Step | Hyp | Ref
| Expression |
1 | | eqeq1 2744 |
. . . . . . . . 9
⊢ (𝑥 = 𝑎 → (𝑥 = (𝑀 Σg 𝑓) ↔ 𝑎 = (𝑀 Σg 𝑓))) |
2 | 1 | rexbidv 3185 |
. . . . . . . 8
⊢ (𝑥 = 𝑎 → (∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓) ↔ ∃𝑓 ∈ Word 𝑃𝑎 = (𝑀 Σg 𝑓))) |
3 | | eqcom 2747 |
. . . . . . . . 9
⊢ (𝑎 = (𝑀 Σg 𝑓) ↔ (𝑀 Σg 𝑓) = 𝑎) |
4 | 3 | rexbii 3100 |
. . . . . . . 8
⊢
(∃𝑓 ∈
Word 𝑃𝑎 = (𝑀 Σg 𝑓) ↔ ∃𝑓 ∈ Word 𝑃(𝑀 Σg 𝑓) = 𝑎) |
5 | 2, 4 | bitrdi 287 |
. . . . . . 7
⊢ (𝑥 = 𝑎 → (∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓) ↔ ∃𝑓 ∈ Word 𝑃(𝑀 Σg 𝑓) = 𝑎)) |
6 | | 1arithufd.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝑅) |
7 | | 1arithufd.p |
. . . . . . . 8
⊢ 𝑃 = (RPrime‘𝑅) |
8 | | 1arithufd.r |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 ∈ UFD) |
9 | 8 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑃) → 𝑅 ∈ UFD) |
10 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑃) → 𝑎 ∈ 𝑃) |
11 | 6, 7, 9, 10 | rprmcl 33511 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑃) → 𝑎 ∈ 𝐵) |
12 | | oveq2 7456 |
. . . . . . . . 9
⊢ (𝑓 = 〈“𝑎”〉 → (𝑀 Σg
𝑓) = (𝑀 Σg
〈“𝑎”〉)) |
13 | 12 | eqeq1d 2742 |
. . . . . . . 8
⊢ (𝑓 = 〈“𝑎”〉 → ((𝑀 Σg
𝑓) = 𝑎 ↔ (𝑀 Σg
〈“𝑎”〉) = 𝑎)) |
14 | 10 | s1cld 14651 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑃) → 〈“𝑎”〉 ∈ Word 𝑃) |
15 | | 1arithufd.m |
. . . . . . . . . . 11
⊢ 𝑀 = (mulGrp‘𝑅) |
16 | 15, 6 | mgpbas 20167 |
. . . . . . . . . 10
⊢ 𝐵 = (Base‘𝑀) |
17 | 16 | gsumws1 18873 |
. . . . . . . . 9
⊢ (𝑎 ∈ 𝐵 → (𝑀 Σg
〈“𝑎”〉) = 𝑎) |
18 | 11, 17 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑃) → (𝑀 Σg
〈“𝑎”〉) = 𝑎) |
19 | 13, 14, 18 | rspcedvdw 3638 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑃) → ∃𝑓 ∈ Word 𝑃(𝑀 Σg 𝑓) = 𝑎) |
20 | 5, 11, 19 | elrabd 3710 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑃) → 𝑎 ∈ {𝑥 ∈ 𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)}) |
21 | | 1arithufdlem.s |
. . . . . 6
⊢ 𝑆 = {𝑥 ∈ 𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)} |
22 | 20, 21 | eleqtrrdi 2855 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑃) → 𝑎 ∈ 𝑆) |
23 | 22 | ex 412 |
. . . 4
⊢ (𝜑 → (𝑎 ∈ 𝑃 → 𝑎 ∈ 𝑆)) |
24 | 23 | ssrdv 4014 |
. . 3
⊢ (𝜑 → 𝑃 ⊆ 𝑆) |
25 | 24 | adantr 480 |
. 2
⊢ ((𝜑 ∧ ¬ 𝑋 ∈ 𝑆) → 𝑃 ⊆ 𝑆) |
26 | | anass 468 |
. . . . . . 7
⊢ ((((𝜑 ∧ ¬ 𝑋 ∈ 𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆 ∩ 𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ↔ ((𝜑 ∧ ¬ 𝑋 ∈ 𝑆) ∧ (𝑖 ∈ (LIdeal‘𝑅) ∧ ((𝑆 ∩ 𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)))) |
27 | | ineq2 4235 |
. . . . . . . . . . 11
⊢ (𝑝 = 𝑖 → (𝑆 ∩ 𝑝) = (𝑆 ∩ 𝑖)) |
28 | 27 | eqeq1d 2742 |
. . . . . . . . . 10
⊢ (𝑝 = 𝑖 → ((𝑆 ∩ 𝑝) = ∅ ↔ (𝑆 ∩ 𝑖) = ∅)) |
29 | | sseq2 4035 |
. . . . . . . . . 10
⊢ (𝑝 = 𝑖 → (((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝 ↔ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) |
30 | 28, 29 | anbi12d 631 |
. . . . . . . . 9
⊢ (𝑝 = 𝑖 → (((𝑆 ∩ 𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝) ↔ ((𝑆 ∩ 𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖))) |
31 | 30 | elrab 3708 |
. . . . . . . 8
⊢ (𝑖 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆 ∩ 𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ↔ (𝑖 ∈ (LIdeal‘𝑅) ∧ ((𝑆 ∩ 𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖))) |
32 | 31 | anbi2i 622 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝑋 ∈ 𝑆) ∧ 𝑖 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆 ∩ 𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)}) ↔ ((𝜑 ∧ ¬ 𝑋 ∈ 𝑆) ∧ (𝑖 ∈ (LIdeal‘𝑅) ∧ ((𝑆 ∩ 𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)))) |
33 | 26, 32 | bitr4i 278 |
. . . . . 6
⊢ ((((𝜑 ∧ ¬ 𝑋 ∈ 𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆 ∩ 𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ↔ ((𝜑 ∧ ¬ 𝑋 ∈ 𝑆) ∧ 𝑖 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆 ∩ 𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)})) |
34 | 33 | anbi1i 623 |
. . . . 5
⊢
(((((𝜑 ∧ ¬
𝑋 ∈ 𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆 ∩ 𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ↔ (((𝜑 ∧ ¬ 𝑋 ∈ 𝑆) ∧ 𝑖 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆 ∩ 𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)}) ∧ 𝑖 ∈ (PrmIdeal‘𝑅))) |
35 | | incom 4230 |
. . . . . . 7
⊢ (𝑖 ∩ 𝑆) = (𝑆 ∩ 𝑖) |
36 | | simpllr 775 |
. . . . . . . 8
⊢
((((((𝜑 ∧ ¬
𝑋 ∈ 𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆 ∩ 𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆 ∩ 𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖 ⊊ 𝑗) → ((𝑆 ∩ 𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) |
37 | 36 | simpld 494 |
. . . . . . 7
⊢
((((((𝜑 ∧ ¬
𝑋 ∈ 𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆 ∩ 𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆 ∩ 𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖 ⊊ 𝑗) → (𝑆 ∩ 𝑖) = ∅) |
38 | 35, 37 | eqtrid 2792 |
. . . . . 6
⊢
((((((𝜑 ∧ ¬
𝑋 ∈ 𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆 ∩ 𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆 ∩ 𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖 ⊊ 𝑗) → (𝑖 ∩ 𝑆) = ∅) |
39 | 8 | ad5antr 733 |
. . . . . . 7
⊢
((((((𝜑 ∧ ¬
𝑋 ∈ 𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆 ∩ 𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆 ∩ 𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖 ⊊ 𝑗) → 𝑅 ∈ UFD) |
40 | | simplr 768 |
. . . . . . . 8
⊢
((((((𝜑 ∧ ¬
𝑋 ∈ 𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆 ∩ 𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆 ∩ 𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖 ⊊ 𝑗) → 𝑖 ∈ (PrmIdeal‘𝑅)) |
41 | 36 | simprd 495 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ ¬
𝑋 ∈ 𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆 ∩ 𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆 ∩ 𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖 ⊊ 𝑗) → ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖) |
42 | 8 | ufdidom 33535 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑅 ∈ IDomn) |
43 | 42 | idomringd 20750 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑅 ∈ Ring) |
44 | | 1arithufdlem.3 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
45 | | eqid 2740 |
. . . . . . . . . . . . 13
⊢
(RSpan‘𝑅) =
(RSpan‘𝑅) |
46 | 6, 45 | rspsnid 33364 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ ((RSpan‘𝑅)‘{𝑋})) |
47 | 43, 44, 46 | syl2anc 583 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑋 ∈ ((RSpan‘𝑅)‘{𝑋})) |
48 | 47 | ad5antr 733 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ ¬
𝑋 ∈ 𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆 ∩ 𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆 ∩ 𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖 ⊊ 𝑗) → 𝑋 ∈ ((RSpan‘𝑅)‘{𝑋})) |
49 | 41, 48 | sseldd 4009 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ ¬
𝑋 ∈ 𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆 ∩ 𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆 ∩ 𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖 ⊊ 𝑗) → 𝑋 ∈ 𝑖) |
50 | | 1arithufdlem.5 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑋 ≠ 0 ) |
51 | | nelsn 4688 |
. . . . . . . . . . 11
⊢ (𝑋 ≠ 0 → ¬ 𝑋 ∈ { 0 }) |
52 | 50, 51 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → ¬ 𝑋 ∈ { 0 }) |
53 | 52 | ad5antr 733 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ ¬
𝑋 ∈ 𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆 ∩ 𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆 ∩ 𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖 ⊊ 𝑗) → ¬ 𝑋 ∈ { 0 }) |
54 | | nelne1 3045 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝑖 ∧ ¬ 𝑋 ∈ { 0 }) → 𝑖 ≠ { 0 }) |
55 | 49, 53, 54 | syl2anc 583 |
. . . . . . . 8
⊢
((((((𝜑 ∧ ¬
𝑋 ∈ 𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆 ∩ 𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆 ∩ 𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖 ⊊ 𝑗) → 𝑖 ≠ { 0 }) |
56 | 40, 55 | eldifsnd 4812 |
. . . . . . 7
⊢
((((((𝜑 ∧ ¬
𝑋 ∈ 𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆 ∩ 𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆 ∩ 𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖 ⊊ 𝑗) → 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) |
57 | | ineq1 4234 |
. . . . . . . . 9
⊢ (𝑗 = 𝑖 → (𝑗 ∩ 𝑃) = (𝑖 ∩ 𝑃)) |
58 | 57 | neeq1d 3006 |
. . . . . . . 8
⊢ (𝑗 = 𝑖 → ((𝑗 ∩ 𝑃) ≠ ∅ ↔ (𝑖 ∩ 𝑃) ≠ ∅)) |
59 | | eqid 2740 |
. . . . . . . . . . 11
⊢
(PrmIdeal‘𝑅) =
(PrmIdeal‘𝑅) |
