Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1arithufdlem2 Structured version   Visualization version   GIF version

Theorem 1arithufdlem2 33505
Description: Lemma for 1arithufd 33508. The set 𝑆 of elements which can be written as a product of primes is multiplicatively closed. (Contributed by Thierry Arnoux, 3-Jun-2025.)
Hypotheses
Ref Expression
1arithufd.b 𝐵 = (Base‘𝑅)
1arithufd.0 0 = (0g𝑅)
1arithufd.u 𝑈 = (Unit‘𝑅)
1arithufd.p 𝑃 = (RPrime‘𝑅)
1arithufd.m 𝑀 = (mulGrp‘𝑅)
1arithufd.r (𝜑𝑅 ∈ UFD)
1arithufdlem.2 (𝜑 → ¬ 𝑅 ∈ DivRing)
1arithufdlem.s 𝑆 = {𝑥𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)}
1arithufdlem2.1 · = (.r𝑅)
1arithufdlem2.2 (𝜑𝑋𝑆)
1arithufdlem2.3 (𝜑𝑌𝑆)
Assertion
Ref Expression
1arithufdlem2 (𝜑 → (𝑋 · 𝑌) ∈ 𝑆)
Distinct variable groups:   0 ,𝑓   𝑥,𝐵   𝑓,𝑀,𝑥   𝑃,𝑓,𝑥   𝑅,𝑓   𝜑,𝑓   · ,𝑓,𝑥   𝑓,𝑋,𝑥   𝑓,𝑌,𝑥   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑓)   𝑅(𝑥)   𝑆(𝑥,𝑓)   𝑈(𝑥,𝑓)   0 (𝑥)

Proof of Theorem 1arithufdlem2
Dummy variables 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2735 . . . 4 (𝑥 = (𝑋 · 𝑌) → (𝑥 = (𝑀 Σg 𝑓) ↔ (𝑋 · 𝑌) = (𝑀 Σg 𝑓)))
21rexbidv 3156 . . 3 (𝑥 = (𝑋 · 𝑌) → (∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓) ↔ ∃𝑓 ∈ Word 𝑃(𝑋 · 𝑌) = (𝑀 Σg 𝑓)))
3 1arithufd.b . . . 4 𝐵 = (Base‘𝑅)
4 1arithufdlem2.1 . . . 4 · = (.r𝑅)
5 1arithufd.r . . . . . 6 (𝜑𝑅 ∈ UFD)
65ufdidom 33502 . . . . 5 (𝜑𝑅 ∈ IDomn)
76idomringd 20641 . . . 4 (𝜑𝑅 ∈ Ring)
8 1arithufdlem.s . . . . . 6 𝑆 = {𝑥𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)}
98ssrab3 4032 . . . . 5 𝑆𝐵
10 1arithufdlem2.2 . . . . 5 (𝜑𝑋𝑆)
119, 10sselid 3932 . . . 4 (𝜑𝑋𝐵)
12 1arithufdlem2.3 . . . . 5 (𝜑𝑌𝑆)
139, 12sselid 3932 . . . 4 (𝜑𝑌𝐵)
143, 4, 7, 11, 13ringcld 20176 . . 3 (𝜑 → (𝑋 · 𝑌) ∈ 𝐵)
15 oveq2 7354 . . . . . . 7 (𝑓 = (𝑔 ++ ) → (𝑀 Σg 𝑓) = (𝑀 Σg (𝑔 ++ )))
1615eqeq2d 2742 . . . . . 6 (𝑓 = (𝑔 ++ ) → ((𝑋 · 𝑌) = (𝑀 Σg 𝑓) ↔ (𝑋 · 𝑌) = (𝑀 Σg (𝑔 ++ ))))
