Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1arithufdlem4 Structured version   Visualization version   GIF version

Theorem 1arithufdlem4 33540
Description: Lemma for 1arithufd 33541. Nonzero ring, non-field case. Those trivial cases are handled in the final proof. (Contributed by Thierry Arnoux, 3-Jun-2025.)
Hypotheses
Ref Expression
1arithufd.b 𝐵 = (Base‘𝑅)
1arithufd.0 0 = (0g𝑅)
1arithufd.u 𝑈 = (Unit‘𝑅)
1arithufd.p 𝑃 = (RPrime‘𝑅)
1arithufd.m 𝑀 = (mulGrp‘𝑅)
1arithufd.r (𝜑𝑅 ∈ UFD)
1arithufdlem.2 (𝜑 → ¬ 𝑅 ∈ DivRing)
1arithufdlem.s 𝑆 = {𝑥𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)}
1arithufdlem.3 (𝜑𝑋𝐵)
1arithufdlem.4 (𝜑 → ¬ 𝑋𝑈)
1arithufdlem.5 (𝜑𝑋0 )
Assertion
Ref Expression
1arithufdlem4 (𝜑𝑋𝑆)
Distinct variable groups:   0 ,𝑓   𝑥,𝐵   𝑓,𝑀,𝑥   𝑃,𝑓,𝑥   𝑅,𝑓   𝜑,𝑓   𝑥, 0   𝐵,𝑓   𝑥,𝑅   𝑆,𝑓,𝑥   𝑈,𝑓,𝑥   𝑓,𝑋,𝑥   𝜑,𝑥

Proof of Theorem 1arithufdlem4
Dummy variables 𝑝 𝑦 𝑎 𝑏 𝑖 𝑗 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2744 . . . . . . . . 9 (𝑥 = 𝑎 → (𝑥 = (𝑀 Σg 𝑓) ↔ 𝑎 = (𝑀 Σg 𝑓)))
21rexbidv 3185 . . . . . . . 8 (𝑥 = 𝑎 → (∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓) ↔ ∃𝑓 ∈ Word 𝑃𝑎 = (𝑀 Σg 𝑓)))
3 eqcom 2747 . . . . . . . . 9 (𝑎 = (𝑀 Σg 𝑓) ↔ (𝑀 Σg 𝑓) = 𝑎)
43rexbii 3100 . . . . . . . 8 (∃𝑓 ∈ Word 𝑃𝑎 = (𝑀 Σg 𝑓) ↔ ∃𝑓 ∈ Word 𝑃(𝑀 Σg 𝑓) = 𝑎)
52, 4bitrdi 287 . . . . . . 7 (𝑥 = 𝑎 → (∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓) ↔ ∃𝑓 ∈ Word 𝑃(𝑀 Σg 𝑓) = 𝑎))
6 1arithufd.b . . . . . . . 8 𝐵 = (Base‘𝑅)
7 1arithufd.p . . . . . . . 8 𝑃 = (RPrime‘𝑅)
8 1arithufd.r . . . . . . . . 9 (𝜑𝑅 ∈ UFD)
98adantr 480 . . . . . . . 8 ((𝜑𝑎𝑃) → 𝑅 ∈ UFD)
10 simpr 484 . . . . . . . 8 ((𝜑𝑎𝑃) → 𝑎𝑃)
116, 7, 9, 10rprmcl 33511 . . . . . . 7 ((𝜑𝑎𝑃) → 𝑎𝐵)
12 oveq2 7456 . . . . . . . . 9 (𝑓 = ⟨“𝑎”⟩ → (𝑀 Σg 𝑓) = (𝑀 Σg ⟨“𝑎”⟩))
1312eqeq1d 2742 . . . . . . . 8 (𝑓 = ⟨“𝑎”⟩ → ((𝑀 Σg 𝑓) = 𝑎 ↔ (𝑀 Σg ⟨“𝑎”⟩) = 𝑎))
1410s1cld 14651 . . . . . . . 8 ((𝜑𝑎𝑃) → ⟨“𝑎”⟩ ∈ Word 𝑃)
15 1arithufd.m . . . . . . . . . . 11 𝑀 = (mulGrp‘𝑅)
1615, 6mgpbas 20167 . . . . . . . . . 10 𝐵 = (Base‘𝑀)
1716gsumws1 18873 . . . . . . . . 9 (𝑎𝐵 → (𝑀 Σg ⟨“𝑎”⟩) = 𝑎)
1811, 17syl 17 . . . . . . . 8 ((𝜑𝑎𝑃) → (𝑀 Σg ⟨“𝑎”⟩) = 𝑎)
1913, 14, 18rspcedvdw 3638 . . . . . . 7 ((𝜑𝑎𝑃) → ∃𝑓 ∈ Word 𝑃(𝑀 Σg 𝑓) = 𝑎)
205, 11, 19elrabd 3710 . . . . . 6 ((𝜑𝑎𝑃) → 𝑎 ∈ {𝑥𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)})
21 1arithufdlem.s . . . . . 6 𝑆 = {𝑥𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)}
2220, 21eleqtrrdi 2855 . . . . 5 ((𝜑𝑎𝑃) → 𝑎𝑆)
2322ex 412 . . . 4 (𝜑 → (𝑎𝑃𝑎𝑆))
2423ssrdv 4014 . . 3 (𝜑𝑃𝑆)
2524adantr 480 . 2 ((𝜑 ∧ ¬ 𝑋𝑆) → 𝑃𝑆)
26 anass 468 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ↔ ((𝜑 ∧ ¬ 𝑋𝑆) ∧ (𝑖 ∈ (LIdeal‘𝑅) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖))))
27 ineq2 4235 . . . . . . . . . . 11 (𝑝 = 𝑖 → (𝑆𝑝) = (𝑆𝑖))
2827eqeq1d 2742 . . . . . . . . . 10 (𝑝 = 𝑖 → ((𝑆𝑝) = ∅ ↔ (𝑆𝑖) = ∅))
29 sseq2 4035 . . . . . . . . . 10 (𝑝 = 𝑖 → (((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝 ↔ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖))
3028, 29anbi12d 631 . . . . . . . . 9 (𝑝 = 𝑖 → (((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝) ↔ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)))
3130elrab 3708 . . . . . . . 8 (𝑖 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ↔ (𝑖 ∈ (LIdeal‘𝑅) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)))
3231anbi2i 622 . . . . . . 7 (((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)}) ↔ ((𝜑 ∧ ¬ 𝑋𝑆) ∧ (𝑖 ∈ (LIdeal‘𝑅) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖))))
3326, 32bitr4i 278 . . . . . 6 ((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ↔ ((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)}))
3433anbi1i 623 . . . . 5 (((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ↔ (((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)}) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)))
35 incom 4230 . . . . . . 7 (𝑖𝑆) = (𝑆𝑖)
36 simpllr 775 . . . . . . . 8 ((((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖𝑗) → ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖))
3736simpld 494 . . . . . . 7 ((((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖𝑗) → (𝑆𝑖) = ∅)
3835, 37eqtrid 2792 . . . . . 6 ((((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖𝑗) → (𝑖𝑆) = ∅)
398ad5antr 733 . . . . . . 7 ((((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖𝑗) → 𝑅 ∈ UFD)
40 simplr 768 . . . . . . . 8 ((((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖𝑗) → 𝑖 ∈ (PrmIdeal‘𝑅))
4136simprd 495 . . . . . . . . . 10 ((((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖𝑗) → ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)
428ufdidom 33535 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ IDomn)
4342idomringd 20750 . . . . . . . . . . . 12 (𝜑𝑅 ∈ Ring)
44 1arithufdlem.3 . . . . . . . . . . . 12 (𝜑𝑋𝐵)
45 eqid 2740 . . . . . . . . . . . . 13 (RSpan‘𝑅) = (RSpan‘𝑅)
466, 45rspsnid 33364 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → 𝑋 ∈ ((RSpan‘𝑅)‘{𝑋}))
4743, 44, 46syl2anc 583 . . . . . . . . . . 11 (𝜑𝑋 ∈ ((RSpan‘𝑅)‘{𝑋}))
4847ad5antr 733 . . . . . . . . . 10 ((((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖𝑗) → 𝑋 ∈ ((RSpan‘𝑅)‘{𝑋}))
4941, 48sseldd 4009 . . . . . . . . 9 ((((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖𝑗) → 𝑋𝑖)
50 1arithufdlem.5 . . . . . . . . . . 11 (𝜑𝑋0 )
51 nelsn 4688 . . . . . . . . . . 11 (𝑋0 → ¬ 𝑋 ∈ { 0 })
5250, 51syl 17 . . . . . . . . . 10 (𝜑 → ¬ 𝑋 ∈ { 0 })
5352ad5antr 733 . . . . . . . . 9 ((((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖𝑗) → ¬ 𝑋 ∈ { 0 })
54 nelne1 3045 . . . . . . . . 9 ((𝑋𝑖 ∧ ¬ 𝑋 ∈ { 0 }) → 𝑖 ≠ { 0 })
5549, 53, 54syl2anc 583 . . . . . . . 8 ((((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖𝑗) → 𝑖 ≠ { 0 })
5640, 55eldifsnd 4812 . . . . . . 7 ((((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖𝑗) → 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }}))
57 ineq1 4234 . . . . . . . . 9 (𝑗 = 𝑖 → (𝑗𝑃) = (𝑖𝑃))
5857neeq1d 3006 . . . . . . . 8 (𝑗 = 𝑖 → ((𝑗𝑃) ≠ ∅ ↔ (𝑖𝑃) ≠ ∅))
59 eqid 2740 . . . . . . . . . . 11 (PrmIdeal‘𝑅) = (PrmIdeal‘𝑅)
60 1arithufd.0 . . . . . . . . . . 11 0 = (0g𝑅)
6159, 7, 60isufd 33533 . . . . . . . . . 10 (𝑅 ∈ UFD ↔ (𝑅 ∈ IDomn ∧ ∀𝑗 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})(𝑗𝑃) ≠ ∅))
6261simprbi 496 . . . . . . . . 9 (𝑅 ∈ UFD → ∀𝑗 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})(𝑗𝑃) ≠ ∅)
6362adantr 480 . . . . . . . 8 ((𝑅 ∈ UFD ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → ∀𝑗 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})(𝑗𝑃) ≠ ∅)
64 simpr 484 . . . . . . . 8 ((𝑅 ∈ UFD ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }}))
6558, 63, 64rspcdva 3636 . . . . . . 7 ((𝑅 ∈ UFD ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → (𝑖𝑃) ≠ ∅)
6639, 56, 65syl2anc 583 . . . . . 6 ((((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖𝑗) → (𝑖𝑃) ≠ ∅)
67 sseq0 4426 . . . . . . . . 9 (((𝑖𝑃) ⊆ (𝑖𝑆) ∧ (𝑖𝑆) = ∅) → (𝑖𝑃) = ∅)
6867expcom 413 . . . . . . . 8 ((𝑖𝑆) = ∅ → ((𝑖𝑃) ⊆ (𝑖𝑆) → (𝑖𝑃) = ∅))
6968necon3ad 2959 . . . . . . 7 ((𝑖𝑆) = ∅ → ((𝑖𝑃) ≠ ∅ → ¬ (𝑖𝑃) ⊆ (𝑖𝑆)))
70 sslin 4264 . . . . . . . 8 (𝑃𝑆 → (𝑖𝑃) ⊆ (𝑖𝑆))
7170con3i 154 . . . . . . 7 (¬ (𝑖𝑃) ⊆ (𝑖𝑆) → ¬ 𝑃𝑆)
7269, 71syl6 35 . . . . . 6 ((𝑖𝑆) = ∅ → ((𝑖𝑃) ≠ ∅ → ¬ 𝑃𝑆))
7338, 66, 72sylc 65 . . . . 5 ((((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖𝑗) → ¬ 𝑃𝑆)
7434, 73sylanbr 581 . . . 4 (((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)}) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖𝑗) → ¬ 𝑃𝑆)
7574anasss 466 . . 3 ((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)}) ∧ (𝑖 ∈ (PrmIdeal‘𝑅) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖𝑗)) → ¬ 𝑃𝑆)
7642idomcringd 20749 . . . . 5 (𝜑𝑅 ∈ CRing)
7776adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝑋𝑆) → 𝑅 ∈ CRing)
7843adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝑋𝑆) → 𝑅 ∈ Ring)
7944adantr 480 . . . . . 6 ((𝜑 ∧ ¬ 𝑋𝑆) → 𝑋𝐵)
8079snssd 4834 . . . . 5 ((𝜑 ∧ ¬ 𝑋𝑆) → {𝑋} ⊆ 𝐵)
81 eqid 2740 . . . . . 6 (LIdeal‘𝑅) = (LIdeal‘𝑅)
8245, 6, 81rspcl 21268 . . . . 5 ((𝑅 ∈ Ring ∧ {𝑋} ⊆ 𝐵) → ((RSpan‘𝑅)‘{𝑋}) ∈ (LIdeal‘𝑅))