60 | | 1arithufd.0 |
. . . . . . . . . . 11
⊢ 0 =
(0g‘𝑅) |
61 | 59, 7, 60 | isufd 33533 |
. . . . . . . . . 10
⊢ (𝑅 ∈ UFD ↔ (𝑅 ∈ IDomn ∧
∀𝑗 ∈
((PrmIdeal‘𝑅) ∖
{{ 0
}})(𝑗 ∩ 𝑃) ≠
∅)) |
62 | 61 | simprbi 496 |
. . . . . . . . 9
⊢ (𝑅 ∈ UFD → ∀𝑗 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})(𝑗 ∩ 𝑃) ≠ ∅) |
63 | 62 | adantr 480 |
. . . . . . . 8
⊢ ((𝑅 ∈ UFD ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → ∀𝑗 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})(𝑗 ∩ 𝑃) ≠ ∅) |
64 | | simpr 484 |
. . . . . . . 8
⊢ ((𝑅 ∈ UFD ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) |
65 | 58, 63, 64 | rspcdva 3636 |
. . . . . . 7
⊢ ((𝑅 ∈ UFD ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → (𝑖 ∩ 𝑃) ≠ ∅) |
66 | 39, 56, 65 | syl2anc 583 |
. . . . . 6
⊢
((((((𝜑 ∧ ¬
𝑋 ∈ 𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆 ∩ 𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆 ∩ 𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖 ⊊ 𝑗) → (𝑖 ∩ 𝑃) ≠ ∅) |
67 | | sseq0 4426 |
. . . . . . . . 9
⊢ (((𝑖 ∩ 𝑃) ⊆ (𝑖 ∩ 𝑆) ∧ (𝑖 ∩ 𝑆) = ∅) → (𝑖 ∩ 𝑃) = ∅) |
68 | 67 | expcom 413 |
. . . . . . . 8
⊢ ((𝑖 ∩ 𝑆) = ∅ → ((𝑖 ∩ 𝑃) ⊆ (𝑖 ∩ 𝑆) → (𝑖 ∩ 𝑃) = ∅)) |
69 | 68 | necon3ad 2959 |
. . . . . . 7
⊢ ((𝑖 ∩ 𝑆) = ∅ → ((𝑖 ∩ 𝑃) ≠ ∅ → ¬ (𝑖 ∩ 𝑃) ⊆ (𝑖 ∩ 𝑆))) |
70 | | sslin 4264 |
. . . . . . . 8
⊢ (𝑃 ⊆ 𝑆 → (𝑖 ∩ 𝑃) ⊆ (𝑖 ∩ 𝑆)) |
71 | 70 | con3i 154 |
. . . . . . 7
⊢ (¬
(𝑖 ∩ 𝑃) ⊆ (𝑖 ∩ 𝑆) → ¬ 𝑃 ⊆ 𝑆) |
72 | 69, 71 | syl6 35 |
. . . . . 6
⊢ ((𝑖 ∩ 𝑆) = ∅ → ((𝑖 ∩ 𝑃) ≠ ∅ → ¬ 𝑃 ⊆ 𝑆)) |
73 | 38, 66, 72 | sylc 65 |
. . . . 5
⊢
((((((𝜑 ∧ ¬
𝑋 ∈ 𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆 ∩ 𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆 ∩ 𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖 ⊊ 𝑗) → ¬ 𝑃 ⊆ 𝑆) |
74 | 34, 73 | sylanbr 581 |
. . . 4
⊢
(((((𝜑 ∧ ¬
𝑋 ∈ 𝑆) ∧ 𝑖 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆 ∩ 𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)}) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆 ∩ 𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖 ⊊ 𝑗) → ¬ 𝑃 ⊆ 𝑆) |
75 | 74 | anasss 466 |
. . 3
⊢ ((((𝜑 ∧ ¬ 𝑋 ∈ 𝑆) ∧ 𝑖 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆 ∩ 𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)}) ∧ (𝑖 ∈ (PrmIdeal‘𝑅) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆 ∩ 𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖 ⊊ 𝑗)) → ¬ 𝑃 ⊆ 𝑆) |
76 | 42 | idomcringd 20749 |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ CRing) |
77 | 76 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝑋 ∈ 𝑆) → 𝑅 ∈ CRing) |
78 | 43 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝑋 ∈ 𝑆) → 𝑅 ∈ Ring) |
79 | 44 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ 𝑋 ∈ 𝑆) → 𝑋 ∈ 𝐵) |
80 | 79 | snssd 4834 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝑋 ∈ 𝑆) → {𝑋} ⊆ 𝐵) |
81 | | eqid 2740 |
. . . . . 6
⊢
(LIdeal‘𝑅) =
(LIdeal‘𝑅) |
82 | 45, 6, 81 | rspcl 21268 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ {𝑋} ⊆ 𝐵) → ((RSpan‘𝑅)‘{𝑋}) ∈ (LIdeal‘𝑅)) |
83 | 78, 80, 82 | syl2anc 583 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝑋 ∈ 𝑆) → ((RSpan‘𝑅)‘{𝑋}) ∈ (LIdeal‘𝑅)) |
84 | 15 | ringmgp 20266 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → 𝑀 ∈ Mnd) |
85 | 43, 84 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ Mnd) |
86 | 21 | ssrab3 4105 |
. . . . . . 7
⊢ 𝑆 ⊆ 𝐵 |
87 | 86 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
88 | | eqeq1 2744 |
. . . . . . . . . 10
⊢ (𝑥 = (1r‘𝑅) → (𝑥 = (𝑀 Σg 𝑓) ↔
(1r‘𝑅) =
(𝑀
Σg 𝑓))) |
89 | 88 | rexbidv 3185 |
. . . . . . . . 9
⊢ (𝑥 = (1r‘𝑅) → (∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓) ↔ ∃𝑓 ∈ Word 𝑃(1r‘𝑅) = (𝑀 Σg 𝑓))) |
90 | | eqcom 2747 |
. . . . . . . . . 10
⊢
((1r‘𝑅) = (𝑀 Σg 𝑓) ↔ (𝑀 Σg 𝑓) = (1r‘𝑅)) |
91 | 90 | rexbii 3100 |
. . . . . . . . 9
⊢
(∃𝑓 ∈
Word 𝑃(1r‘𝑅) = (𝑀 Σg 𝑓) ↔ ∃𝑓 ∈ Word 𝑃(𝑀 Σg 𝑓) = (1r‘𝑅)) |
92 | 89, 91 | bitrdi 287 |
. . . . . . . 8
⊢ (𝑥 = (1r‘𝑅) → (∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓) ↔ ∃𝑓 ∈ Word 𝑃(𝑀 Σg 𝑓) = (1r‘𝑅))) |
93 | | eqid 2740 |
. . . . . . . . . 10
⊢
(1r‘𝑅) = (1r‘𝑅) |
94 | 6, 93 | ringidcl 20289 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring →
(1r‘𝑅)
∈ 𝐵) |
95 | 43, 94 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (1r‘𝑅) ∈ 𝐵) |
96 | | oveq2 7456 |
. . . . . . . . . 10
⊢ (𝑓 = ∅ → (𝑀 Σg
𝑓) = (𝑀 Σg
∅)) |
97 | 96 | eqeq1d 2742 |
. . . . . . . . 9
⊢ (𝑓 = ∅ → ((𝑀 Σg
𝑓) =
(1r‘𝑅)
↔ (𝑀
Σg ∅) = (1r‘𝑅))) |
98 | | wrd0 14587 |
. . . . . . . . . 10
⊢ ∅
∈ Word 𝑃 |
99 | 98 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → ∅ ∈ Word 𝑃) |
100 | 15, 93 | ringidval 20210 |
. . . . . . . . . . 11
⊢
(1r‘𝑅) = (0g‘𝑀) |
101 | 100 | gsum0 18722 |
. . . . . . . . . 10
⊢ (𝑀 Σg
∅) = (1r‘𝑅) |
102 | 101 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → (𝑀 Σg ∅) =
(1r‘𝑅)) |
103 | 97, 99, 102 | rspcedvdw 3638 |
. . . . . . . 8
⊢ (𝜑 → ∃𝑓 ∈ Word 𝑃(𝑀 Σg 𝑓) = (1r‘𝑅)) |
104 | 92, 95, 103 | elrabd 3710 |
. . . . . . 7
⊢ (𝜑 → (1r‘𝑅) ∈ {𝑥 ∈ 𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)}) |
105 | 104, 21 | eleqtrrdi 2855 |
. . . . . 6
⊢ (𝜑 → (1r‘𝑅) ∈ 𝑆) |
106 | | 1arithufd.u |
. . . . . . . . 9
⊢ 𝑈 = (Unit‘𝑅) |
107 | 8 | ad2antrr 725 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑏 ∈ 𝑆) → 𝑅 ∈ UFD) |
108 | | 1arithufdlem.2 |
. . . . . . . . . 10
⊢ (𝜑 → ¬ 𝑅 ∈ DivRing) |
109 | 108 | ad2antrr 725 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑏 ∈ 𝑆) → ¬ 𝑅 ∈ DivRing) |
110 | | eqid 2740 |
. . . . . . . . 9
⊢
(.r‘𝑅) = (.r‘𝑅) |
111 | | simplr 768 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑏 ∈ 𝑆) → 𝑎 ∈ 𝑆) |
112 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑏 ∈ 𝑆) → 𝑏 ∈ 𝑆) |
