Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1arithufdlem2 Structured version   Visualization version   GIF version

Theorem 1arithufdlem2 33492
Description: Lemma for 1arithufd 33495. The set 𝑆 of elements which can be written as a product of primes is multiplicatively closed. (Contributed by Thierry Arnoux, 3-Jun-2025.)
Hypotheses
Ref Expression
1arithufd.b 𝐵 = (Base‘𝑅)
1arithufd.0 0 = (0g𝑅)
1arithufd.u 𝑈 = (Unit‘𝑅)
1arithufd.p 𝑃 = (RPrime‘𝑅)
1arithufd.m 𝑀 = (mulGrp‘𝑅)
1arithufd.r (𝜑𝑅 ∈ UFD)
1arithufdlem.2 (𝜑 → ¬ 𝑅 ∈ DivRing)
1arithufdlem.s 𝑆 = {𝑥𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)}
1arithufdlem2.1 · = (.r𝑅)
1arithufdlem2.2 (𝜑𝑋𝑆)
1arithufdlem2.3 (𝜑𝑌𝑆)
Assertion
Ref Expression
1arithufdlem2 (𝜑 → (𝑋 · 𝑌) ∈ 𝑆)
Distinct variable groups:   0 ,𝑓   𝑥,𝐵   𝑓,𝑀,𝑥   𝑃,𝑓,𝑥   𝑅,𝑓   𝜑,𝑓   · ,𝑓,𝑥   𝑓,𝑋,𝑥   𝑓,𝑌,𝑥   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑓)   𝑅(𝑥)   𝑆(𝑥,𝑓)   𝑈(𝑥,𝑓)   0 (𝑥)

Proof of Theorem 1arithufdlem2
Dummy variables 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2733 . . . 4 (𝑥 = (𝑋 · 𝑌) → (𝑥 = (𝑀 Σg 𝑓) ↔ (𝑋 · 𝑌) = (𝑀 Σg 𝑓)))
21rexbidv 3153 . . 3 (𝑥 = (𝑋 · 𝑌) → (∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓) ↔ ∃𝑓 ∈ Word 𝑃(𝑋 · 𝑌) = (𝑀 Σg 𝑓)))
3 1arithufd.b . . . 4 𝐵 = (Base‘𝑅)
4 1arithufdlem2.1 . . . 4 · = (.r𝑅)
5 1arithufd.r . . . . . 6 (𝜑𝑅 ∈ UFD)
65ufdidom 33489 . . . . 5 (𝜑𝑅 ∈ IDomn)
76idomringd 20631 . . . 4 (𝜑𝑅 ∈ Ring)
8 1arithufdlem.s . . . . . 6 𝑆 = {𝑥𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)}
98ssrab3 4035 . . . . 5 𝑆𝐵
10 1arithufdlem2.2 . . . . 5 (𝜑𝑋𝑆)
119, 10sselid 3935 . . . 4 (𝜑𝑋𝐵)
12 1arithufdlem2.3 . . . . 5 (𝜑𝑌𝑆)
139, 12sselid 3935 . . . 4 (𝜑𝑌𝐵)
143, 4, 7, 11, 13ringcld 20163 . . 3 (𝜑 → (𝑋 · 𝑌) ∈ 𝐵)
15 oveq2 7361 . . . . . . 7 (𝑓 = (𝑔 ++ ) → (𝑀 Σg 𝑓) = (𝑀 Σg (𝑔 ++ )))
1615eqeq2d 2740 . . . . . 6 (𝑓 = (𝑔 ++ ) → ((𝑋 · 𝑌) = (𝑀 Σg 𝑓) ↔ (𝑋 · 𝑌) = (𝑀 Σg (𝑔 ++ ))))
17 ccatcl 14499 . . . . . . 7 ((𝑔 ∈ Word 𝑃 ∈ Word 𝑃) → (𝑔 ++ ) ∈ Word 𝑃)
1817ad5ant24 760 . . . . . 6 (((((𝜑𝑔 ∈ Word 𝑃) ∧ 𝑋 = (𝑀 Σg 𝑔)) ∧ ∈ Word 𝑃) ∧ 𝑌 = (𝑀 Σg )) → (𝑔 ++ ) ∈ Word 𝑃)
19 simpllr 775 . . . . . . . 8 (((((𝜑𝑔 ∈ Word 𝑃) ∧ 𝑋 = (𝑀 Σg 𝑔)) ∧ ∈ Word 𝑃) ∧ 𝑌 = (𝑀 Σg )) → 𝑋 = (𝑀 Σg 𝑔))
20 simpr 484 . . . . . . . 8 (((((𝜑𝑔 ∈ Word 𝑃) ∧ 𝑋 = (𝑀 Σg 𝑔)) ∧ ∈ Word 𝑃) ∧ 𝑌 = (𝑀 Σg )) → 𝑌 = (𝑀 Σg ))
2119, 20oveq12d 7371 . . . . . . 7 (((((𝜑𝑔 ∈ Word 𝑃) ∧ 𝑋 = (𝑀 Σg 𝑔)) ∧ ∈ Word 𝑃) ∧ 𝑌 = (𝑀 Σg )) → (𝑋 · 𝑌) = ((𝑀 Σg 𝑔) · (𝑀 Σg )))
22 1arithufd.m . . . . . . . . . . 11 𝑀 = (mulGrp‘𝑅)
2322ringmgp 20142 . . . . . . . . . 10 (𝑅 ∈ Ring → 𝑀 ∈ Mnd)
247, 23syl 17 . . . . . . . . 9 (𝜑𝑀 ∈ Mnd)
2524ad4antr 732 . . . . . . . 8 (((((𝜑𝑔 ∈ Word 𝑃) ∧ 𝑋 = (𝑀 Σg 𝑔)) ∧ ∈ Word 𝑃) ∧ 𝑌 = (𝑀 Σg )) → 𝑀 ∈ Mnd)
26 1arithufd.p . . . . . . . . . . . . . 14 𝑃 = (RPrime‘𝑅)
275adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥𝑃) → 𝑅 ∈ UFD)
28 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑥𝑃) → 𝑥𝑃)
293, 26, 27, 28rprmcl 33465 . . . . . . . . . . . . 13 ((𝜑𝑥𝑃) → 𝑥𝐵)
3029ex 412 . . . . . . . . . . . 12 (𝜑 → (𝑥𝑃𝑥𝐵))
3130ssrdv 3943 . . . . . . . . . . 11 (𝜑𝑃𝐵)
32 sswrd 14447 . . . . . . . . . . 11 (𝑃𝐵 → Word 𝑃 ⊆ Word 𝐵)
3331, 32syl 17 . . . . . . . . . 10 (𝜑 → Word 𝑃 ⊆ Word 𝐵)
3433ad4antr 732 . . . . . . . . 9 (((((𝜑𝑔 ∈ Word 𝑃) ∧ 𝑋 = (𝑀 Σg 𝑔)) ∧ ∈ Word 𝑃) ∧ 𝑌 = (𝑀 Σg )) → Word 𝑃 ⊆ Word 𝐵)
35 simp-4r 783 . . . . . . . . 9 (((((𝜑𝑔 ∈ Word 𝑃) ∧ 𝑋 = (𝑀 Σg 𝑔)) ∧ ∈ Word 𝑃) ∧ 𝑌 = (𝑀 Σg )) → 𝑔 ∈ Word 𝑃)
3634, 35sseldd 3938 . . . . . . . 8 (((((𝜑𝑔 ∈ Word 𝑃) ∧ 𝑋 = (𝑀 Σg 𝑔)) ∧ ∈ Word 𝑃) ∧ 𝑌 = (𝑀 Σg )) → 𝑔 ∈ Word 𝐵)
37 simplr 768 . . . . . . . . 9 (((((𝜑𝑔 ∈ Word 𝑃) ∧ 𝑋 = (𝑀 Σg 𝑔)) ∧ ∈ Word 𝑃) ∧ 𝑌 = (𝑀 Σg )) → ∈ Word 𝑃)
3834, 37sseldd 3938 . . . . . . . 8 (((((𝜑𝑔 ∈ Word 𝑃) ∧ 𝑋 = (𝑀 Σg 𝑔)) ∧ ∈ Word 𝑃) ∧ 𝑌 = (𝑀 Σg )) → ∈ Word 𝐵)
3922, 3mgpbas 20048 . . . . . . . . 9 𝐵 = (Base‘𝑀)