17 ccatcl 14478 . . . . . . 7 ((𝑔 ∈ Word 𝑃 ∈ Word 𝑃) → (𝑔 ++ ) ∈ Word 𝑃)
1817ad5ant24 760 . . . . . 6 (((((𝜑𝑔 ∈ Word 𝑃) ∧ 𝑋 = (𝑀 Σg 𝑔)) ∧ ∈ Word 𝑃) ∧ 𝑌 = (𝑀 Σg )) → (𝑔 ++ ) ∈ Word 𝑃)
19 simpllr 775 . . . . . . . 8 (((((𝜑𝑔 ∈ Word 𝑃) ∧ 𝑋 = (𝑀 Σg 𝑔)) ∧ ∈ Word 𝑃) ∧ 𝑌 = (𝑀 Σg )) → 𝑋 = (𝑀 Σg 𝑔))
20 simpr 484 . . . . . . . 8 (((((𝜑𝑔 ∈ Word 𝑃) ∧ 𝑋 = (𝑀 Σg 𝑔)) ∧ ∈ Word 𝑃) ∧ 𝑌 = (𝑀 Σg )) → 𝑌 = (𝑀 Σg ))
2119, 20oveq12d 7364 . . . . . . 7 (((((𝜑𝑔 ∈ Word 𝑃) ∧ 𝑋 = (𝑀 Σg 𝑔)) ∧ ∈ Word 𝑃) ∧ 𝑌 = (𝑀 Σg )) → (𝑋 · 𝑌) = ((𝑀 Σg 𝑔) · (𝑀 Σg )))
22 1arithufd.m . . . . . . . . . . 11 𝑀 = (mulGrp‘𝑅)
2322ringmgp 20155 . . . . . . . . . 10 (𝑅 ∈ Ring → 𝑀 ∈ Mnd)
247, 23syl 17 . . . . . . . . 9 (𝜑𝑀 ∈ Mnd)
2524ad4antr 732 . . . . . . . 8 (((((𝜑𝑔 ∈ Word 𝑃) ∧ 𝑋 = (𝑀 Σg 𝑔)) ∧ ∈ Word 𝑃) ∧ 𝑌 = (𝑀 Σg )) → 𝑀 ∈ Mnd)
26 1arithufd.p . . . . . . . . . . . . . 14 𝑃 = (RPrime‘𝑅)
275adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥𝑃) → 𝑅 ∈ UFD)
28 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑥𝑃) → 𝑥𝑃)
293, 26, 27, 28rprmcl 33478 . . . . . . . . . . . . 13 ((𝜑𝑥𝑃) → 𝑥𝐵)
3029ex 412 . . . . . . . . . . . 12 (𝜑 → (𝑥𝑃𝑥𝐵))
3130ssrdv 3940 . . . . . . . . . . 11 (𝜑𝑃𝐵)
32 sswrd 14426 . . . . . . . . . . 11 (𝑃𝐵 → Word 𝑃 ⊆ Word 𝐵)
3331, 32syl 17 . . . . . . . . . 10 (𝜑 → Word 𝑃 ⊆ Word 𝐵)
3433ad4antr 732 . . . . . . . . 9 (((((𝜑𝑔 ∈ Word 𝑃) ∧ 𝑋 = (𝑀 Σg 𝑔)) ∧ ∈ Word 𝑃) ∧ 𝑌 = (𝑀 Σg )) → Word 𝑃 ⊆ Word 𝐵)
35 simp-4r 783 . . . . . . . . 9 (((((𝜑𝑔 ∈ Word 𝑃) ∧ 𝑋 = (𝑀 Σg 𝑔)) ∧ ∈ Word 𝑃) ∧ 𝑌 = (𝑀 Σg )) → 𝑔 ∈ Word 𝑃)
3634, 35sseldd 3935 . . . . . . . 8 (((((𝜑𝑔 ∈ Word 𝑃) ∧ 𝑋 = (𝑀 Σg 𝑔)) ∧ ∈ Word 𝑃) ∧ 𝑌 = (𝑀 Σg )) → 𝑔 ∈ Word 𝐵)
37 simplr 768 . . . . . . . . 9 (((((𝜑𝑔 ∈ Word 𝑃) ∧ 𝑋 = (𝑀 Σg 𝑔)) ∧ ∈ Word 𝑃) ∧ 𝑌 = (𝑀 Σg )) → ∈ Word 𝑃)
3834, 37sseldd 3935 . . . . . . . 8 (((((𝜑𝑔 ∈ Word 𝑃) ∧ 𝑋 = (𝑀 Σg 𝑔)) ∧ ∈ Word 𝑃) ∧ 𝑌 = (𝑀 Σg )) → ∈ Word 𝐵)
3922, 3mgpbas 20061 . . . . . . . . 9 𝐵 = (Base‘𝑀)
4022, 4mgpplusg 20060 . . . . . . . . 9 · = (+g𝑀)