113 | 6, 60, 106, 7, 15, 107, 109, 21, 110, 111, 112 | 1arithufdlem2 33538 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑏 ∈ 𝑆) → (𝑎(.r‘𝑅)𝑏) ∈ 𝑆) |
114 | 113 | anasss 466 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → (𝑎(.r‘𝑅)𝑏) ∈ 𝑆) |
115 | 114 | ralrimivva 3208 |
. . . . . 6
⊢ (𝜑 → ∀𝑎 ∈ 𝑆 ∀𝑏 ∈ 𝑆 (𝑎(.r‘𝑅)𝑏) ∈ 𝑆) |
116 | 15, 110 | mgpplusg 20165 |
. . . . . . . 8
⊢
(.r‘𝑅) = (+g‘𝑀) |
117 | 16, 100, 116 | issubm 18838 |
. . . . . . 7
⊢ (𝑀 ∈ Mnd → (𝑆 ∈ (SubMnd‘𝑀) ↔ (𝑆 ⊆ 𝐵 ∧ (1r‘𝑅) ∈ 𝑆 ∧ ∀𝑎 ∈ 𝑆 ∀𝑏 ∈ 𝑆 (𝑎(.r‘𝑅)𝑏) ∈ 𝑆))) |
118 | 117 | biimpar 477 |
. . . . . 6
⊢ ((𝑀 ∈ Mnd ∧ (𝑆 ⊆ 𝐵 ∧ (1r‘𝑅) ∈ 𝑆 ∧ ∀𝑎 ∈ 𝑆 ∀𝑏 ∈ 𝑆 (𝑎(.r‘𝑅)𝑏) ∈ 𝑆)) → 𝑆 ∈ (SubMnd‘𝑀)) |
119 | 85, 87, 105, 115, 118 | syl13anc 1372 |
. . . . 5
⊢ (𝜑 → 𝑆 ∈ (SubMnd‘𝑀)) |
120 | 119 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝑋 ∈ 𝑆) → 𝑆 ∈ (SubMnd‘𝑀)) |
121 | | neq0 4375 |
. . . . . . . . 9
⊢ (¬
(𝑆 ∩
((RSpan‘𝑅)‘{𝑋})) = ∅ ↔ ∃𝑢 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) |
122 | 121 | biimpi 216 |
. . . . . . . 8
⊢ (¬
(𝑆 ∩
((RSpan‘𝑅)‘{𝑋})) = ∅ → ∃𝑢 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) |
123 | 122 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) → ∃𝑢 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) |
124 | 8 | ad4antr 731 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ ¬
(𝑆 ∩
((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) ∧ 𝑦 ∈ 𝐵) ∧ 𝑢 = (𝑦(.r‘𝑅)𝑋)) → 𝑅 ∈ UFD) |
125 | 108 | ad4antr 731 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ ¬
(𝑆 ∩
((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) ∧ 𝑦 ∈ 𝐵) ∧ 𝑢 = (𝑦(.r‘𝑅)𝑋)) → ¬ 𝑅 ∈ DivRing) |
126 | 44 | ad4antr 731 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ ¬
(𝑆 ∩
((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) ∧ 𝑦 ∈ 𝐵) ∧ 𝑢 = (𝑦(.r‘𝑅)𝑋)) → 𝑋 ∈ 𝐵) |
127 | | 1arithufdlem.4 |
. . . . . . . . . 10
⊢ (𝜑 → ¬ 𝑋 ∈ 𝑈) |
128 | 127 | ad4antr 731 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ ¬
(𝑆 ∩
((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) ∧ 𝑦 ∈ 𝐵) ∧ 𝑢 = (𝑦(.r‘𝑅)𝑋)) → ¬ 𝑋 ∈ 𝑈) |
129 | 50 | ad4antr 731 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ ¬
(𝑆 ∩
((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) ∧ 𝑦 ∈ 𝐵) ∧ 𝑢 = (𝑦(.r‘𝑅)𝑋)) → 𝑋 ≠ 0 ) |
130 | | simplr 768 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ ¬
(𝑆 ∩
((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) ∧ 𝑦 ∈ 𝐵) ∧ 𝑢 = (𝑦(.r‘𝑅)𝑋)) → 𝑦 ∈ 𝐵) |
131 | | simpr 484 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ ¬
(𝑆 ∩
((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) ∧ 𝑦 ∈ 𝐵) ∧ 𝑢 = (𝑦(.r‘𝑅)𝑋)) → 𝑢 = (𝑦(.r‘𝑅)𝑋)) |
132 | | simpllr 775 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ ¬
(𝑆 ∩
((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) ∧ 𝑦 ∈ 𝐵) ∧ 𝑢 = (𝑦(.r‘𝑅)𝑋)) → 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) |
