Step | Hyp | Ref
| Expression |
1 | | eqeq1 2729 |
. . . . . . . . 9
⊢ (𝑥 = 𝑎 → (𝑥 = (𝑀 Σg 𝑓) ↔ 𝑎 = (𝑀 Σg 𝑓))) |
2 | 1 | rexbidv 3168 |
. . . . . . . 8
⊢ (𝑥 = 𝑎 → (∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓) ↔ ∃𝑓 ∈ Word 𝑃𝑎 = (𝑀 Σg 𝑓))) |
3 | | eqcom 2732 |
. . . . . . . . 9
⊢ (𝑎 = (𝑀 Σg 𝑓) ↔ (𝑀 Σg 𝑓) = 𝑎) |
4 | 3 | rexbii 3083 |
. . . . . . . 8
⊢
(∃𝑓 ∈
Word 𝑃𝑎 = (𝑀 Σg 𝑓) ↔ ∃𝑓 ∈ Word 𝑃(𝑀 Σg 𝑓) = 𝑎) |
5 | 2, 4 | bitrdi 286 |
. . . . . . 7
⊢ (𝑥 = 𝑎 → (∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓) ↔ ∃𝑓 ∈ Word 𝑃(𝑀 Σg 𝑓) = 𝑎)) |
6 | | 1arithufd.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝑅) |
7 | | 1arithufd.p |
. . . . . . . 8
⊢ 𝑃 = (RPrime‘𝑅) |
8 | | 1arithufd.r |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 ∈ UFD) |
9 | 8 | adantr 479 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑃) → 𝑅 ∈ UFD) |
10 | | simpr 483 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑃) → 𝑎 ∈ 𝑃) |
11 | 6, 7, 9, 10 | rprmcl 33330 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑃) → 𝑎 ∈ 𝐵) |
12 | | oveq2 7427 |
. . . . . . . . 9
⊢ (𝑓 = 〈“𝑎”〉 → (𝑀 Σg
𝑓) = (𝑀 Σg
〈“𝑎”〉)) |
13 | 12 | eqeq1d 2727 |
. . . . . . . 8
⊢ (𝑓 = 〈“𝑎”〉 → ((𝑀 Σg
𝑓) = 𝑎 ↔ (𝑀 Σg
〈“𝑎”〉) = 𝑎)) |
14 | 10 | s1cld 14589 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑃) → 〈“𝑎”〉 ∈ Word 𝑃) |
15 | | 1arithufd.m |
. . . . . . . . . . 11
⊢ 𝑀 = (mulGrp‘𝑅) |
16 | 15, 6 | mgpbas 20092 |
. . . . . . . . . 10
⊢ 𝐵 = (Base‘𝑀) |
17 | 16 | gsumws1 18798 |
. . . . . . . . 9
⊢ (𝑎 ∈ 𝐵 → (𝑀 Σg
〈“𝑎”〉) = 𝑎) |
18 | 11, 17 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑃) → (𝑀 Σg
〈“𝑎”〉) = 𝑎) |
19 | 13, 14, 18 | rspcedvdw 3609 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑃) → ∃𝑓 ∈ Word 𝑃(𝑀 Σg 𝑓) = 𝑎) |
20 | 5, 11, 19 | elrabd 3681 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑃) → 𝑎 ∈ {𝑥 ∈ 𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)}) |
21 | | 1arithufdlem.s |
. . . . . 6
⊢ 𝑆 = {𝑥 ∈ 𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)} |
22 | 20, 21 | eleqtrrdi 2836 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑃) → 𝑎 ∈ 𝑆) |
23 | 22 | ex 411 |
. . . 4
⊢ (𝜑 → (𝑎 ∈ 𝑃 → 𝑎 ∈ 𝑆)) |
24 | 23 | ssrdv 3982 |
. . 3
⊢ (𝜑 → 𝑃 ⊆ 𝑆) |
25 | 24 | adantr 479 |
. 2
⊢ ((𝜑 ∧ ¬ 𝑋 ∈ 𝑆) → 𝑃 ⊆ 𝑆) |
26 | | anass 467 |
. . . . . . 7
⊢ ((((𝜑 ∧ ¬ 𝑋 ∈ 𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆 ∩ 𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ↔ ((𝜑 ∧ ¬ 𝑋 ∈ 𝑆) ∧ (𝑖 ∈ (LIdeal‘𝑅) ∧ ((𝑆 ∩ 𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)))) |
27 | | ineq2 4204 |
. . . . . . . . . . 11
⊢ (𝑝 = 𝑖 → (𝑆 ∩ 𝑝) = (𝑆 ∩ 𝑖)) |
28 | 27 | eqeq1d 2727 |
. . . . . . . . . 10
⊢ (𝑝 = 𝑖 → ((𝑆 ∩ 𝑝) = ∅ ↔ (𝑆 ∩ 𝑖) = ∅)) |
29 | | sseq2 4003 |
. . . . . . . . . 10
⊢ (𝑝 = 𝑖 → (((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝 ↔ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) |
30 | 28, 29 | anbi12d 630 |
. . . . . . . . 9
⊢ (𝑝 = 𝑖 → (((𝑆 ∩ 𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝) ↔ ((𝑆 ∩ 𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖))) |
31 | 30 | elrab 3679 |
. . . . . . . 8
⊢ (𝑖 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆 ∩ 𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ↔ (𝑖 ∈ (LIdeal‘𝑅) ∧ ((𝑆 ∩ 𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖))) |
32 | 31 | anbi2i 621 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝑋 ∈ 𝑆) ∧ 𝑖 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆 ∩ 𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)}) ↔ ((𝜑 ∧ ¬ 𝑋 ∈ 𝑆) ∧ (𝑖 ∈ (LIdeal‘𝑅) ∧ ((𝑆 ∩ 𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)))) |
33 | 26, 32 | bitr4i 277 |
. . . . . 6
⊢ ((((𝜑 ∧ ¬ 𝑋 ∈ 𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆 ∩ 𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ↔ ((𝜑 ∧ ¬ 𝑋 ∈ 𝑆) ∧ 𝑖 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆 ∩ 𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)})) |
34 | 33 | anbi1i 622 |
. . . . 5
⊢
(((((𝜑 ∧ ¬
𝑋 ∈ 𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆 ∩ 𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ↔ (((𝜑 ∧ ¬ 𝑋 ∈ 𝑆) ∧ 𝑖 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆 ∩ 𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)}) ∧ 𝑖 ∈ (PrmIdeal‘𝑅))) |
35 | | incom 4199 |
. . . . . . 7
⊢ (𝑖 ∩ 𝑆) = (𝑆 ∩ 𝑖) |
36 | | simpllr 774 |
. . . . . . . 8
⊢
((((((𝜑 ∧ ¬
𝑋 ∈ 𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆 ∩ 𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆 ∩ 𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖 ⊊ 𝑗) → ((𝑆 ∩ 𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) |
37 | 36 | simpld 493 |
. . . . . . 7
⊢
((((((𝜑 ∧ ¬
𝑋 ∈ 𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆 ∩ 𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆 ∩ 𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖 ⊊ 𝑗) → (𝑆 ∩ 𝑖) = ∅) |
38 | 35, 37 | eqtrid 2777 |
. . . . . 6
⊢
((((((𝜑 ∧ ¬
𝑋 ∈ 𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆 ∩ 𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆 ∩ 𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖 ⊊ 𝑗) → (𝑖 ∩ 𝑆) = ∅) |
39 | | 1arithufdlem.1 |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ NzRing) |
40 | 39 | ad5antr 732 |
. . . . . . 7
⊢
((((((𝜑 ∧ ¬
𝑋 ∈ 𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆 ∩ 𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆 ∩ 𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖 ⊊ 𝑗) → 𝑅 ∈ NzRing) |
41 | 8 | ad5antr 732 |
. . . . . . 7
⊢
((((((𝜑 ∧ ¬
𝑋 ∈ 𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆 ∩ 𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆 ∩ 𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖 ⊊ 𝑗) → 𝑅 ∈ UFD) |
42 | | simplr 767 |
. . . . . . . 8
⊢
((((((𝜑 ∧ ¬
𝑋 ∈ 𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆 ∩ 𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆 ∩ 𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖 ⊊ 𝑗) → 𝑖 ∈ (PrmIdeal‘𝑅)) |
43 | 36 | simprd 494 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ ¬
𝑋 ∈ 𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆 ∩ 𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆 ∩ 𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖 ⊊ 𝑗) → ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖) |
44 | 8 | ufdcringd 33356 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑅 ∈ CRing) |
45 | 44 | crngringd 20198 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑅 ∈ Ring) |
46 | | 1arithufdlem.3 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
47 | | eqid 2725 |
. . . . . . . . . . . . 13
⊢
(RSpan‘𝑅) =
(RSpan‘𝑅) |
48 | 6, 47 | rspsnid 33183 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ ((RSpan‘𝑅)‘{𝑋})) |
49 | 45, 46, 48 | syl2anc 582 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑋 ∈ ((RSpan‘𝑅)‘{𝑋})) |
50 | 49 | ad5antr 732 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ ¬
𝑋 ∈ 𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆 ∩ 𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆 ∩ 𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖 ⊊ 𝑗) → 𝑋 ∈ ((RSpan‘𝑅)‘{𝑋})) |
51 | 43, 50 | sseldd 3977 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ ¬
𝑋 ∈ 𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆 ∩ 𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆 ∩ 𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖 ⊊ 𝑗) → 𝑋 ∈ 𝑖) |
52 | | 1arithufdlem.5 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑋 ≠ 0 ) |
53 | | nelsn 4670 |
. . . . . . . . . . 11
⊢ (𝑋 ≠ 0 → ¬ 𝑋 ∈ { 0 }) |
54 | 52, 53 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → ¬ 𝑋 ∈ { 0 }) |
55 | 54 | ad5antr 732 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ ¬
𝑋 ∈ 𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆 ∩ 𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆 ∩ 𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖 ⊊ 𝑗) → ¬ 𝑋 ∈ { 0 }) |
56 | | nelne1 3028 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝑖 ∧ ¬ 𝑋 ∈ { 0 }) → 𝑖 ≠ { 0 }) |
57 | 51, 55, 56 | syl2anc 582 |
. . . . . . . 8
⊢
((((((𝜑 ∧ ¬
𝑋 ∈ 𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆 ∩ 𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆 ∩ 𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖 ⊊ 𝑗) → 𝑖 ≠ { 0 }) |
58 | 42, 57 | eldifsnd 32393 |
. . . . . . 7
⊢
((((((𝜑 ∧ ¬
𝑋 ∈ 𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆 ∩ 𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆 ∩ 𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖 ⊊ 𝑗) → 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) |
59 | | ineq1 4203 |
. . . . . . . . 9
⊢ (𝑗 = 𝑖 → (𝑗 ∩ 𝑃) = (𝑖 ∩ 𝑃)) |
60 | 59 | neeq1d 2989 |
. . . . . . . 8
⊢ (𝑗 = 𝑖 → ((𝑗 ∩ 𝑃) ≠ ∅ ↔ (𝑖 ∩ 𝑃) ≠ ∅)) |
61 | | eqid 2725 |
. . . . . . . . . . 11
⊢
(PrmIdeal‘𝑅) =
(PrmIdeal‘𝑅) |
62 | | 1arithufd.0 |
. . . . . . . . . . 11
⊢ 0 =
(0g‘𝑅) |
63 | 61, 7, 62 | isufd2 33353 |
. . . . . . . . . 10
⊢ (𝑅 ∈ NzRing → (𝑅 ∈ UFD ↔ (𝑅 ∈ IDomn ∧
∀𝑗 ∈
((PrmIdeal‘𝑅) ∖
{{ 0
}})(𝑗 ∩ 𝑃) ≠
∅))) |
64 | 63 | simplbda 498 |
. . . . . . . . 9
⊢ ((𝑅 ∈ NzRing ∧ 𝑅 ∈ UFD) →
∀𝑗 ∈
((PrmIdeal‘𝑅) ∖
{{ 0
}})(𝑗 ∩ 𝑃) ≠ ∅) |
65 | 64 | adantr 479 |
. . . . . . . 8
⊢ (((𝑅 ∈ NzRing ∧ 𝑅 ∈ UFD) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → ∀𝑗 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})(𝑗 ∩ 𝑃) ≠ ∅) |
66 | | simpr 483 |
. . . . . . . 8
⊢ (((𝑅 ∈ NzRing ∧ 𝑅 ∈ UFD) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) |
67 | 60, 65, 66 | rspcdva 3607 |
. . . . . . 7
⊢ (((𝑅 ∈ NzRing ∧ 𝑅 ∈ UFD) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → (𝑖 ∩ 𝑃) ≠ ∅) |
68 | 40, 41, 58, 67 | syl21anc 836 |
. . . . . 6
⊢
((((((𝜑 ∧ ¬
𝑋 ∈ 𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆 ∩ 𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆 ∩ 𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖 ⊊ 𝑗) → (𝑖 ∩ 𝑃) ≠ ∅) |
69 | | sseq0 4401 |
. . . . . . . . 9
⊢ (((𝑖 ∩ 𝑃) ⊆ (𝑖 ∩ 𝑆) ∧ (𝑖 ∩ 𝑆) = ∅) → (𝑖 ∩ 𝑃) = ∅) |
70 | 69 | expcom 412 |
. . . . . . . 8
⊢ ((𝑖 ∩ 𝑆) = ∅ → ((𝑖 ∩ 𝑃) ⊆ (𝑖 ∩ 𝑆) → (𝑖 ∩ 𝑃) = ∅)) |
71 | 70 | necon3ad 2942 |
. . . . . . 7
⊢ ((𝑖 ∩ 𝑆) = ∅ → ((𝑖 ∩ 𝑃) ≠ ∅ → ¬ (𝑖 ∩ 𝑃) ⊆ (𝑖 ∩ 𝑆))) |
72 | | sslin 4233 |
. . . . . . . 8
⊢ (𝑃 ⊆ 𝑆 → (𝑖 ∩ 𝑃) ⊆ (𝑖 ∩ 𝑆)) |
73 | 72 | con3i 154 |
. . . . . . 7
⊢ (¬
(𝑖 ∩ 𝑃) ⊆ (𝑖 ∩ 𝑆) → ¬ 𝑃 ⊆ 𝑆) |
74 | 71, 73 | syl6 35 |
. . . . . 6
⊢ ((𝑖 ∩ 𝑆) = ∅ → ((𝑖 ∩ 𝑃) ≠ ∅ → ¬ 𝑃 ⊆ 𝑆)) |
75 | 38, 68, 74 | sylc 65 |
. . . . 5
⊢
((((((𝜑 ∧ ¬
𝑋 ∈ 𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆 ∩ 𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆 ∩ 𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖 ⊊ 𝑗) → ¬ 𝑃 ⊆ 𝑆) |
76 | 34, 75 | sylanbr 580 |
. . . 4
⊢
(((((𝜑 ∧ ¬
𝑋 ∈ 𝑆) ∧ 𝑖 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆 ∩ 𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)}) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆 ∩ 𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖 ⊊ 𝑗) → ¬ 𝑃 ⊆ 𝑆) |
77 | 76 | anasss 465 |
. . 3
⊢ ((((𝜑 ∧ ¬ 𝑋 ∈ 𝑆) ∧ 𝑖 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆 ∩ 𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)}) ∧ (𝑖 ∈ (PrmIdeal‘𝑅) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆 ∩ 𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖 ⊊ 𝑗)) → ¬ 𝑃 ⊆ 𝑆) |
78 | 44 | adantr 479 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝑋 ∈ 𝑆) → 𝑅 ∈ CRing) |
79 | 45 | adantr 479 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝑋 ∈ 𝑆) → 𝑅 ∈ Ring) |
80 | 46 | adantr 479 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ 𝑋 ∈ 𝑆) → 𝑋 ∈ 𝐵) |
81 | 80 | snssd 4814 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝑋 ∈ 𝑆) → {𝑋} ⊆ 𝐵) |
82 | | eqid 2725 |
. . . . . 6
⊢
(LIdeal‘𝑅) =
(LIdeal‘𝑅) |
83 | 47, 6, 82 | rspcl 21143 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ {𝑋} ⊆ 𝐵) → ((RSpan‘𝑅)‘{𝑋}) ∈ (LIdeal‘𝑅)) |
84 | 79, 81, 83 | syl2anc 582 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝑋 ∈ 𝑆) → ((RSpan‘𝑅)‘{𝑋}) ∈ (LIdeal‘𝑅)) |
85 | 15 | ringmgp 20191 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → 𝑀 ∈ Mnd) |
86 | 45, 85 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ Mnd) |
87 | 21 | ssrab3 4076 |
. . . . . . 7
⊢ 𝑆 ⊆ 𝐵 |
88 | 87 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
89 | | eqeq1 2729 |
. . . . . . . . . 10
⊢ (𝑥 = (1r‘𝑅) → (𝑥 = (𝑀 Σg 𝑓) ↔
(1r‘𝑅) =
(𝑀
Σg 𝑓))) |
90 | 89 | rexbidv 3168 |
. . . . . . . . 9
⊢ (𝑥 = (1r‘𝑅) → (∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓) ↔ ∃𝑓 ∈ Word 𝑃(1r‘𝑅) = (𝑀 Σg 𝑓))) |
91 | | eqcom 2732 |
. . . . . . . . . 10
⊢
((1r‘𝑅) = (𝑀 Σg 𝑓) ↔ (𝑀 Σg 𝑓) = (1r‘𝑅)) |
92 | 91 | rexbii 3083 |
. . . . . . . . 9
⊢
(∃𝑓 ∈
Word 𝑃(1r‘𝑅) = (𝑀 Σg 𝑓) ↔ ∃𝑓 ∈ Word 𝑃(𝑀 Σg 𝑓) = (1r‘𝑅)) |
93 | 90, 92 | bitrdi 286 |
. . . . . . . 8
⊢ (𝑥 = (1r‘𝑅) → (∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓) ↔ ∃𝑓 ∈ Word 𝑃(𝑀 Σg 𝑓) = (1r‘𝑅))) |
94 | | eqid 2725 |
. . . . . . . . . 10
⊢
(1r‘𝑅) = (1r‘𝑅) |
95 | 6, 94 | ringidcl 20214 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring →
(1r‘𝑅)
∈ 𝐵) |
96 | 45, 95 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (1r‘𝑅) ∈ 𝐵) |
97 | | oveq2 7427 |
. . . . . . . . . 10
⊢ (𝑓 = ∅ → (𝑀 Σg
𝑓) = (𝑀 Σg
∅)) |
98 | 97 | eqeq1d 2727 |
. . . . . . . . 9
⊢ (𝑓 = ∅ → ((𝑀 Σg
𝑓) =
(1r‘𝑅)
↔ (𝑀
Σg ∅) = (1r‘𝑅))) |
99 | | wrd0 14525 |
. . . . . . . . . 10
⊢ ∅
∈ Word 𝑃 |
100 | 99 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → ∅ ∈ Word 𝑃) |
101 | 15, 94 | ringidval 20135 |
. . . . . . . . . . 11
⊢
(1r‘𝑅) = (0g‘𝑀) |
102 | 101 | gsum0 18647 |
. . . . . . . . . 10
⊢ (𝑀 Σg
∅) = (1r‘𝑅) |
103 | 102 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → (𝑀 Σg ∅) =
(1r‘𝑅)) |
104 | 98, 100, 103 | rspcedvdw 3609 |
. . . . . . . 8
⊢ (𝜑 → ∃𝑓 ∈ Word 𝑃(𝑀 Σg 𝑓) = (1r‘𝑅)) |
105 | 93, 96, 104 | elrabd 3681 |
. . . . . . 7
⊢ (𝜑 → (1r‘𝑅) ∈ {𝑥 ∈ 𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)}) |
106 | 105, 21 | eleqtrrdi 2836 |
. . . . . 6
⊢ (𝜑 → (1r‘𝑅) ∈ 𝑆) |
107 | | 1arithufd.u |
. . . . . . . . 9
⊢ 𝑈 = (Unit‘𝑅) |
108 | 8 | ad2antrr 724 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑏 ∈ 𝑆) → 𝑅 ∈ UFD) |
109 | 39 | ad2antrr 724 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑏 ∈ 𝑆) → 𝑅 ∈ NzRing) |
110 | | 1arithufdlem.2 |
. . . . . . . . . 10
⊢ (𝜑 → ¬ 𝑅 ∈ DivRing) |
111 | 110 | ad2antrr 724 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑏 ∈ 𝑆) → ¬ 𝑅 ∈ DivRing) |
112 | | eqid 2725 |
. . . . . . . . 9
⊢
(.r‘𝑅) = (.r‘𝑅) |
113 | | simplr 767 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑏 ∈ 𝑆) → 𝑎 ∈ 𝑆) |
114 | | simpr 483 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑏 ∈ 𝑆) → 𝑏 ∈ 𝑆) |
