Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1arithufdlem4 Structured version   Visualization version   GIF version

Theorem 1arithufdlem4 33554
Description: Lemma for 1arithufd 33555. Nonzero ring, non-field case. Those trivial cases are handled in the final proof. (Contributed by Thierry Arnoux, 3-Jun-2025.)
Hypotheses
Ref Expression
1arithufd.b 𝐵 = (Base‘𝑅)
1arithufd.0 0 = (0g𝑅)
1arithufd.u 𝑈 = (Unit‘𝑅)
1arithufd.p 𝑃 = (RPrime‘𝑅)
1arithufd.m 𝑀 = (mulGrp‘𝑅)
1arithufd.r (𝜑𝑅 ∈ UFD)
1arithufdlem.2 (𝜑 → ¬ 𝑅 ∈ DivRing)
1arithufdlem.s 𝑆 = {𝑥𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)}
1arithufdlem.3 (𝜑𝑋𝐵)
1arithufdlem.4 (𝜑 → ¬ 𝑋𝑈)
1arithufdlem.5 (𝜑𝑋0 )
Assertion
Ref Expression
1arithufdlem4 (𝜑𝑋𝑆)
Distinct variable groups:   0 ,𝑓   𝑥,𝐵   𝑓,𝑀,𝑥   𝑃,𝑓,𝑥   𝑅,𝑓   𝜑,𝑓   𝑥, 0   𝐵,𝑓   𝑥,𝑅   𝑆,𝑓,𝑥   𝑈,𝑓,𝑥   𝑓,𝑋,𝑥   𝜑,𝑥

Proof of Theorem 1arithufdlem4
Dummy variables 𝑝 𝑦 𝑎 𝑏 𝑖 𝑗 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2738 . . . . . . . . 9 (𝑥 = 𝑎 → (𝑥 = (𝑀 Σg 𝑓) ↔ 𝑎 = (𝑀 Σg 𝑓)))
21rexbidv 3176 . . . . . . . 8 (𝑥 = 𝑎 → (∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓) ↔ ∃𝑓 ∈ Word 𝑃𝑎 = (𝑀 Σg 𝑓)))
3 eqcom 2741 . . . . . . . . 9 (𝑎 = (𝑀 Σg 𝑓) ↔ (𝑀 Σg 𝑓) = 𝑎)
43rexbii 3091 . . . . . . . 8 (∃𝑓 ∈ Word 𝑃𝑎 = (𝑀 Σg 𝑓) ↔ ∃𝑓 ∈ Word 𝑃(𝑀 Σg 𝑓) = 𝑎)
52, 4bitrdi 287 . . . . . . 7 (𝑥 = 𝑎 → (∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓) ↔ ∃𝑓 ∈ Word 𝑃(𝑀 Σg 𝑓) = 𝑎))
6 1arithufd.b . . . . . . . 8 𝐵 = (Base‘𝑅)
7 1arithufd.p . . . . . . . 8 𝑃 = (RPrime‘𝑅)
8 1arithufd.r . . . . . . . . 9 (𝜑𝑅 ∈ UFD)
98adantr 480 . . . . . . . 8 ((𝜑𝑎𝑃) → 𝑅 ∈ UFD)
10 simpr 484 . . . . . . . 8 ((𝜑𝑎𝑃) → 𝑎𝑃)
116, 7, 9, 10rprmcl 33525 . . . . . . 7 ((𝜑𝑎𝑃) → 𝑎𝐵)
12 oveq2 7438 . . . . . . . . 9 (𝑓 = ⟨“𝑎”⟩ → (𝑀 Σg 𝑓) = (𝑀 Σg ⟨“𝑎”⟩))
1312eqeq1d 2736 . . . . . . . 8 (𝑓 = ⟨“𝑎”⟩ → ((𝑀 Σg 𝑓) = 𝑎 ↔ (𝑀 Σg ⟨“𝑎”⟩) = 𝑎))
1410s1cld 14637 . . . . . . . 8 ((𝜑𝑎𝑃) → ⟨“𝑎”⟩ ∈ Word 𝑃)
15 1arithufd.m . . . . . . . . . . 11 𝑀 = (mulGrp‘𝑅)
1615, 6mgpbas 20157 . . . . . . . . . 10 𝐵 = (Base‘𝑀)
1716gsumws1 18863 . . . . . . . . 9 (𝑎𝐵 → (𝑀 Σg ⟨“𝑎”⟩) = 𝑎)
1811, 17syl 17 . . . . . . . 8 ((𝜑𝑎𝑃) → (𝑀 Σg ⟨“𝑎”⟩) = 𝑎)
1913, 14, 18rspcedvdw 3624 . . . . . . 7 ((𝜑𝑎𝑃) → ∃𝑓 ∈ Word 𝑃(𝑀 Σg 𝑓) = 𝑎)
205, 11, 19elrabd 3696 . . . . . 6 ((𝜑𝑎𝑃) → 𝑎 ∈ {𝑥𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)})
21 1arithufdlem.s . . . . . 6 𝑆 = {𝑥𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)}
2220, 21eleqtrrdi 2849 . . . . 5 ((𝜑𝑎𝑃) → 𝑎𝑆)
2322ex 412 . . . 4 (𝜑 → (𝑎𝑃𝑎𝑆))
2423ssrdv 4000 . . 3 (𝜑𝑃𝑆)
2524adantr 480 . 2 ((𝜑 ∧ ¬ 𝑋𝑆) → 𝑃𝑆)
26 anass 468 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ↔ ((𝜑 ∧ ¬ 𝑋𝑆) ∧ (𝑖 ∈ (LIdeal‘𝑅) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖))))
27 ineq2 4221 . . . . . . . . . . 11 (𝑝 = 𝑖 → (𝑆𝑝) = (𝑆𝑖))
2827eqeq1d 2736 . . . . . . . . . 10 (𝑝 = 𝑖 → ((𝑆𝑝) = ∅ ↔ (𝑆𝑖) = ∅))
29 sseq2 4021 . . . . . . . . . 10 (𝑝 = 𝑖 → (((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝 ↔ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖))
3028, 29anbi12d 632 . . . . . . . . 9 (𝑝 = 𝑖 → (((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝) ↔ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)))
3130elrab 3694 . . . . . . . 8 (𝑖 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ↔ (𝑖 ∈ (LIdeal‘𝑅) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)))