8378, 80, 82syl2anc 583 . . . 4 ((𝜑 ∧ ¬ 𝑋𝑆) → ((RSpan‘𝑅)‘{𝑋}) ∈ (LIdeal‘𝑅))
8415ringmgp 20266 . . . . . . 7 (𝑅 ∈ Ring → 𝑀 ∈ Mnd)
8543, 84syl 17 . . . . . 6 (𝜑𝑀 ∈ Mnd)
8621ssrab3 4105 . . . . . . 7 𝑆𝐵
8786a1i 11 . . . . . 6 (𝜑𝑆𝐵)
88 eqeq1 2744 . . . . . . . . . 10 (𝑥 = (1r𝑅) → (𝑥 = (𝑀 Σg 𝑓) ↔ (1r𝑅) = (𝑀 Σg 𝑓)))
8988rexbidv 3185 . . . . . . . . 9 (𝑥 = (1r𝑅) → (∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓) ↔ ∃𝑓 ∈ Word 𝑃(1r𝑅) = (𝑀 Σg 𝑓)))
90 eqcom 2747 . . . . . . . . . 10 ((1r𝑅) = (𝑀 Σg 𝑓) ↔ (𝑀 Σg 𝑓) = (1r𝑅))
9190rexbii 3100 . . . . . . . . 9 (∃𝑓 ∈ Word 𝑃(1r𝑅) = (𝑀 Σg 𝑓) ↔ ∃𝑓 ∈ Word 𝑃(𝑀 Σg 𝑓) = (1r𝑅))
9289, 91bitrdi 287 . . . . . . . 8 (𝑥 = (1r𝑅) → (∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓) ↔ ∃𝑓 ∈ Word 𝑃(𝑀 Σg 𝑓) = (1r𝑅)))
93 eqid 2740 . . . . . . . . . 10 (1r𝑅) = (1r𝑅)
946, 93ringidcl 20289 . . . . . . . . 9 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
9543, 94syl 17 . . . . . . . 8 (𝜑 → (1r𝑅) ∈ 𝐵)
96 oveq2 7456 . . . . . . . . . 10 (𝑓 = ∅ → (𝑀 Σg 𝑓) = (𝑀 Σg ∅))
9796eqeq1d 2742 . . . . . . . . 9 (𝑓 = ∅ → ((𝑀 Σg 𝑓) = (1r𝑅) ↔ (𝑀 Σg ∅) = (1r𝑅)))
98 wrd0 14587 . . . . . . . . . 10 ∅ ∈ Word 𝑃
9998a1i 11 . . . . . . . . 9 (𝜑 → ∅ ∈ Word 𝑃)
10015, 93ringidval 20210 . . . . . . . . . . 11 (1r𝑅) = (0g𝑀)
101100gsum0 18722 . . . . . . . . . 10 (𝑀 Σg ∅) = (1r𝑅)
102101a1i 11 . . . . . . . . 9 (𝜑 → (𝑀 Σg ∅) = (1r𝑅))
10397, 99, 102rspcedvdw 3638 . . . . . . . 8 (𝜑 → ∃𝑓 ∈ Word 𝑃(𝑀 Σg 𝑓) = (1r𝑅))
10492, 95, 103elrabd 3710 . . . . . . 7 (𝜑 → (1r𝑅) ∈ {𝑥𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)})
105104, 21eleqtrrdi 2855 . . . . . 6 (𝜑 → (1r𝑅) ∈ 𝑆)
106 1arithufd.u . . . . . . . . 9 𝑈 = (Unit‘𝑅)
1078ad2antrr 725 . . . . . . . . 9 (((𝜑𝑎𝑆) ∧ 𝑏𝑆) → 𝑅 ∈ UFD)
108 1arithufdlem.2 . . . . . . . . . 10 (𝜑 → ¬ 𝑅 ∈ DivRing)
109108ad2antrr 725 . . . . . . . . 9 (((𝜑𝑎𝑆) ∧ 𝑏𝑆) → ¬ 𝑅 ∈ DivRing)
110 eqid 2740 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
111 simplr 768 . . . . . . . . 9 (((𝜑𝑎𝑆) ∧ 𝑏𝑆) → 𝑎𝑆)
112 simpr 484 . . . . . . . . 9 (((𝜑𝑎𝑆) ∧ 𝑏𝑆) → 𝑏𝑆)
1136, 60, 106, 7, 15, 107, 109, 21, 110, 111, 1121arithufdlem2 33538 . . . . . . . 8 (((𝜑𝑎𝑆) ∧ 𝑏𝑆) → (𝑎(.r𝑅)𝑏) ∈ 𝑆)
114113anasss 466 . . . . . . 7 ((𝜑 ∧ (𝑎𝑆𝑏𝑆)) → (𝑎(.r𝑅)𝑏) ∈ 𝑆)
115114ralrimivva 3208 . . . . . 6 (𝜑 → ∀𝑎𝑆𝑏𝑆 (𝑎(.r𝑅)𝑏) ∈ 𝑆)
11615, 110mgpplusg 20165 . . . . . . . 8 (.r𝑅) = (+g𝑀)
11716, 100, 116issubm 18838 . . . . . . 7 (𝑀 ∈ Mnd → (𝑆 ∈ (SubMnd‘𝑀) ↔ (𝑆𝐵 ∧ (1r𝑅) ∈ 𝑆 ∧ ∀𝑎𝑆𝑏𝑆 (𝑎(.r𝑅)𝑏) ∈ 𝑆)))
118117biimpar 477 . . . . . 6 ((𝑀 ∈ Mnd ∧ (𝑆𝐵 ∧ (1r𝑅) ∈ 𝑆 ∧ ∀𝑎𝑆𝑏𝑆 (𝑎(.r𝑅)𝑏) ∈ 𝑆)) → 𝑆 ∈ (SubMnd‘𝑀))
11985, 87, 105, 115, 118syl13anc 1372 . . . . 5 (𝜑𝑆 ∈ (SubMnd‘𝑀))
120119adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝑋𝑆) → 𝑆 ∈ (SubMnd‘𝑀))
121 neq0 4375 . . . . . . . . 9 (¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅ ↔ ∃𝑢 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})))
122121biimpi 216 . . . . . . . 8 (¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅ → ∃𝑢 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})))
123122adantl 481 . . . . . . 7 ((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) → ∃𝑢 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})))
1248ad4antr 731 . . . . . . . . 9 (((((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) ∧ 𝑦𝐵) ∧ 𝑢 = (𝑦(.r𝑅)𝑋)) → 𝑅 ∈ UFD)
125108ad4antr 731 . . . . . . . . 9 (((((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) ∧ 𝑦𝐵) ∧ 𝑢 = (𝑦(.r𝑅)𝑋)) → ¬ 𝑅 ∈ DivRing)
12644ad4antr 731 . . . . . . . . 9 (((((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) ∧ 𝑦𝐵) ∧ 𝑢 = (𝑦(.r𝑅)𝑋)) → 𝑋𝐵)
127 1arithufdlem.4 . . . . . . . . . 10 (𝜑 → ¬ 𝑋𝑈)
128127ad4antr 731 . . . . . . . . 9 (((((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) ∧ 𝑦𝐵) ∧ 𝑢 = (𝑦(.r𝑅)𝑋)) → ¬ 𝑋𝑈)
12950ad4antr 731 . . . . . . . . 9 (((((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) ∧ 𝑦𝐵) ∧ 𝑢 = (𝑦(.r𝑅)𝑋)) → 𝑋0 )
130 simplr 768 . . . . . . . . 9 (((((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) ∧ 𝑦𝐵) ∧ 𝑢 = (𝑦(.r𝑅)𝑋)) → 𝑦𝐵)
131 simpr 484 . . . . . . . . . 10 (((((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) ∧ 𝑦𝐵) ∧ 𝑢 = (𝑦(.r𝑅)𝑋)) → 𝑢 = (𝑦(.r𝑅)𝑋))
132 simpllr 775 . . . . . . . . . . 11 (((((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) ∧ 𝑦𝐵) ∧ 𝑢 = (𝑦(.r𝑅)𝑋)) → 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})))
133132elin1d 4227 . . . . . . . . . 10 (((((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) ∧ 𝑦𝐵) ∧ 𝑢 = (𝑦(.r𝑅)𝑋)) → 𝑢𝑆)
134131, 133eqeltrrd 2845 . . . . . . . . 9 (((((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) ∧ 𝑦𝐵) ∧ 𝑢 = (𝑦(.r𝑅)𝑋)) → (𝑦(.r𝑅)𝑋) ∈ 𝑆)
1356, 60, 106, 7, 15, 124, 125, 21, 126, 128, 129, 110, 130, 1341arithufdlem3 33539 . . . . . . . 8 (((((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) ∧ 𝑦𝐵) ∧ 𝑢 = (𝑦(.r𝑅)𝑋)) → 𝑋𝑆)
13643ad2antrr 725 . . . . . . . . 9 (((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) → 𝑅 ∈ Ring)
13744ad2antrr 725 . . . . . . . . 9 (((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) → 𝑋𝐵)
138 simpr 484 . . . . . . . . . 10 (((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) → 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})))
139138elin2d 4228 . . . . . . . . 9 (((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) → 𝑢 ∈ ((RSpan‘𝑅)‘{𝑋}))
1406, 110, 45elrspsn 21273 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑢 ∈ ((RSpan‘𝑅)‘{𝑋}) ↔ ∃𝑦𝐵 𝑢 = (𝑦(.r𝑅)𝑋)))