115 | 6, 62, 107, 7, 15, 108, 109, 111, 21, 112, 113, 114 | 1arithufdlem2 33360 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑏 ∈ 𝑆) → (𝑎(.r‘𝑅)𝑏) ∈ 𝑆) |
116 | 115 | anasss 465 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → (𝑎(.r‘𝑅)𝑏) ∈ 𝑆) |
117 | 116 | ralrimivva 3190 |
. . . . . 6
⊢ (𝜑 → ∀𝑎 ∈ 𝑆 ∀𝑏 ∈ 𝑆 (𝑎(.r‘𝑅)𝑏) ∈ 𝑆) |
118 | 15, 112 | mgpplusg 20090 |
. . . . . . . 8
⊢
(.r‘𝑅) = (+g‘𝑀) |
119 | 16, 101, 118 | issubm 18763 |
. . . . . . 7
⊢ (𝑀 ∈ Mnd → (𝑆 ∈ (SubMnd‘𝑀) ↔ (𝑆 ⊆ 𝐵 ∧ (1r‘𝑅) ∈ 𝑆 ∧ ∀𝑎 ∈ 𝑆 ∀𝑏 ∈ 𝑆 (𝑎(.r‘𝑅)𝑏) ∈ 𝑆))) |
120 | 119 | biimpar 476 |
. . . . . 6
⊢ ((𝑀 ∈ Mnd ∧ (𝑆 ⊆ 𝐵 ∧ (1r‘𝑅) ∈ 𝑆 ∧ ∀𝑎 ∈ 𝑆 ∀𝑏 ∈ 𝑆 (𝑎(.r‘𝑅)𝑏) ∈ 𝑆)) → 𝑆 ∈ (SubMnd‘𝑀)) |
121 | 86, 88, 106, 117, 120 | syl13anc 1369 |
. . . . 5
⊢ (𝜑 → 𝑆 ∈ (SubMnd‘𝑀)) |
122 | 121 | adantr 479 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝑋 ∈ 𝑆) → 𝑆 ∈ (SubMnd‘𝑀)) |
123 | | neq0 4345 |
. . . . . . . . 9
⊢ (¬
(𝑆 ∩
((RSpan‘𝑅)‘{𝑋})) = ∅ ↔ ∃𝑢 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) |
124 | 123 | biimpi 215 |
. . . . . . . 8
⊢ (¬
(𝑆 ∩
((RSpan‘𝑅)‘{𝑋})) = ∅ → ∃𝑢 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) |
125 | 124 | adantl 480 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) → ∃𝑢 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) |
126 | 8 | ad4antr 730 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ ¬
(𝑆 ∩
((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) ∧ 𝑦 ∈ 𝐵) ∧ 𝑢 = (𝑦(.r‘𝑅)𝑋)) → 𝑅 ∈ UFD) |
127 | 39 | ad4antr 730 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ ¬
(𝑆 ∩
((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) ∧ 𝑦 ∈ 𝐵) ∧ 𝑢 = (𝑦(.r‘𝑅)𝑋)) → 𝑅 ∈ NzRing) |
128 | 110 | ad4antr 730 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ ¬
(𝑆 ∩
((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) ∧ 𝑦 ∈ 𝐵) ∧ 𝑢 = (𝑦(.r‘𝑅)𝑋)) → ¬ 𝑅 ∈ DivRing) |
129 | 46 | ad4antr 730 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ ¬
(𝑆 ∩
((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) ∧ 𝑦 ∈ 𝐵) ∧ 𝑢 = (𝑦(.r‘𝑅)𝑋)) → 𝑋 ∈ 𝐵) |
130 | | 1arithufdlem.4 |
. . . . . . . . . 10
⊢ (𝜑 → ¬ 𝑋 ∈ 𝑈) |
131 | 130 | ad4antr 730 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ ¬
(𝑆 ∩
((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) ∧ 𝑦 ∈ 𝐵) ∧ 𝑢 = (𝑦(.r‘𝑅)𝑋)) → ¬ 𝑋 ∈ 𝑈) |
132 | 52 | ad4antr 730 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ ¬
(𝑆 ∩
((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) ∧ 𝑦 ∈ 𝐵) ∧ 𝑢 = (𝑦(.r‘𝑅)𝑋)) → 𝑋 ≠ 0 ) |
133 | | simplr 767 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ ¬
(𝑆 ∩
((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) ∧ 𝑦 ∈ 𝐵) ∧ 𝑢 = (𝑦(.r‘𝑅)𝑋)) → 𝑦 ∈ 𝐵) |
134 | | simpr 483 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ ¬
(𝑆 ∩
((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) ∧ 𝑦 ∈ 𝐵) ∧ 𝑢 = (𝑦(.r‘𝑅)𝑋)) → 𝑢 = (𝑦(.r‘𝑅)𝑋)) |
135 | | simpllr 774 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ ¬
(𝑆 ∩