4022, 4mgpplusg 20047 . . . . . . . . 9 · = (+g𝑀)
4139, 40gsumccat 18733 . . . . . . . 8 ((𝑀 ∈ Mnd ∧ 𝑔 ∈ Word 𝐵 ∈ Word 𝐵) → (𝑀 Σg (𝑔 ++ )) = ((𝑀 Σg 𝑔) · (𝑀 Σg )))
4225, 36, 38, 41syl3anc 1373 . . . . . . 7 (((((𝜑𝑔 ∈ Word 𝑃) ∧ 𝑋 = (𝑀 Σg 𝑔)) ∧ ∈ Word 𝑃) ∧ 𝑌 = (𝑀 Σg )) → (𝑀 Σg (𝑔 ++ )) = ((𝑀 Σg 𝑔) · (𝑀 Σg )))
4321, 42eqtr4d 2767 . . . . . 6 (((((𝜑𝑔 ∈ Word 𝑃) ∧ 𝑋 = (𝑀 Σg 𝑔)) ∧ ∈ Word 𝑃) ∧ 𝑌 = (𝑀 Σg )) → (𝑋 · 𝑌) = (𝑀 Σg (𝑔 ++ )))
4416, 18, 43rspcedvdw 3582 . . . . 5 (((((𝜑𝑔 ∈ Word 𝑃) ∧ 𝑋 = (𝑀 Σg 𝑔)) ∧ ∈ Word 𝑃) ∧ 𝑌 = (𝑀 Σg )) → ∃𝑓 ∈ Word 𝑃(𝑋 · 𝑌) = (𝑀 Σg 𝑓))
4512, 8eleqtrdi 2838 . . . . . . 7 (𝜑𝑌 ∈ {𝑥𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)})
46 oveq2 7361 . . . . . . . . . . . 12 (𝑓 = → (𝑀 Σg 𝑓) = (𝑀 Σg ))
4746eqeq2d 2740 . . . . . . . . . . 11 (𝑓 = → (𝑥 = (𝑀 Σg 𝑓) ↔ 𝑥 = (𝑀 Σg )))
4847cbvrexvw 3208 . . . . . . . . . 10 (∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓) ↔ ∃ ∈ Word 𝑃𝑥 = (𝑀 Σg ))
49 eqeq1 2733 . . . . . . . . . . 11 (𝑥 = 𝑌 → (𝑥 = (𝑀 Σg ) ↔ 𝑌 = (𝑀 Σg )))
5049rexbidv 3153 . . . . . . . . . 10 (𝑥 = 𝑌 → (∃ ∈ Word 𝑃𝑥 = (𝑀 Σg ) ↔ ∃ ∈ Word 𝑃𝑌 = (𝑀 Σg )))
5148, 50bitrid 283 . . . . . . . . 9 (𝑥 = 𝑌 → (∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓) ↔ ∃ ∈ Word 𝑃𝑌 = (𝑀 Σg )))
5251elrab3 3651 . . . . . . . 8 (𝑌𝐵 → (𝑌 ∈ {𝑥𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)} ↔ ∃ ∈ Word 𝑃𝑌 = (𝑀 Σg )))
5352biimpa 476 . . . . . . 7 ((𝑌𝐵𝑌 ∈ {𝑥𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)}) → ∃ ∈ Word 𝑃𝑌 = (𝑀 Σg ))
5413, 45, 53syl2anc 584 . . . . . 6 (𝜑 → ∃ ∈ Word 𝑃𝑌 = (𝑀 Σg ))
5554ad2antrr 726 . . . . 5 (((𝜑𝑔 ∈ Word 𝑃) ∧ 𝑋 = (𝑀 Σg 𝑔)) → ∃ ∈ Word 𝑃𝑌 = (𝑀 Σg ))
5644, 55r19.29a 3137 . . . 4 (((𝜑𝑔 ∈ Word 𝑃) ∧ 𝑋 = (𝑀 Σg 𝑔)) → ∃𝑓 ∈ Word 𝑃(𝑋 · 𝑌) = (𝑀 Σg 𝑓))
5710, 8eleqtrdi 2838 . . . . 5 (𝜑𝑋 ∈ {𝑥𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)})
58 oveq2 7361 . . . . . . . . . 10 (𝑓 = 𝑔 → (𝑀 Σg 𝑓) = (𝑀 Σg 𝑔))