141140biimpa 476 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ 𝑢 ∈ ((RSpan‘𝑅)‘{𝑋})) → ∃𝑦𝐵 𝑢 = (𝑦(.r𝑅)𝑋))
142136, 137, 139, 141syl21anc 837 . . . . . . . 8 (((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) → ∃𝑦𝐵 𝑢 = (𝑦(.r𝑅)𝑋))
143135, 142r19.29a 3168 . . . . . . 7 (((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) → 𝑋𝑆)
144123, 143exlimddv 1934 . . . . . 6 ((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) → 𝑋𝑆)
145144adantlr 714 . . . . 5 (((𝜑 ∧ ¬ 𝑋𝑆) ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) → 𝑋𝑆)
146 simplr 768 . . . . 5 (((𝜑 ∧ ¬ 𝑋𝑆) ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) → ¬ 𝑋𝑆)
147145, 146condan 817 . . . 4 ((𝜑 ∧ ¬ 𝑋𝑆) → (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅)
148 eqid 2740 . . . 4 {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} = {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)}
1496, 77, 83, 120, 15, 147, 148ssdifidlprm 33451 . . 3 ((𝜑 ∧ ¬ 𝑋𝑆) → ∃𝑖 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} (𝑖 ∈ (PrmIdeal‘𝑅) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖𝑗))
15075, 149r19.29a 3168 . 2 ((𝜑 ∧ ¬ 𝑋𝑆) → ¬ 𝑃𝑆)
15125, 150condan 817 1 (𝜑𝑋𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087   = wceq 1537  wex 1777  wcel 2108  wne 2946  wral 3067  wrex 3076  {crab 3443  cdif 3973  cin 3975  wss 3976  wpss 3977  c0 4352  {csn 4648  cfv 6573  (class class class)co 7448  Word cword 14562  ⟨“cs1 14643  Basecbs 17258  .rcmulr 17312  0gc0g 17499   Σg cgsu 17500  Mndcmnd 18772  SubMndcsubmnd 18817  mulGrpcmgp 20161  1rcur 20208  Ringcrg 20260  CRingccrg 20261  Unitcui 20381  RPrimecrpm 20458  IDomncidom 20715  DivRingcdr 20751  LIdealclidl 21239  RSpancrsp 21240  PrmIdealcprmidl 33428  UFDcufd 33531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-ac2 10532  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-rpss 7758  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-oi 9579  df-dju 9970  df-card 10008  df-ac 10185  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-word 14563  df-lsw 14611  df-concat 14619  df-s1 14644  df-substr 14689  df-pfx 14719  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-0g 17501  df-gsum 17502  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-subg 19163  df-cntz 19357  df-lsm 19678  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-rprm 20459  df-nzr 20539  df-subrg 20597  df-domn 20717  df-idom 20718  df-lmod 20882  df-lss 20953  df-lsp 20993  df-sra 21195  df-rgmod 21196  df-lidl 21241  df-rsp 21242  df-prmidl 33429  df-ufd 33532
This theorem is referenced by:  1arithufd  33541
  Copyright terms: Public domain W3C validator