| Step | Hyp | Ref
| Expression |
| 1 | | eqeq1 2739 |
. . . 4
⊢ (𝑥 = (𝑋 · 𝑌) → (𝑥 = (𝑀 Σg 𝑓) ↔ (𝑋 · 𝑌) = (𝑀 Σg 𝑓))) |
| 2 | 1 | rexbidv 3164 |
. . 3
⊢ (𝑥 = (𝑋 · 𝑌) → (∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓) ↔ ∃𝑓 ∈ Word 𝑃(𝑋 · 𝑌) = (𝑀 Σg 𝑓))) |
| 3 | | 1arithufd.b |
. . . 4
⊢ 𝐵 = (Base‘𝑅) |
| 4 | | 1arithufdlem2.1 |
. . . 4
⊢ · =
(.r‘𝑅) |
| 5 | | 1arithufd.r |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ UFD) |
| 6 | 5 | ufdidom 33557 |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ IDomn) |
| 7 | 6 | idomringd 20688 |
. . . 4
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 8 | | 1arithufdlem.s |
. . . . . 6
⊢ 𝑆 = {𝑥 ∈ 𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)} |
| 9 | 8 | ssrab3 4057 |
. . . . 5
⊢ 𝑆 ⊆ 𝐵 |
| 10 | | 1arithufdlem2.2 |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ 𝑆) |
| 11 | 9, 10 | sselid 3956 |
. . . 4
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| 12 | | 1arithufdlem2.3 |
. . . . 5
⊢ (𝜑 → 𝑌 ∈ 𝑆) |
| 13 | 9, 12 | sselid 3956 |
. . . 4
⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| 14 | 3, 4, 7, 11, 13 | ringcld 20220 |
. . 3
⊢ (𝜑 → (𝑋 · 𝑌) ∈ 𝐵) |
| 15 | | oveq2 7413 |
. . . . . . 7
⊢ (𝑓 = (𝑔 ++ ℎ) → (𝑀 Σg 𝑓) = (𝑀 Σg (𝑔 ++ ℎ))) |
| 16 | 15 | eqeq2d 2746 |
. . . . . 6
⊢ (𝑓 = (𝑔 ++ ℎ) → ((𝑋 · 𝑌) = (𝑀 Σg 𝑓) ↔ (𝑋 · 𝑌) = (𝑀 Σg (𝑔 ++ ℎ)))) |
| 17 | | ccatcl 14592 |
. . . . . . 7
⊢ ((𝑔 ∈ Word 𝑃 ∧ ℎ ∈ Word 𝑃) → (𝑔 ++ ℎ) ∈ Word 𝑃) |
| 18 | 17 | ad5ant24 760 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑔 ∈ Word 𝑃) ∧ 𝑋 = (𝑀 Σg 𝑔)) ∧ ℎ ∈ Word 𝑃) ∧ 𝑌 = (𝑀 Σg ℎ)) → (𝑔 ++ ℎ) ∈ Word 𝑃) |
| 19 | | simpllr 775 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑔 ∈ Word 𝑃) ∧ 𝑋 = (𝑀 Σg 𝑔)) ∧ ℎ ∈ Word 𝑃) ∧ 𝑌 = (𝑀 Σg ℎ)) → 𝑋 = (𝑀 Σg 𝑔)) |
| 20 | | simpr 484 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑔 ∈ Word 𝑃) ∧ 𝑋 = (𝑀 Σg 𝑔)) ∧ ℎ ∈ Word 𝑃) ∧ 𝑌 = (𝑀 Σg ℎ)) → 𝑌 = (𝑀 Σg ℎ)) |
| 21 | 19, 20 | oveq12d 7423 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑔 ∈ Word 𝑃) ∧ 𝑋 = (𝑀 Σg 𝑔)) ∧ ℎ ∈ Word 𝑃) ∧ 𝑌 = (𝑀 Σg ℎ)) → (𝑋 · 𝑌) = ((𝑀 Σg 𝑔) · (𝑀 Σg ℎ))) |
| 22 | | 1arithufd.m |
. . . . . . . . . . 11
⊢ 𝑀 = (mulGrp‘𝑅) |
| 23 | 22 | ringmgp 20199 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Ring → 𝑀 ∈ Mnd) |
| 24 | 7, 23 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ Mnd) |
| 25 | 24 | ad4antr 732 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑔 ∈ Word 𝑃) ∧ 𝑋 = (𝑀 Σg 𝑔)) ∧ ℎ ∈ Word 𝑃) ∧ 𝑌 = (𝑀 Σg ℎ)) → 𝑀 ∈ Mnd) |
| 26 | | 1arithufd.p |
. . . . . . . . . . . . . 14
⊢ 𝑃 = (RPrime‘𝑅) |
| 27 | 5 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑃) → 𝑅 ∈ UFD) |
| 28 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑃) → 𝑥 ∈ 𝑃) |
| 29 | 3, 26, 27, 28 | rprmcl 33533 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑃) → 𝑥 ∈ 𝐵) |
| 30 | 29 | ex 412 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑥 ∈ 𝑃 → 𝑥 ∈ 𝐵)) |
| 31 | 30 | ssrdv 3964 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑃 ⊆ 𝐵) |
| 32 | | sswrd 14540 |
. . . . . . . . . . 11
⊢ (𝑃 ⊆ 𝐵 → Word 𝑃 ⊆ Word 𝐵) |
| 33 | 31, 32 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → Word 𝑃 ⊆ Word 𝐵) |
| 34 | 33 | ad4antr 732 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑔 ∈ Word 𝑃) ∧ 𝑋 = (𝑀 Σg 𝑔)) ∧ ℎ ∈ Word 𝑃) ∧ 𝑌 = (𝑀 Σg ℎ)) → Word 𝑃 ⊆ Word 𝐵) |
| 35 | | simp-4r 783 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑔 ∈ Word 𝑃) ∧ 𝑋 = (𝑀 Σg 𝑔)) ∧ ℎ ∈ Word 𝑃) ∧ 𝑌 = (𝑀 Σg ℎ)) → 𝑔 ∈ Word 𝑃) |
| 36 | 34, 35 | sseldd 3959 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑔 ∈ Word 𝑃) ∧ 𝑋 = (𝑀 Σg 𝑔)) ∧ ℎ ∈ Word 𝑃) ∧ 𝑌 = (𝑀 Σg ℎ)) → 𝑔 ∈ Word 𝐵) |
| 37 | | simplr 768 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑔 ∈ Word 𝑃) ∧ 𝑋 = (𝑀 Σg 𝑔)) ∧ ℎ ∈ Word 𝑃) ∧ 𝑌 = (𝑀 Σg ℎ)) → ℎ ∈ Word 𝑃) |
| 38 | 34, 37 | sseldd 3959 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑔 ∈ Word 𝑃) ∧ 𝑋 = (𝑀 Σg 𝑔)) ∧ ℎ ∈ Word 𝑃) ∧ 𝑌 = (𝑀 Σg ℎ)) → ℎ ∈ Word 𝐵) |
| 39 | 22, 3 | mgpbas 20105 |
. . . . . . . . 9
⊢ 𝐵 = (Base‘𝑀) |
| 40 | 22, 4 | mgpplusg 20104 |
. . . . . . . . 9
⊢ · =
(+g‘𝑀) |
| 41 | 39, 40 | gsumccat 18819 |
. . . . . . . 8
⊢ ((𝑀 ∈ Mnd ∧ 𝑔 ∈ Word 𝐵 ∧ ℎ ∈ Word 𝐵) → (𝑀 Σg (𝑔 ++ ℎ)) = ((𝑀 Σg 𝑔) · (𝑀 Σg ℎ))) |
| 42 | 25, 36, 38, 41 | syl3anc 1373 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑔 ∈ Word 𝑃) ∧ 𝑋 = (𝑀 Σg 𝑔)) ∧ ℎ ∈ Word 𝑃) ∧ 𝑌 = (𝑀 Σg ℎ)) → (𝑀 Σg (𝑔 ++ ℎ)) = ((𝑀 Σg 𝑔) · (𝑀 Σg ℎ))) |
| 43 | 21, 42 | eqtr4d 2773 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑔 ∈ Word 𝑃) ∧ 𝑋 = (𝑀 Σg 𝑔)) ∧ ℎ ∈ Word 𝑃) ∧ 𝑌 = (𝑀 Σg ℎ)) → (𝑋 · 𝑌) = (𝑀 Σg (𝑔 ++ ℎ))) |
| 44 | 16, 18, 43 | rspcedvdw 3604 |
. . . . 5
⊢
(((((𝜑 ∧ 𝑔 ∈ Word 𝑃) ∧ 𝑋 = (𝑀 Σg 𝑔)) ∧ ℎ ∈ Word 𝑃) ∧ 𝑌 = (𝑀 Σg ℎ)) → ∃𝑓 ∈ Word 𝑃(𝑋 · 𝑌) = (𝑀 Σg 𝑓)) |
| 45 | 12, 8 | eleqtrdi 2844 |
. . . . . . 7
⊢ (𝜑 → 𝑌 ∈ {𝑥 ∈ 𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)}) |
| 46 | | oveq2 7413 |
. . . . . . . . . . . 12
⊢ (𝑓 = ℎ → (𝑀 Σg 𝑓) = (𝑀 Σg ℎ)) |
| 47 | 46 | eqeq2d 2746 |
. . . . . . . . . . 11
⊢ (𝑓 = ℎ → (𝑥 = (𝑀 Σg 𝑓) ↔ 𝑥 = (𝑀 Σg ℎ))) |
| 48 | 47 | cbvrexvw 3221 |
. . . . . . . . . 10
⊢
(∃𝑓 ∈
Word 𝑃𝑥 = (𝑀 Σg 𝑓) ↔ ∃ℎ ∈ Word 𝑃𝑥 = (𝑀 Σg ℎ)) |
