝑥 ∈ (RPrime‘𝑅))
3613, 35elind 4210 . . . . 5 ((((𝜑𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{(0g𝑅)}})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑖 = ((RSpan‘𝑅)‘{𝑥})) → 𝑥 ∈ (𝑖 ∩ (RPrime‘𝑅)))
3736ne0d 4348 . . . 4 ((((𝜑𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{(0g𝑅)}})) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑖 = ((RSpan‘𝑅)‘{𝑥})) → (𝑖 ∩ (RPrime‘𝑅)) ≠ ∅)
38 eqid 2735 . . . . 5 (LIdeal‘𝑅) = (LIdeal‘𝑅)
393elin2d 4215 . . . . . 6 (𝜑𝑅 ∈ LPIR)
4039adantr 480 . . . . 5 ((𝜑𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{(0g𝑅)}})) → 𝑅 ∈ LPIR)
415adantr 480 . . . . . 6 ((𝜑𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{(0g𝑅)}})) → 𝑅 ∈ Ring)
42 prmidlidl 33452 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) → 𝑖 ∈ (LIdeal‘𝑅))
4341, 15, 42syl2anc 584 . . . . 5 ((𝜑𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{(0g𝑅)}})) → 𝑖 ∈ (LIdeal‘𝑅))
448, 38, 9, 40, 43lpirlidllpi 33382 . . . 4 ((𝜑𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{(0g𝑅)}})) → ∃𝑥 ∈ (Base‘𝑅)𝑖 = ((RSpan‘𝑅)‘{𝑥}))
4537, 44r19.29a 3160 . . 3 ((𝜑𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{(0g𝑅)}})) → (𝑖 ∩ (RPrime‘𝑅)) ≠ ∅)
4645ralrimiva 3144 . 2 (𝜑 → ∀𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{(0g𝑅)}})(𝑖 ∩ (RPrime‘𝑅)) ≠ ∅)
47 eqid 2735 . . 3 (PrmIdeal‘𝑅) = (PrmIdeal‘𝑅)
4847, 19, 18isufd 33548 . 2 (𝑅 ∈ UFD ↔ (𝑅 ∈ IDomn ∧ ∀𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{(0g𝑅)}})(𝑖 ∩ (RPrime‘𝑅)) ≠ ∅))
494, 46, 48sylanbrc 583 1 (𝜑𝑅 ∈ UFD)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wne 2938  wral 3059  cdif 3960  cin 3962  c0 4339  {csn 4631  cfv 6563  Basecbs 17245  0gc0g 17486  Ringcrg 20251  RPrimecrpm 20449  IDomncidom 20710  LIdealclidl 21234  RSpancrsp 21235  LPIRclpir 21349  PIDcpid 21364  PrmIdealcprmidl 33443  UFDcufd 33546
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968  df-sbg 18969  df-subg 19154  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-cring 20254  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405  df-rprm 20450  df-subrg 20587  df-idom 20713  df-lmod 20877  df-lss 20948  df-lsp 20988  df-sra 21190  df-rgmod 21191  df-lidl 21236  df-rsp 21237  df-lpidl 21350  df-lpir 21351  df-pid 21365  df-prmidl 33444  df-ufd 33547
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator