Step | Hyp | Ref
| Expression |
1 | | eqeq1 2729 |
. . . 4
⊢ (𝑥 = (𝑋 · 𝑌) → (𝑥 = (𝑀 Σg 𝑓) ↔ (𝑋 · 𝑌) = (𝑀 Σg 𝑓))) |
2 | 1 | rexbidv 3168 |
. . 3
⊢ (𝑥 = (𝑋 · 𝑌) → (∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓) ↔ ∃𝑓 ∈ Word 𝑃(𝑋 · 𝑌) = (𝑀 Σg 𝑓))) |
3 | | 1arithufd.b |
. . . 4
⊢ 𝐵 = (Base‘𝑅) |
4 | | 1arithufdlem2.1 |
. . . 4
⊢ · =
(.r‘𝑅) |
5 | | 1arithufd.r |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ UFD) |
6 | 5 | ufdcringd 33356 |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ CRing) |
7 | 6 | crngringd 20198 |
. . . 4
⊢ (𝜑 → 𝑅 ∈ Ring) |
8 | | 1arithufdlem.s |
. . . . . 6
⊢ 𝑆 = {𝑥 ∈ 𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)} |
9 | 8 | ssrab3 4076 |
. . . . 5
⊢ 𝑆 ⊆ 𝐵 |
10 | | 1arithufdlem2.2 |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ 𝑆) |
11 | 9, 10 | sselid 3974 |
. . . 4
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
12 | | 1arithufdlem2.3 |
. . . . 5
⊢ (𝜑 → 𝑌 ∈ 𝑆) |
13 | 9, 12 | sselid 3974 |
. . . 4
⊢ (𝜑 → 𝑌 ∈ 𝐵) |
14 | 3, 4, 7, 11, 13 | ringcld 20211 |
. . 3
⊢ (𝜑 → (𝑋 · 𝑌) ∈ 𝐵) |
15 | | oveq2 7427 |
. . . . . . 7
⊢ (𝑓 = (𝑔 ++ ℎ) → (𝑀 Σg 𝑓) = (𝑀 Σg (𝑔 ++ ℎ))) |
16 | 15 | eqeq2d 2736 |
. . . . . 6
⊢ (𝑓 = (𝑔 ++ ℎ) → ((𝑋 · 𝑌) = (𝑀 Σg 𝑓) ↔ (𝑋 · 𝑌) = (𝑀 Σg (𝑔 ++ ℎ)))) |
17 | | ccatcl 14560 |
. . . . . . 7
⊢ ((𝑔 ∈ Word 𝑃 ∧ ℎ ∈ Word 𝑃) → (𝑔 ++ ℎ) ∈ Word 𝑃) |
18 | 17 | ad5ant24 759 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑔 ∈ Word 𝑃) ∧ 𝑋 = (𝑀 Σg 𝑔)) ∧ ℎ ∈ Word 𝑃) ∧ 𝑌 = (𝑀 Σg ℎ)) → (𝑔 ++ ℎ) ∈ Word 𝑃) |
19 | | simpllr 774 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑔 ∈ Word 𝑃) ∧ 𝑋 = (𝑀 Σg 𝑔)) ∧ ℎ ∈ Word 𝑃) ∧ 𝑌 = (𝑀 Σg ℎ)) → 𝑋 = (𝑀 Σg 𝑔)) |
20 | | simpr 483 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑔 ∈ Word 𝑃) ∧ 𝑋 = (𝑀 Σg 𝑔)) ∧ ℎ ∈ Word 𝑃) ∧ 𝑌 = (𝑀 Σg ℎ)) → 𝑌 = (𝑀 Σg ℎ)) |
21 | 19, 20 | oveq12d 7437 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑔 ∈ Word 𝑃) ∧ 𝑋 = (𝑀 Σg 𝑔)) ∧ ℎ ∈ Word 𝑃) ∧ 𝑌 = (𝑀 Σg ℎ)) → (𝑋 · 𝑌) = ((𝑀 Σg 𝑔) · (𝑀 Σg ℎ))) |
22 | | 1arithufd.m |
. . . . . . . . . . 11
⊢ 𝑀 = (mulGrp‘𝑅) |
23 | 22 | ringmgp 20191 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Ring → 𝑀 ∈ Mnd) |
24 | 7, 23 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ Mnd) |
25 | 24 | ad4antr 730 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑔 ∈ Word 𝑃) ∧ 𝑋 = (𝑀 Σg 𝑔)) ∧ ℎ ∈ Word 𝑃) ∧ 𝑌 = (𝑀 Σg ℎ)) → 𝑀 ∈ Mnd) |
26 | | 1arithufd.p |
. . . . . . . . . . . . . 14
⊢ 𝑃 = (RPrime‘𝑅) |
27 | 5 | adantr 479 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑃) → 𝑅 ∈ UFD) |