| 49 | | eqeq1 2739 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑌 → (𝑥 = (𝑀 Σg ℎ) ↔ 𝑌 = (𝑀 Σg ℎ))) |
| 50 | 49 | rexbidv 3164 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑌 → (∃ℎ ∈ Word 𝑃𝑥 = (𝑀 Σg ℎ) ↔ ∃ℎ ∈ Word 𝑃𝑌 = (𝑀 Σg ℎ))) |
| 51 | 48, 50 | bitrid 283 |
. . . . . . . . 9
⊢ (𝑥 = 𝑌 → (∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓) ↔ ∃ℎ ∈ Word 𝑃𝑌 = (𝑀 Σg ℎ))) |
| 52 | 51 | elrab3 3672 |
. . . . . . . 8
⊢ (𝑌 ∈ 𝐵 → (𝑌 ∈ {𝑥 ∈ 𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)} ↔ ∃ℎ ∈ Word 𝑃𝑌 = (𝑀 Σg ℎ))) |
| 53 | 52 | biimpa 476 |
. . . . . . 7
⊢ ((𝑌 ∈ 𝐵 ∧ 𝑌 ∈ {𝑥 ∈ 𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)}) → ∃ℎ ∈ Word 𝑃𝑌 = (𝑀 Σg ℎ)) |
| 54 | 13, 45, 53 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → ∃ℎ ∈ Word 𝑃𝑌 = (𝑀 Σg ℎ)) |
| 55 | 54 | ad2antrr 726 |
. . . . 5
⊢ (((𝜑 ∧ 𝑔 ∈ Word 𝑃) ∧ 𝑋 = (𝑀 Σg 𝑔)) → ∃ℎ ∈ Word 𝑃𝑌 = (𝑀 Σg ℎ)) |
| 56 | 44, 55 | r19.29a 3148 |
. . . 4
⊢ (((𝜑 ∧ 𝑔 ∈ Word 𝑃) ∧ 𝑋 = (𝑀 Σg 𝑔)) → ∃𝑓 ∈ Word 𝑃(𝑋 · 𝑌) = (𝑀 Σg 𝑓)) |
| 57 | 10, 8 | eleqtrdi 2844 |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ {𝑥 ∈ 𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)}) |
| 58 | | oveq2 7413 |
. . . . . . . . . 10
⊢ (𝑓 = 𝑔 → (𝑀 Σg 𝑓) = (𝑀 Σg 𝑔)) |
| 59 | 58 | eqeq2d 2746 |
. . . . . . . . 9
⊢ (𝑓 = 𝑔 → (𝑥 = (𝑀 Σg 𝑓) ↔ 𝑥 = (𝑀 Σg 𝑔))) |
| 60 | 59 | cbvrexvw 3221 |
. . . . . . . 8
⊢
(∃𝑓 ∈
Word 𝑃𝑥 = (𝑀 Σg 𝑓) ↔ ∃𝑔 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑔)) |
| 61 | | eqeq1 2739 |
. . . . . . . . 9
⊢ (𝑥 = 𝑋 → (𝑥 = (𝑀 Σg 𝑔) ↔ 𝑋 = (𝑀 Σg 𝑔))) |
| 62 | 61 | rexbidv 3164 |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → (∃𝑔 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑔) ↔ ∃𝑔 ∈ Word 𝑃𝑋 = (𝑀 Σg 𝑔))) |
| 63 | 60, 62 | bitrid 283 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → (∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓) ↔ ∃𝑔 ∈ Word 𝑃𝑋 = (𝑀 Σg 𝑔))) |
| 64 | 63 | elrab3 3672 |
. . . . . 6
⊢ (𝑋 ∈ 𝐵 → (𝑋 ∈ {𝑥 ∈ 𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)} ↔ ∃𝑔 ∈ Word 𝑃𝑋 = (𝑀 Σg 𝑔))) |
| 65 | 64 | biimpa 476 |
. . . . 5
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑋 ∈ {𝑥 ∈ 𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)}) → ∃𝑔 ∈ Word 𝑃𝑋 = (𝑀 Σg 𝑔)) |
| 66 | 11, 57, 65 | syl2anc 584 |
. . . 4
⊢ (𝜑 → ∃𝑔 ∈ Word 𝑃𝑋 = (𝑀 Σg 𝑔)) |
| 67 | 56, 66 | r19.29a 3148 |
. . 3
⊢ (𝜑 → ∃𝑓 ∈ Word 𝑃(𝑋 · 𝑌) = (𝑀 Σg 𝑓)) |
| 68 | 2, 14, 67 | elrabd 3673 |
. 2
⊢ (𝜑 → (𝑋 · 𝑌) ∈ {𝑥 ∈ 𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)}) |
| 69 | 68, 8 | eleqtrrdi 2845 |
1
⊢ (𝜑 → (𝑋 · 𝑌) ∈ 𝑆) |