Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1arithufdlem4 Structured version   Visualization version   GIF version

Theorem 1arithufdlem4 33362
Description: Lemma for 1arithufd 33363. Nonzero ring, non-field case. Those trivial cases are handled in the final proof. (Contributed by Thierry Arnoux, 3-Jun-2025.)
Hypotheses
Ref Expression
1arithufd.b 𝐵 = (Base‘𝑅)
1arithufd.0 0 = (0g𝑅)
1arithufd.u 𝑈 = (Unit‘𝑅)
1arithufd.p 𝑃 = (RPrime‘𝑅)
1arithufd.m 𝑀 = (mulGrp‘𝑅)
1arithufd.r (𝜑𝑅 ∈ UFD)
1arithufdlem.1 (𝜑𝑅 ∈ NzRing)
1arithufdlem.2 (𝜑 → ¬ 𝑅 ∈ DivRing)
1arithufdlem.s 𝑆 = {𝑥𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)}
1arithufdlem.3 (𝜑𝑋𝐵)
1arithufdlem.4 (𝜑 → ¬ 𝑋𝑈)
1arithufdlem.5 (𝜑𝑋0 )
Assertion
Ref Expression
1arithufdlem4 (𝜑𝑋𝑆)
Distinct variable groups:   0 ,𝑓   𝑥,𝐵   𝑓,𝑀,𝑥   𝑃,𝑓,𝑥   𝑅,𝑓   𝜑,𝑓   𝑥, 0   𝐵,𝑓   𝑥,𝑅   𝑆,𝑓,𝑥   𝑈,𝑓,𝑥   𝑓,𝑋,𝑥   𝜑,𝑥

Proof of Theorem 1arithufdlem4
Dummy variables 𝑝 𝑦 𝑢 𝑎 𝑏 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2729 . . . . . . . . 9 (𝑥 = 𝑎 → (𝑥 = (𝑀 Σg 𝑓) ↔ 𝑎 = (𝑀 Σg 𝑓)))
21rexbidv 3168 . . . . . . . 8 (𝑥 = 𝑎 → (∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓) ↔ ∃𝑓 ∈ Word 𝑃𝑎 = (𝑀 Σg 𝑓)))
3 eqcom 2732 . . . . . . . . 9 (𝑎 = (𝑀 Σg 𝑓) ↔ (𝑀 Σg 𝑓) = 𝑎)
43rexbii 3083 . . . . . . . 8 (∃𝑓 ∈ Word 𝑃𝑎 = (𝑀 Σg 𝑓) ↔ ∃𝑓 ∈ Word 𝑃(𝑀 Σg 𝑓) = 𝑎)
52, 4bitrdi 286 . . . . . . 7 (𝑥 = 𝑎 → (∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓) ↔ ∃𝑓 ∈ Word 𝑃(𝑀 Σg 𝑓) = 𝑎))
6 1arithufd.b . . . . . . . 8 𝐵 = (Base‘𝑅)
7 1arithufd.p . . . . . . . 8 𝑃 = (RPrime‘𝑅)
8 1arithufd.r . . . . . . . . 9 (𝜑𝑅 ∈ UFD)
98adantr 479 . . . . . . . 8 ((𝜑𝑎𝑃) → 𝑅 ∈ UFD)
10 simpr 483 . . . . . . . 8 ((𝜑𝑎𝑃) → 𝑎𝑃)
116, 7, 9, 10rprmcl 33330 . . . . . . 7 ((𝜑𝑎𝑃) → 𝑎𝐵)
12 oveq2 7427 . . . . . . . . 9 (𝑓 = ⟨“𝑎”⟩ → (𝑀 Σg 𝑓) = (𝑀 Σg ⟨“𝑎”⟩))
1312eqeq1d 2727 . . . . . . . 8 (𝑓 = ⟨“𝑎”⟩ → ((𝑀 Σg 𝑓) = 𝑎 ↔ (𝑀 Σg ⟨“𝑎”⟩) = 𝑎))
1410s1cld 14589 . . . . . . . 8 ((𝜑𝑎𝑃) → ⟨“𝑎”⟩ ∈ Word 𝑃)
15 1arithufd.m . . . . . . . . . . 11 𝑀 = (mulGrp‘𝑅)
1615, 6mgpbas 20092 . . . . . . . . . 10 𝐵 = (Base‘𝑀)
1716gsumws1 18798 . . . . . . . . 9 (𝑎𝐵 → (𝑀 Σg ⟨“𝑎”⟩) = 𝑎)
1811, 17syl 17 . . . . . . . 8 ((𝜑𝑎𝑃) → (𝑀 Σg ⟨“𝑎”⟩) = 𝑎)
1913, 14, 18rspcedvdw 3609 . . . . . . 7 ((𝜑𝑎𝑃) → ∃𝑓 ∈ Word 𝑃(𝑀 Σg 𝑓) = 𝑎)
205, 11, 19elrabd 3681 . . . . . 6 ((𝜑𝑎𝑃) → 𝑎 ∈ {𝑥𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)})
21 1arithufdlem.s . . . . . 6 𝑆 = {𝑥𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)}
2220, 21eleqtrrdi 2836 . . . . 5 ((𝜑𝑎𝑃) → 𝑎𝑆)
2322ex 411 . . . 4 (𝜑 → (𝑎𝑃𝑎𝑆))
2423ssrdv 3982 . . 3 (𝜑𝑃𝑆)
2524adantr 479 . 2 ((𝜑 ∧ ¬ 𝑋𝑆) → 𝑃𝑆)
26 anass 467 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ↔ ((𝜑 ∧ ¬ 𝑋𝑆) ∧ (𝑖 ∈ (LIdeal‘𝑅) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖))))
27 ineq2 4204 . . . . . . . . . . 11 (𝑝 = 𝑖 → (𝑆𝑝) = (𝑆𝑖))
2827eqeq1d 2727 . . . . . . . . . 10 (𝑝 = 𝑖 → ((𝑆𝑝) = ∅ ↔ (𝑆𝑖) = ∅))
29 sseq2 4003 . . . . . . . . . 10 (𝑝 = 𝑖 → (((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝 ↔ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖))
3028, 29anbi12d 630 . . . . . . . . 9 (𝑝 = 𝑖 → (((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝) ↔ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)))
3130elrab 3679 . . . . . . . 8 (𝑖 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ↔ (𝑖 ∈ (LIdeal‘𝑅) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)))
3231anbi2i 621 . . . . . . 7 (((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)}) ↔ ((𝜑 ∧ ¬ 𝑋𝑆) ∧ (𝑖 ∈ (LIdeal‘𝑅) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖))))
3326, 32bitr4i 277 . . . . . 6 ((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ↔ ((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)}))
3433anbi1i 622 . . . . 5 (((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ↔ (((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)}) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)))
35 incom 4199 . . . . . . 7 (𝑖𝑆) = (𝑆𝑖)
36 simpllr 774 . . . . . . . 8 ((((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖𝑗) → ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖))
3736simpld 493 . . . . . . 7 ((((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖𝑗) → (𝑆𝑖) = ∅)
3835, 37eqtrid 2777 . . . . . 6 ((((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖𝑗) → (𝑖𝑆) = ∅)
39 1arithufdlem.1 . . . . . . . 8 (𝜑𝑅 ∈ NzRing)
4039ad5antr 732 . . . . . . 7 ((((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖𝑗) → 𝑅 ∈ NzRing)
418ad5antr 732 . . . . . . 7 ((((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖𝑗) → 𝑅 ∈ UFD)
42 simplr 767 . . . . . . . 8 ((((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖𝑗) → 𝑖 ∈ (PrmIdeal‘𝑅))
4336simprd 494 . . . . . . . . . 10 ((((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖𝑗) → ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)
448ufdcringd 33356 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ CRing)
4544crngringd 20198 . . . . . . . . . . . 12 (𝜑𝑅 ∈ Ring)
46 1arithufdlem.3 . . . . . . . . . . . 12 (𝜑𝑋𝐵)
47 eqid 2725 . . . . . . . . . . . . 13 (RSpan‘𝑅) = (RSpan‘𝑅)
486, 47rspsnid 33183 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → 𝑋 ∈ ((RSpan‘𝑅)‘{𝑋}))
4945, 46, 48syl2anc 582 . . . . . . . . . . 11 (𝜑𝑋 ∈ ((RSpan‘𝑅)‘{𝑋}))
5049ad5antr 732 . . . . . . . . . 10 ((((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖𝑗) → 𝑋 ∈ ((RSpan‘𝑅)‘{𝑋}))
5143, 50sseldd 3977 . . . . . . . . 9 ((((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖𝑗) → 𝑋𝑖)
52 1arithufdlem.5 . . . . . . . . . . 11 (𝜑𝑋0 )
53 nelsn 4670 . . . . . . . . . . 11 (𝑋0 → ¬ 𝑋 ∈ { 0 })
5452, 53syl 17 . . . . . . . . . 10 (𝜑 → ¬ 𝑋 ∈ { 0 })
5554ad5antr 732 . . . . . . . . 9 ((((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖𝑗) → ¬ 𝑋 ∈ { 0 })
56 nelne1 3028 . . . . . . . . 9 ((𝑋𝑖 ∧ ¬ 𝑋 ∈ { 0 }) → 𝑖 ≠ { 0 })
5751, 55, 56syl2anc 582 . . . . . . . 8 ((((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖𝑗) → 𝑖 ≠ { 0 })
5842, 57eldifsnd 32393 . . . . . . 7 ((((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖𝑗) → 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }}))
59 ineq1 4203 . . . . . . . . 9 (𝑗 = 𝑖 → (𝑗𝑃) = (𝑖𝑃))
6059neeq1d 2989 . . . . . . . 8 (𝑗 = 𝑖 → ((𝑗𝑃) ≠ ∅ ↔ (𝑖𝑃) ≠ ∅))
61 eqid 2725 . . . . . . . . . . 11 (PrmIdeal‘𝑅) = (PrmIdeal‘𝑅)
62 1arithufd.0 . . . . . . . . . . 11 0 = (0g𝑅)
6361, 7, 62isufd2 33353 . . . . . . . . . 10 (𝑅 ∈ NzRing → (𝑅 ∈ UFD ↔ (𝑅 ∈ IDomn ∧ ∀𝑗 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})(𝑗𝑃) ≠ ∅)))
6463simplbda 498 . . . . . . . . 9 ((𝑅 ∈ NzRing ∧ 𝑅 ∈ UFD) → ∀𝑗 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})(𝑗𝑃) ≠ ∅)
6564adantr 479 . . . . . . . 8 (((𝑅 ∈ NzRing ∧ 𝑅 ∈ UFD) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → ∀𝑗 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})(𝑗𝑃) ≠ ∅)
66 simpr 483 . . . . . . . 8 (((𝑅 ∈ NzRing ∧ 𝑅 ∈ UFD) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }}))
6760, 65, 66rspcdva 3607 . . . . . . 7 (((𝑅 ∈ NzRing ∧ 𝑅 ∈ UFD) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → (𝑖𝑃) ≠ ∅)
6840, 41, 58, 67syl21anc 836 . . . . . 6 ((((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖𝑗) → (𝑖𝑃) ≠ ∅)
69 sseq0 4401 . . . . . . . . 9 (((𝑖𝑃) ⊆ (𝑖𝑆) ∧ (𝑖𝑆) = ∅) → (𝑖𝑃) = ∅)
7069expcom 412 . . . . . . . 8 ((𝑖𝑆) = ∅ → ((𝑖𝑃) ⊆ (𝑖𝑆) → (𝑖𝑃) = ∅))
7170necon3ad 2942 . . . . . . 7 ((𝑖𝑆) = ∅ → ((𝑖𝑃) ≠ ∅ → ¬ (𝑖𝑃) ⊆ (𝑖𝑆)))
72 sslin 4233 . . . . . . . 8 (𝑃𝑆 → (𝑖𝑃) ⊆ (𝑖𝑆))
7372con3i 154 . . . . . . 7 (¬ (𝑖𝑃) ⊆ (𝑖𝑆) → ¬ 𝑃𝑆)
7471, 73syl6 35 . . . . . 6 ((𝑖𝑆) = ∅ → ((𝑖𝑃) ≠ ∅ → ¬ 𝑃𝑆))
7538, 68, 74sylc 65 . . . . 5 ((((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖𝑗) → ¬ 𝑃𝑆)
7634, 75sylanbr 580 . . . 4 (((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)}) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖𝑗) → ¬ 𝑃𝑆)
7776anasss 465 . . 3 ((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)}) ∧ (𝑖 ∈ (PrmIdeal‘𝑅) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖𝑗)) → ¬ 𝑃𝑆)
7844adantr 479 . . . 4 ((𝜑 ∧ ¬ 𝑋𝑆) → 𝑅 ∈ CRing)
7945adantr 479 . . . . 5 ((𝜑 ∧ ¬ 𝑋𝑆) → 𝑅 ∈ Ring)
8046adantr 479 . . . . . 6 ((𝜑 ∧ ¬ 𝑋𝑆) → 𝑋𝐵)
8180snssd 4814 . . . . 5 ((𝜑 ∧ ¬ 𝑋𝑆) → {𝑋} ⊆ 𝐵)
82 eqid 2725 . . . . . 6 (LIdeal‘𝑅) = (LIdeal‘𝑅)
8347, 6, 82rspcl 21143 . . . . 5 ((𝑅 ∈ Ring ∧ {𝑋} ⊆ 𝐵) → ((RSpan‘𝑅)‘{𝑋}) ∈ (LIdeal‘𝑅))
8479, 81, 83syl2anc 582 . . . 4 ((𝜑 ∧ ¬ 𝑋𝑆) → ((RSpan‘𝑅)‘{𝑋}) ∈ (LIdeal‘𝑅))
8515ringmgp 20191 . . . . . . 7 (𝑅 ∈ Ring → 𝑀 ∈ Mnd)
8645, 85syl 17 . . . . . 6 (𝜑𝑀 ∈ Mnd)
8721ssrab3 4076 . . . . . . 7 𝑆𝐵
8887a1i 11 . . . . . 6 (𝜑𝑆𝐵)
89 eqeq1 2729 . . . . . . . . . 10 (𝑥 = (1r𝑅) → (𝑥 = (𝑀 Σg 𝑓) ↔ (1r𝑅) = (𝑀 Σg 𝑓)))
9089rexbidv 3168 . . . . . . . . 9 (𝑥 = (1r𝑅) → (∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓) ↔ ∃𝑓 ∈ Word 𝑃(1r𝑅) = (𝑀 Σg 𝑓)))
91 eqcom 2732 . . . . . . . . . 10 ((1r𝑅) = (𝑀 Σg 𝑓) ↔ (𝑀 Σg 𝑓) = (1r𝑅))
9291rexbii 3083 . . . . . . . . 9 (∃𝑓 ∈ Word 𝑃(1r𝑅) = (𝑀 Σg 𝑓) ↔ ∃𝑓 ∈ Word 𝑃(𝑀 Σg 𝑓) = (1r𝑅))
9390, 92bitrdi 286 . . . . . . . 8 (𝑥 = (1r𝑅) → (∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓) ↔ ∃𝑓 ∈ Word 𝑃(𝑀 Σg 𝑓) = (1r𝑅)))
94 eqid 2725 . . . . . . . . . 10 (1r𝑅) = (1r𝑅)
956, 94ringidcl 20214 . . . . . . . . 9 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
9645, 95syl 17 . . . . . . . 8 (𝜑 → (1r𝑅) ∈ 𝐵)
97 oveq2 7427 . . . . . . . . . 10 (𝑓 = ∅ → (𝑀 Σg 𝑓) = (𝑀 Σg ∅))
9897eqeq1d 2727 . . . . . . . . 9 (𝑓 = ∅ → ((𝑀 Σg 𝑓) = (1r𝑅) ↔ (𝑀 Σg ∅) = (1r𝑅)))
99 wrd0 14525 . . . . . . . . . 10 ∅ ∈ Word 𝑃
10099a1i 11 . . . . . . . . 9 (𝜑 → ∅ ∈ Word 𝑃)
10115, 94ringidval 20135 . . . . . . . . . . 11 (1r𝑅) = (0g𝑀)
102101gsum0 18647 . . . . . . . . . 10 (𝑀 Σg ∅) = (1r𝑅)
103102a1i 11 . . . . . . . . 9 (𝜑 → (𝑀 Σg ∅) = (1r𝑅))
10498, 100, 103rspcedvdw 3609 . . . . . . . 8 (𝜑 → ∃𝑓 ∈ Word 𝑃(𝑀 Σg 𝑓) = (1r𝑅))
10593, 96, 104elrabd 3681 . . . . . . 7 (𝜑 → (1r𝑅) ∈ {𝑥𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)})
106105, 21eleqtrrdi 2836 . . . . . 6 (𝜑 → (1r𝑅) ∈ 𝑆)
107 1arithufd.u . . . . . . . . 9 𝑈 = (Unit‘𝑅)
1088ad2antrr 724 . . . . . . . . 9 (((𝜑𝑎𝑆) ∧ 𝑏𝑆) → 𝑅 ∈ UFD)
10939ad2antrr 724 . . . . . . . . 9 (((𝜑𝑎𝑆) ∧ 𝑏𝑆) → 𝑅 ∈ NzRing)
110 1arithufdlem.2 . . . . . . . . . 10 (𝜑 → ¬ 𝑅 ∈ DivRing)
111110ad2antrr 724 . . . . . . . . 9 (((𝜑𝑎𝑆) ∧ 𝑏𝑆) → ¬ 𝑅 ∈ DivRing)
112 eqid 2725 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
113 simplr 767 . . . . . . . . 9 (((𝜑𝑎𝑆) ∧ 𝑏𝑆) → 𝑎𝑆)
114 simpr 483 . . . . . . . . 9 (((𝜑𝑎𝑆) ∧ 𝑏𝑆) → 𝑏𝑆)
1156, 62, 107, 7, 15, 108, 109, 111, 21, 112, 113, 1141arithufdlem2 33360 . . . . . . . 8 (((𝜑𝑎𝑆) ∧ 𝑏𝑆) → (𝑎(.r𝑅)𝑏) ∈ 𝑆)
116115anasss 465 . . . . . . 7 ((𝜑 ∧ (𝑎𝑆𝑏𝑆)) → (𝑎(.r𝑅)𝑏) ∈ 𝑆)
117116ralrimivva 3190 . . . . . 6 (𝜑 → ∀𝑎𝑆𝑏𝑆 (𝑎(.r𝑅)𝑏) ∈ 𝑆)
11815, 112mgpplusg 20090 . . . . . . . 8 (.r𝑅) = (+g𝑀)
11916, 101, 118issubm 18763 . . . . . . 7 (𝑀 ∈ Mnd → (𝑆 ∈ (SubMnd‘𝑀) ↔ (𝑆𝐵 ∧ (1r𝑅) ∈ 𝑆 ∧ ∀𝑎𝑆𝑏𝑆 (𝑎(.r𝑅)𝑏) ∈ 𝑆)))
120119biimpar 476 . . . . . 6 ((𝑀 ∈ Mnd ∧ (𝑆𝐵 ∧ (1r𝑅) ∈ 𝑆 ∧ ∀𝑎𝑆𝑏𝑆 (𝑎(.r𝑅)𝑏) ∈ 𝑆)) → 𝑆 ∈ (SubMnd‘𝑀))
12186, 88, 106, 117, 120syl13anc 1369 . . . . 5 (𝜑𝑆 ∈ (SubMnd‘𝑀))
122121adantr 479 . . . 4 ((𝜑 ∧ ¬ 𝑋𝑆) → 𝑆 ∈ (SubMnd‘𝑀))
123 neq0 4345 . . . . . . . . 9 (¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅ ↔ ∃𝑢 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})))
124123biimpi 215 . . . . . . . 8 (¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅ → ∃𝑢 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})))
125124adantl 480 . . . . . . 7 ((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) → ∃𝑢 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})))
1268ad4antr 730 . . . . . . . . 9 (((((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) ∧ 𝑦𝐵) ∧ 𝑢 = (𝑦(.r𝑅)𝑋)) → 𝑅 ∈ UFD)
12739ad4antr 730 . . . . . . . . 9 (((((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) ∧ 𝑦𝐵) ∧ 𝑢 = (𝑦(.r𝑅)𝑋)) → 𝑅 ∈ NzRing)
128110ad4antr 730 . . . . . . . . 9 (((((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) ∧ 𝑦𝐵) ∧ 𝑢 = (𝑦(.r𝑅)𝑋)) → ¬ 𝑅 ∈ DivRing)
12946ad4antr 730 . . . . . . . . 9 (((((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) ∧ 𝑦𝐵) ∧ 𝑢 = (𝑦(.r𝑅)𝑋)) → 𝑋𝐵)
130 1arithufdlem.4 . . . . . . . . . 10 (𝜑 → ¬ 𝑋𝑈)
131130ad4antr 730 . . . . . . . . 9 (((((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) ∧ 𝑦𝐵) ∧ 𝑢 = (𝑦(.r𝑅)𝑋)) → ¬ 𝑋𝑈)
13252ad4antr 730 . . . . . . . . 9 (((((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) ∧ 𝑦𝐵) ∧ 𝑢 = (𝑦(.r𝑅)𝑋)) → 𝑋0 )
133 simplr 767 . . . . . . . . 9 (((((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) ∧ 𝑦𝐵) ∧ 𝑢 = (𝑦(.r𝑅)𝑋)) → 𝑦𝐵)
134 simpr 483 . . . . . . . . . 10 (((((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) ∧ 𝑦𝐵) ∧ 𝑢 = (𝑦(.r𝑅)𝑋)) → 𝑢 = (𝑦(.r𝑅)𝑋))
135 simpllr 774 . . . . . . . . . . 11 (((((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) ∧ 𝑦𝐵) ∧ 𝑢 = (𝑦(.r𝑅)𝑋)) → 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})))
136135elin1d 4196 . . . . . . . . . 10 (((((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) ∧ 𝑦𝐵) ∧ 𝑢 = (𝑦(.r𝑅)𝑋)) → 𝑢𝑆)
137134, 136eqeltrrd 2826 . . . . . . . . 9 (((((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) ∧ 𝑦𝐵) ∧ 𝑢 = (𝑦(.r𝑅)𝑋)) → (𝑦(.r𝑅)𝑋) ∈ 𝑆)
1386, 62, 107, 7, 15, 126, 127, 128, 21, 129, 131, 132, 112, 133, 1371arithufdlem3 33361 . . . . . . . 8 (((((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) ∧ 𝑦𝐵) ∧ 𝑢 = (𝑦(.r𝑅)𝑋)) → 𝑋𝑆)
13945ad2antrr 724 . . . . . . . . 9 (((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) → 𝑅 ∈ Ring)
14046ad2antrr 724 . . . . . . . . 9 (((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) → 𝑋𝐵)
141 simpr 483 . . . . . . . . . 10 (((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) → 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})))
142141elin2d 4197 . . . . . . . . 9 (((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) → 𝑢 ∈ ((RSpan‘𝑅)‘{𝑋}))
1436, 112, 47rspsnel 33182 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑢 ∈ ((RSpan‘𝑅)‘{𝑋}) ↔ ∃𝑦𝐵 𝑢 = (𝑦(.r𝑅)𝑋)))
144143biimpa 475 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ 𝑢 ∈ ((RSpan‘𝑅)‘{𝑋})) → ∃𝑦𝐵 𝑢 = (𝑦(.r𝑅)𝑋))
145139, 140, 142, 144syl21anc 836 . . . . . . . 8 (((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) → ∃𝑦𝐵 𝑢 = (𝑦(.r𝑅)𝑋))
146138, 145r19.29a 3151 . . . . . . 7 (((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) → 𝑋𝑆)
147125, 146exlimddv 1930 . . . . . 6 ((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) → 𝑋𝑆)
148147adantlr 713 . . . . 5 (((𝜑 ∧ ¬ 𝑋𝑆) ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) → 𝑋𝑆)
149 simplr 767 . . . . 5 (((𝜑 ∧ ¬ 𝑋𝑆) ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) → ¬ 𝑋𝑆)
150148, 149condan 816 . . . 4 ((𝜑 ∧ ¬ 𝑋𝑆) → (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅)
151 eqid 2725 . . . 4 {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} = {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)}
1526, 78, 84, 122, 15, 150, 151ssdifidlprm 33270 . . 3 ((𝜑 ∧ ¬ 𝑋𝑆) → ∃𝑖 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} (𝑖 ∈ (PrmIdeal‘𝑅) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖𝑗))
15377, 152r19.29a 3151 . 2 ((𝜑 ∧ ¬ 𝑋𝑆) → ¬ 𝑃𝑆)
15425, 153condan 816 1 (𝜑𝑋𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394  w3a 1084   = wceq 1533  wex 1773  wcel 2098  wne 2929  wral 3050  wrex 3059  {crab 3418  cdif 3941  cin 3943  wss 3944  wpss 3945  c0 4322  {csn 4630  cfv 6549  (class class class)co 7419  Word cword 14500  ⟨“cs1 14581  Basecbs 17183  .rcmulr 17237  0gc0g 17424   Σg cgsu 17425  Mndcmnd 18697  SubMndcsubmnd 18742  mulGrpcmgp 20086  1rcur 20133  Ringcrg 20185  CRingccrg 20186  Unitcui 20306  RPrimecrpm 20383  NzRingcnzr 20463  DivRingcdr 20636  LIdealclidl 21114  RSpancrsp 21115  IDomncidom 21245  PrmIdealcprmidl 33247  UFDcufd 33350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-ac2 10488  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-rpss 7729  df-om 7872  df-1st 7994  df-2nd 7995  df-supp 8166  df-tpos 8232  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-oadd 8491  df-er 8725  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9388  df-oi 9535  df-dju 9926  df-card 9964  df-ac 10141  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-n0 12506  df-xnn0 12578  df-z 12592  df-uz 12856  df-ico 13365  df-fz 13520  df-fzo 13663  df-seq 14003  df-hash 14326  df-word 14501  df-lsw 14549  df-concat 14557  df-s1 14582  df-substr 14627  df-pfx 14657  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-mulr 17250  df-sca 17252  df-vsca 17253  df-ip 17254  df-0g 17426  df-gsum 17427  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-submnd 18744  df-grp 18901  df-minusg 18902  df-sbg 18903  df-subg 19086  df-cntz 19280  df-lsm 19603  df-cmn 19749  df-abl 19750  df-mgp 20087  df-rng 20105  df-ur 20134  df-ring 20187  df-cring 20188  df-oppr 20285  df-dvdsr 20308  df-unit 20309  df-invr 20339  df-rprm 20384  df-nzr 20464  df-subrg 20520  df-abv 20709  df-lmod 20757  df-lss 20828  df-lsp 20868  df-sra 21070  df-rgmod 21071  df-lidl 21116  df-rsp 21117  df-domn 21248  df-idom 21249  df-prmidl 33248  df-ufd 33351
This theorem is referenced by:  1arithufd  33363
  Copyright terms: Public domain W3C validator