28 | | simpr 483 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑃) → 𝑥 ∈ 𝑃) |
29 | 3, 26, 27, 28 | rprmcl 33330 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑃) → 𝑥 ∈ 𝐵) |
30 | 29 | ex 411 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑥 ∈ 𝑃 → 𝑥 ∈ 𝐵)) |
31 | 30 | ssrdv 3982 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑃 ⊆ 𝐵) |
32 | | sswrd 14508 |
. . . . . . . . . . 11
⊢ (𝑃 ⊆ 𝐵 → Word 𝑃 ⊆ Word 𝐵) |
33 | 31, 32 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → Word 𝑃 ⊆ Word 𝐵) |
34 | 33 | ad4antr 730 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑔 ∈ Word 𝑃) ∧ 𝑋 = (𝑀 Σg 𝑔)) ∧ ℎ ∈ Word 𝑃) ∧ 𝑌 = (𝑀 Σg ℎ)) → Word 𝑃 ⊆ Word 𝐵) |
35 | | simp-4r 782 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑔 ∈ Word 𝑃) ∧ 𝑋 = (𝑀 Σg 𝑔)) ∧ ℎ ∈ Word 𝑃) ∧ 𝑌 = (𝑀 Σg ℎ)) → 𝑔 ∈ Word 𝑃) |
36 | 34, 35 | sseldd 3977 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑔 ∈ Word 𝑃) ∧ 𝑋 = (𝑀 Σg 𝑔)) ∧ ℎ ∈ Word 𝑃) ∧ 𝑌 = (𝑀 Σg ℎ)) → 𝑔 ∈ Word 𝐵) |
37 | | simplr 767 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑔 ∈ Word 𝑃) ∧ 𝑋 = (𝑀 Σg 𝑔)) ∧ ℎ ∈ Word 𝑃) ∧ 𝑌 = (𝑀 Σg ℎ)) → ℎ ∈ Word 𝑃) |
38 | 34, 37 | sseldd 3977 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑔 ∈ Word 𝑃) ∧ 𝑋 = (𝑀 Σg 𝑔)) ∧ ℎ ∈ Word 𝑃) ∧ 𝑌 = (𝑀 Σg ℎ)) → ℎ ∈ Word 𝐵) |
39 | 22, 3 | mgpbas 20092 |
. . . . . . . . 9
⊢ 𝐵 = (Base‘𝑀) |
40 | 22, 4 | mgpplusg 20090 |
. . . . . . . . 9
⊢ · =
(+g‘𝑀) |
41 | 39, 40 | gsumccat 18801 |
. . . . . . . 8
⊢ ((𝑀 ∈ Mnd ∧ 𝑔 ∈ Word 𝐵 ∧ ℎ ∈ Word 𝐵) → (𝑀 Σg (𝑔 ++ ℎ)) = ((𝑀 Σg 𝑔) · (𝑀 Σg ℎ))) |
42 | 25, 36, 38, 41 | syl3anc 1368 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑔 ∈ Word 𝑃) ∧ 𝑋 = (𝑀 Σg 𝑔)) ∧ ℎ ∈ Word 𝑃) ∧ 𝑌 = (𝑀 Σg ℎ)) → (𝑀 Σg (𝑔 ++ ℎ)) = ((𝑀 Σg 𝑔) · (𝑀 Σg ℎ))) |
43 | 21, 42 | eqtr4d 2768 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑔 ∈ Word 𝑃) ∧ 𝑋 = (𝑀 Σg 𝑔)) ∧ ℎ ∈ Word 𝑃) ∧ 𝑌 = (𝑀 Σg ℎ)) → (𝑋 · 𝑌) = (𝑀 Σg (𝑔 ++ ℎ))) |
44 | 16, 18, 43 | rspcedvdw 3609 |
. . . . 5
⊢
(((((𝜑 ∧ 𝑔 ∈ Word 𝑃) ∧ 𝑋 = (𝑀 Σg 𝑔)) ∧ ℎ ∈ Word 𝑃) ∧ 𝑌 = (𝑀 Σg ℎ)) → ∃𝑓 ∈ Word 𝑃(𝑋 · 𝑌) = (𝑀 Σg 𝑓)) |
45 | 12, 8 | eleqtrdi 2835 |
. . . . . . 7
⊢ (𝜑 → 𝑌 ∈ {𝑥 ∈ 𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)}) |
46 | | oveq2 7427 |
. . . . . . . . . . . 12
⊢ (𝑓 = ℎ → (𝑀 Σg 𝑓) = (𝑀 Σg ℎ)) |
47 | 46 | eqeq2d 2736 |
. . . . . . . . . . 11
⊢ (𝑓 = ℎ → (𝑥 = (𝑀 Σg 𝑓) ↔ 𝑥 = (𝑀 Σg ℎ))) |
48 | 47 | cbvrexvw 3225 |
. . . . . . . . . 10
⊢
(∃𝑓 ∈
Word 𝑃𝑥 = (𝑀 Σg 𝑓) ↔ ∃ℎ ∈ Word 𝑃𝑥 = (𝑀 Σg ℎ)) |