4139, 40gsumccat 18746 . . . . . . . 8 ((𝑀 ∈ Mnd ∧ 𝑔 ∈ Word 𝐵 ∈ Word 𝐵) → (𝑀 Σg (𝑔 ++ )) = ((𝑀 Σg 𝑔) · (𝑀 Σg )))
4225, 36, 38, 41syl3anc 1373 . . . . . . 7 (((((𝜑𝑔 ∈ Word 𝑃) ∧ 𝑋 = (𝑀 Σg 𝑔)) ∧ ∈ Word 𝑃) ∧ 𝑌 = (𝑀 Σg )) → (𝑀 Σg (𝑔 ++ )) = ((𝑀 Σg 𝑔) · (𝑀 Σg )))
4321, 42eqtr4d 2769 . . . . . 6 (((((𝜑𝑔 ∈ Word 𝑃) ∧ 𝑋 = (𝑀 Σg 𝑔)) ∧ ∈ Word 𝑃) ∧ 𝑌 = (𝑀 Σg )) → (𝑋 · 𝑌) = (𝑀 Σg (𝑔 ++ )))
4416, 18, 43rspcedvdw 3580 . . . . 5 (((((𝜑𝑔 ∈ Word 𝑃) ∧ 𝑋 = (𝑀 Σg 𝑔)) ∧ ∈ Word 𝑃) ∧ 𝑌 = (𝑀 Σg )) → ∃𝑓 ∈ Word 𝑃(𝑋 · 𝑌) = (𝑀 Σg 𝑓))
4512, 8eleqtrdi 2841 . . . . . . 7 (𝜑𝑌 ∈ {𝑥𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)})
46 oveq2 7354 . . . . . . . . . . . 12 (𝑓 = → (𝑀 Σg 𝑓) = (𝑀 Σg ))
4746eqeq2d 2742 . . . . . . . . . . 11 (𝑓 = → (𝑥 = (𝑀 Σg 𝑓) ↔ 𝑥 = (𝑀 Σg )))
4847cbvrexvw 3211 . . . . . . . . . 10 (∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓) ↔ ∃ ∈ Word 𝑃𝑥 = (𝑀 Σg ))
49 eqeq1 2735 . . . . . . . . . . 11 (𝑥 = 𝑌 → (𝑥 = (𝑀 Σg ) ↔ 𝑌 = (𝑀 Σg )))
5049rexbidv 3156 . . . . . . . . . 10 (𝑥 = 𝑌 → (∃ ∈ Word 𝑃𝑥 = (𝑀 Σg ) ↔ ∃ ∈ Word 𝑃𝑌 = (𝑀 Σg )))
5148, 50bitrid 283 . . . . . . . . 9 (𝑥 = 𝑌 → (∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓) ↔ ∃ ∈ Word 𝑃𝑌 = (𝑀 Σg )))
5251elrab3 3648 . . . . . . . 8 (𝑌𝐵 → (𝑌 ∈ {𝑥𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)} ↔ ∃ ∈ Word 𝑃𝑌 = (𝑀 Σg )))
5352biimpa 476 . . . . . . 7 ((𝑌𝐵𝑌 ∈ {𝑥𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)}) → ∃ ∈ Word 𝑃𝑌 = (𝑀 Σg ))
5413, 45, 53syl2anc 584 . . . . . 6 (𝜑 → ∃ ∈ Word 𝑃𝑌 = (𝑀 Σg ))
5554ad2antrr 726 . . . . 5 (((𝜑𝑔 ∈ Word 𝑃) ∧ 𝑋 = (𝑀 Σg 𝑔)) → ∃ ∈ Word 𝑃𝑌 = (𝑀 Σg ))
5644, 55r19.29a 3140 . . . 4 (((𝜑𝑔 ∈ Word 𝑃) ∧ 𝑋 = (𝑀 Σg 𝑔)) → ∃𝑓 ∈ Word 𝑃(𝑋 · 𝑌) = (𝑀 Σg 𝑓))
5710, 8eleqtrdi 2841 . . . . 5 (𝜑𝑋 ∈ {𝑥𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)})
58 oveq2 7354 . . . . . . . . . 10 (𝑓 = 𝑔 → (𝑀 Σg 𝑓) = (𝑀 Σg 𝑔))
5958eqeq2d 2742 . . . . . . . . 9 (𝑓 = 𝑔 → (𝑥 = (𝑀 Σg 𝑓) ↔ 𝑥 = (𝑀 Σg 𝑔)))