5958eqeq2d 2740 . . . . . . . . 9 (𝑓 = 𝑔 → (𝑥 = (𝑀 Σg 𝑓) ↔ 𝑥 = (𝑀 Σg 𝑔)))
6059cbvrexvw 3208 . . . . . . . 8 (∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓) ↔ ∃𝑔 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑔))
61 eqeq1 2733 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑥 = (𝑀 Σg 𝑔) ↔ 𝑋 = (𝑀 Σg 𝑔)))
6261rexbidv 3153 . . . . . . . 8 (𝑥 = 𝑋 → (∃𝑔 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑔) ↔ ∃𝑔 ∈ Word 𝑃𝑋 = (𝑀 Σg 𝑔)))
6360, 62bitrid 283 . . . . . . 7 (𝑥 = 𝑋 → (∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓) ↔ ∃𝑔 ∈ Word 𝑃𝑋 = (𝑀 Σg 𝑔)))
6463elrab3 3651 . . . . . 6 (𝑋𝐵 → (𝑋 ∈ {𝑥𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)} ↔ ∃𝑔 ∈ Word 𝑃𝑋 = (𝑀 Σg 𝑔)))
6564biimpa 476 . . . . 5 ((𝑋𝐵𝑋 ∈ {𝑥𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)}) → ∃𝑔 ∈ Word 𝑃𝑋 = (𝑀 Σg 𝑔))
6611, 57, 65syl2anc 584 . . . 4 (𝜑 → ∃𝑔 ∈ Word 𝑃𝑋 = (𝑀 Σg 𝑔))
6756, 66r19.29a 3137 . . 3 (𝜑 → ∃𝑓 ∈ Word 𝑃(𝑋 · 𝑌) = (𝑀 Σg 𝑓))
682, 14, 67elrabd 3652 . 2 (𝜑 → (𝑋 · 𝑌) ∈ {𝑥𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)})
6968, 8eleqtrrdi 2839 1 (𝜑 → (𝑋 · 𝑌) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3053  {crab 3396  wss 3905  cfv 6486  (class class class)co 7353  Word cword 14438   ++ cconcat 14495  Basecbs 17138  .rcmulr 17180  0gc0g 17361   Σg cgsu 17362  Mndcmnd 18626  mulGrpcmgp 20043  Ringcrg 20136  Unitcui 20258  RPrimecrpm 20335  DivRingcdr 20632  UFDcufd 33485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-fzo 13576  df-seq 13927  df-hash 14256  df-word 14439  df-concat 14496  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-0g 17363  df-gsum 17364  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-mgp 20044  df-ring 20138  df-cring 20139  df-rprm 20336  df-idom 20599  df-ufd 33486
This theorem is referenced by:  1arithufdlem3  33493  1arithufdlem4  33494
  Copyright terms: Public domain W3C validator