49 | | eqeq1 2729 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑌 → (𝑥 = (𝑀 Σg ℎ) ↔ 𝑌 = (𝑀 Σg ℎ))) |
50 | 49 | rexbidv 3168 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑌 → (∃ℎ ∈ Word 𝑃𝑥 = (𝑀 Σg ℎ) ↔ ∃ℎ ∈ Word 𝑃𝑌 = (𝑀 Σg ℎ))) |
51 | 48, 50 | bitrid 282 |
. . . . . . . . 9
⊢ (𝑥 = 𝑌 → (∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓) ↔ ∃ℎ ∈ Word 𝑃𝑌 = (𝑀 Σg ℎ))) |
52 | 51 | elrab3 3680 |
. . . . . . . 8
⊢ (𝑌 ∈ 𝐵 → (𝑌 ∈ {𝑥 ∈ 𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)} ↔ ∃ℎ ∈ Word 𝑃𝑌 = (𝑀 Σg ℎ))) |
53 | 52 | biimpa 475 |
. . . . . . 7
⊢ ((𝑌 ∈ 𝐵 ∧ 𝑌 ∈ {𝑥 ∈ 𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)}) → ∃ℎ ∈ Word 𝑃𝑌 = (𝑀 Σg ℎ)) |
54 | 13, 45, 53 | syl2anc 582 |
. . . . . 6
⊢ (𝜑 → ∃ℎ ∈ Word 𝑃𝑌 = (𝑀 Σg ℎ)) |
55 | 54 | ad2antrr 724 |
. . . . 5
⊢ (((𝜑 ∧ 𝑔 ∈ Word 𝑃) ∧ 𝑋 = (𝑀 Σg 𝑔)) → ∃ℎ ∈ Word 𝑃𝑌 = (𝑀 Σg ℎ)) |
56 | 44, 55 | r19.29a 3151 |
. . . 4
⊢ (((𝜑 ∧ 𝑔 ∈ Word 𝑃) ∧ 𝑋 = (𝑀 Σg 𝑔)) → ∃𝑓 ∈ Word 𝑃(𝑋 · 𝑌) = (𝑀 Σg 𝑓)) |
57 | 10, 8 | eleqtrdi 2835 |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ {𝑥 ∈ 𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)}) |
58 | | oveq2 7427 |
. . . . . . . . . 10
⊢ (𝑓 = 𝑔 → (𝑀 Σg 𝑓) = (𝑀 Σg 𝑔)) |
59 | 58 | eqeq2d 2736 |
. . . . . . . . 9
⊢ (𝑓 = 𝑔 → (𝑥 = (𝑀 Σg 𝑓) ↔ 𝑥 = (𝑀 Σg 𝑔))) |
60 | 59 | cbvrexvw 3225 |
. . . . . . . 8
⊢
(∃𝑓 ∈
Word 𝑃𝑥 = (𝑀 Σg 𝑓) ↔ ∃𝑔 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑔)) |
61 | | eqeq1 2729 |
. . . . . . . . 9
⊢ (𝑥 = 𝑋 → (𝑥 = (𝑀 Σg 𝑔) ↔ 𝑋 = (𝑀 Σg 𝑔))) |
62 | 61 | rexbidv 3168 |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → (∃𝑔 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑔) ↔ ∃𝑔 ∈ Word 𝑃𝑋 = (𝑀 Σg 𝑔))) |
63 | 60, 62 | bitrid 282 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → (∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓) ↔ ∃𝑔 ∈ Word 𝑃𝑋 = (𝑀 Σg 𝑔))) |
64 | 63 | elrab3 3680 |
. . . . . 6
⊢ (𝑋 ∈ 𝐵 → (𝑋 ∈ {𝑥 ∈ 𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)} ↔ ∃𝑔 ∈ Word 𝑃𝑋 = (𝑀 Σg 𝑔))) |
65 | 64 | biimpa 475 |
. . . . 5
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑋 ∈ {𝑥 ∈ 𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)}) → ∃𝑔 ∈ Word 𝑃𝑋 = (𝑀 Σg 𝑔)) |
66 | 11, 57, 65 | syl2anc 582 |
. . . 4
⊢ (𝜑 → ∃𝑔 ∈ Word 𝑃𝑋 = (𝑀 Σg 𝑔)) |
67 | 56, 66 | r19.29a 3151 |
. . 3
⊢ (𝜑 → ∃𝑓 ∈ Word 𝑃(𝑋 · 𝑌) = (𝑀 Σg 𝑓)) |
68 | 2, 14, 67 | elrabd 3681 |
. 2
⊢ (𝜑 → (𝑋 · 𝑌) ∈ {𝑥 ∈ 𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)}) |
69 | 68, 8 | eleqtrrdi 2836 |
1
⊢ (𝜑 → (𝑋 · 𝑌) ∈ 𝑆) |