133 | 132 | elin1d 4227 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ ¬
(𝑆 ∩
((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) ∧ 𝑦 ∈ 𝐵) ∧ 𝑢 = (𝑦(.r‘𝑅)𝑋)) → 𝑢 ∈ 𝑆) |
134 | 131, 133 | eqeltrrd 2845 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ ¬
(𝑆 ∩
((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) ∧ 𝑦 ∈ 𝐵) ∧ 𝑢 = (𝑦(.r‘𝑅)𝑋)) → (𝑦(.r‘𝑅)𝑋) ∈ 𝑆) |
135 | 6, 60, 106, 7, 15, 124, 125, 21, 126, 128, 129, 110, 130, 134 | 1arithufdlem3 33539 |
. . . . . . . 8
⊢
(((((𝜑 ∧ ¬
(𝑆 ∩
((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) ∧ 𝑦 ∈ 𝐵) ∧ 𝑢 = (𝑦(.r‘𝑅)𝑋)) → 𝑋 ∈ 𝑆) |
136 | 43 | ad2antrr 725 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) → 𝑅 ∈ Ring) |
137 | 44 | ad2antrr 725 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) → 𝑋 ∈ 𝐵) |
138 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) → 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) |
139 | 138 | elin2d 4228 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) → 𝑢 ∈ ((RSpan‘𝑅)‘{𝑋})) |
140 | 6, 110, 45 | elrspsn 21273 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑢 ∈ ((RSpan‘𝑅)‘{𝑋}) ↔ ∃𝑦 ∈ 𝐵 𝑢 = (𝑦(.r‘𝑅)𝑋))) |
141 | 140 | biimpa 476 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ 𝑢 ∈ ((RSpan‘𝑅)‘{𝑋})) → ∃𝑦 ∈ 𝐵 𝑢 = (𝑦(.r‘𝑅)𝑋)) |
142 | 136, 137,
139, 141 | syl21anc 837 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) → ∃𝑦 ∈ 𝐵 𝑢 = (𝑦(.r‘𝑅)𝑋)) |
143 | 135, 142 | r19.29a 3168 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) → 𝑋 ∈ 𝑆) |
144 | 123, 143 | exlimddv 1934 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) → 𝑋 ∈ 𝑆) |
145 | 144 | adantlr 714 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝑋 ∈ 𝑆) ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) → 𝑋 ∈ 𝑆) |
146 | | simplr 768 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝑋 ∈ 𝑆) ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) → ¬ 𝑋 ∈ 𝑆) |
147 | 145, 146 | condan 817 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝑋 ∈ 𝑆) → (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) |
148 | | eqid 2740 |
. . . 4
⊢ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆 ∩ 𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} = {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆 ∩ 𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} |
149 | 6, 77, 83, 120, 15, 147, 148 | ssdifidlprm 33451 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝑋 ∈ 𝑆) → ∃𝑖 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆 ∩ 𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} (𝑖 ∈ (PrmIdeal‘𝑅) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆 ∩ 𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖 ⊊ 𝑗)) |
150 | 75, 149 | r19.29a 3168 |
. 2
⊢ ((𝜑 ∧ ¬ 𝑋 ∈ 𝑆) → ¬ 𝑃 ⊆ 𝑆) |
151 | 25, 150 | condan 817 |
1
⊢ (𝜑 → 𝑋 ∈ 𝑆) |