((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) ∧ 𝑦 ∈ 𝐵) ∧ 𝑢 = (𝑦(.r‘𝑅)𝑋)) → 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) |
136 | 135 | elin1d 4196 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ ¬
(𝑆 ∩
((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) ∧ 𝑦 ∈ 𝐵) ∧ 𝑢 = (𝑦(.r‘𝑅)𝑋)) → 𝑢 ∈ 𝑆) |
137 | 134, 136 | eqeltrrd 2826 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ ¬
(𝑆 ∩
((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) ∧ 𝑦 ∈ 𝐵) ∧ 𝑢 = (𝑦(.r‘𝑅)𝑋)) → (𝑦(.r‘𝑅)𝑋) ∈ 𝑆) |
138 | 6, 62, 107, 7, 15, 126, 127, 128, 21, 129, 131, 132, 112, 133, 137 | 1arithufdlem3 33361 |
. . . . . . . 8
⊢
(((((𝜑 ∧ ¬
(𝑆 ∩
((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) ∧ 𝑦 ∈ 𝐵) ∧ 𝑢 = (𝑦(.r‘𝑅)𝑋)) → 𝑋 ∈ 𝑆) |
139 | 45 | ad2antrr 724 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) → 𝑅 ∈ Ring) |
140 | 46 | ad2antrr 724 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) → 𝑋 ∈ 𝐵) |
141 | | simpr 483 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) → 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) |
142 | 141 | elin2d 4197 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) → 𝑢 ∈ ((RSpan‘𝑅)‘{𝑋})) |
143 | 6, 112, 47 | rspsnel 33182 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑢 ∈ ((RSpan‘𝑅)‘{𝑋}) ↔ ∃𝑦 ∈ 𝐵 𝑢 = (𝑦(.r‘𝑅)𝑋))) |
144 | 143 | biimpa 475 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ 𝑢 ∈ ((RSpan‘𝑅)‘{𝑋})) → ∃𝑦 ∈ 𝐵 𝑢 = (𝑦(.r‘𝑅)𝑋)) |
145 | 139, 140,
142, 144 | syl21anc 836 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) → ∃𝑦 ∈ 𝐵 𝑢 = (𝑦(.r‘𝑅)𝑋)) |
146 | 138, 145 | r19.29a 3151 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) → 𝑋 ∈ 𝑆) |
147 | 125, 146 | exlimddv 1930 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) → 𝑋 ∈ 𝑆) |
148 | 147 | adantlr 713 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝑋 ∈ 𝑆) ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) → 𝑋 ∈ 𝑆) |
149 | | simplr 767 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝑋 ∈ 𝑆) ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) → ¬ 𝑋 ∈ 𝑆) |
150 | 148, 149 | condan 816 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝑋 ∈ 𝑆) → (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) |
151 | | eqid 2725 |
. . . 4
⊢ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆 ∩ 𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} = {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆 ∩ 𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} |
152 | 6, 78, 84, 122, 15, 150, 151 | ssdifidlprm 33270 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝑋 ∈ 𝑆) → ∃𝑖 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆 ∩ 𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} (𝑖 ∈ (PrmIdeal‘𝑅) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆 ∩ 𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖 ⊊ 𝑗)) |
153 | 77, 152 | r19.29a 3151 |
. 2
⊢ ((𝜑 ∧ ¬ 𝑋 ∈ 𝑆) → ¬ 𝑃 ⊆ 𝑆) |
154 | 25, 153 | condan 816 |
1
⊢ (𝜑 → 𝑋 ∈ 𝑆) |