6059cbvrexvw 3211 . . . . . . . 8 (∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓) ↔ ∃𝑔 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑔))
61 eqeq1 2735 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑥 = (𝑀 Σg 𝑔) ↔ 𝑋 = (𝑀 Σg 𝑔)))
6261rexbidv 3156 . . . . . . . 8 (𝑥 = 𝑋 → (∃𝑔 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑔) ↔ ∃𝑔 ∈ Word 𝑃𝑋 = (𝑀 Σg 𝑔)))
6360, 62bitrid 283 . . . . . . 7 (𝑥 = 𝑋 → (∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓) ↔ ∃𝑔 ∈ Word 𝑃𝑋 = (𝑀 Σg 𝑔)))
6463elrab3 3648 . . . . . 6 (𝑋𝐵 → (𝑋 ∈ {𝑥𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)} ↔ ∃𝑔 ∈ Word 𝑃𝑋 = (𝑀 Σg 𝑔)))
6564biimpa 476 . . . . 5 ((𝑋𝐵𝑋 ∈ {𝑥𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)}) → ∃𝑔 ∈ Word 𝑃𝑋 = (𝑀 Σg 𝑔))
6611, 57, 65syl2anc 584 . . . 4 (𝜑 → ∃𝑔 ∈ Word 𝑃𝑋 = (𝑀 Σg 𝑔))
6756, 66r19.29a 3140 . . 3 (𝜑 → ∃𝑓 ∈ Word 𝑃(𝑋 · 𝑌) = (𝑀 Σg 𝑓))
682, 14, 67elrabd 3649 . 2 (𝜑 → (𝑋 · 𝑌) ∈ {𝑥𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)})
6968, 8eleqtrrdi 2842 1 (𝜑 → (𝑋 · 𝑌) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  wrex 3056  {crab 3395  wss 3902  cfv 6481  (class class class)co 7346  Word cword 14417   ++ cconcat 14474  Basecbs 17117  .rcmulr 17159  0gc0g 17340   Σg cgsu 17341  Mndcmnd 18639  mulGrpcmgp 20056  Ringcrg 20149  Unitcui 20271  RPrimecrpm 20348  DivRingcdr 20642  UFDcufd 33498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-2 12185  df-n0 12379  df-z 12466  df-uz 12730  df-fz 13405  df-fzo 13552  df-seq 13906  df-hash 14235  df-word 14418  df-concat 14475  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-ress 17139  df-plusg 17171  df-0g 17342  df-gsum 17343  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-submnd 18689  df-mgp 20057  df-ring 20151  df-cring 20152  df-rprm 20349  df-idom 20609  df-ufd 33499
This theorem is referenced by:  1arithufdlem3  33506  1arithufdlem4  33507
  Copyright terms: Public domain W3C validator