3231anbi2i 623 . . . . . . 7 (((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)}) ↔ ((𝜑 ∧ ¬ 𝑋𝑆) ∧ (𝑖 ∈ (LIdeal‘𝑅) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖))))
3326, 32bitr4i 278 . . . . . 6 ((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ↔ ((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)}))
3433anbi1i 624 . . . . 5 (((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ↔ (((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)}) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)))
35 incom 4216 . . . . . . 7 (𝑖𝑆) = (𝑆𝑖)
36 simpllr 776 . . . . . . . 8 ((((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖𝑗) → ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖))
3736simpld 494 . . . . . . 7 ((((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖𝑗) → (𝑆𝑖) = ∅)
3835, 37eqtrid 2786 . . . . . 6 ((((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖𝑗) → (𝑖𝑆) = ∅)
398ad5antr 734 . . . . . . 7 ((((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖𝑗) → 𝑅 ∈ UFD)
40 simplr 769 . . . . . . . 8 ((((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖𝑗) → 𝑖 ∈ (PrmIdeal‘𝑅))
4136simprd 495 . . . . . . . . . 10 ((((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖𝑗) → ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)
428ufdidom 33549 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ IDomn)
4342idomringd 20744 . . . . . . . . . . . 12 (𝜑𝑅 ∈ Ring)
44 1arithufdlem.3 . . . . . . . . . . . 12 (𝜑𝑋𝐵)
45 eqid 2734 . . . . . . . . . . . . 13 (RSpan‘𝑅) = (RSpan‘𝑅)
466, 45rspsnid 33378 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → 𝑋 ∈ ((RSpan‘𝑅)‘{𝑋}))
4743, 44, 46syl2anc 584 . . . . . . . . . . 11 (𝜑𝑋 ∈ ((RSpan‘𝑅)‘{𝑋}))
4847ad5antr 734 . . . . . . . . . 10 ((((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖𝑗) → 𝑋 ∈ ((RSpan‘𝑅)‘{𝑋}))
4941, 48sseldd 3995 . . . . . . . . 9 ((((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖𝑗) → 𝑋𝑖)
50 1arithufdlem.5 . . . . . . . . . . 11 (𝜑𝑋0 )
51 nelsn 4670 . . . . . . . . . . 11 (𝑋0 → ¬ 𝑋 ∈ { 0 })
5250, 51syl 17 . . . . . . . . . 10 (𝜑 → ¬ 𝑋 ∈ { 0 })
5352ad5antr 734 . . . . . . . . 9 ((((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖𝑗) → ¬ 𝑋 ∈ { 0 })
54 nelne1 3036 . . . . . . . . 9 ((𝑋𝑖 ∧ ¬ 𝑋 ∈ { 0 }) → 𝑖 ≠ { 0 })
5549, 53, 54syl2anc 584 . . . . . . . 8 ((((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖𝑗) → 𝑖 ≠ { 0 })
5640, 55eldifsnd 4791 . . . . . . 7 ((((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖𝑗) → 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }}))
57 ineq1 4220 . . . . . . . . 9 (𝑗 = 𝑖 → (𝑗𝑃) = (𝑖𝑃))
5857neeq1d 2997 . . . . . . . 8 (𝑗 = 𝑖 → ((𝑗𝑃) ≠ ∅ ↔ (𝑖𝑃) ≠ ∅))
59 eqid 2734 . . . . . . . . . . 11 (PrmIdeal‘𝑅) = (PrmIdeal‘𝑅)
60 1arithufd.0 . . . . . . . . . . 11 0 = (0g𝑅)
6159, 7, 60isufd 33547 . . . . . . . . . 10 (𝑅 ∈ UFD ↔ (𝑅 ∈ IDomn ∧ ∀𝑗 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})(𝑗𝑃) ≠ ∅))
6261simprbi 496 . . . . . . . . 9 (𝑅 ∈ UFD → ∀𝑗 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})(𝑗𝑃) ≠ ∅)
6362adantr 480 . . . . . . . 8 ((𝑅 ∈ UFD ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → ∀𝑗 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})(𝑗𝑃) ≠ ∅)
64 simpr 484 . . . . . . . 8 ((𝑅 ∈ UFD ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }}))
6558, 63, 64rspcdva 3622 . . . . . . 7 ((𝑅 ∈ UFD ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → (𝑖𝑃) ≠ ∅)
6639, 56, 65syl2anc 584 . . . . . 6 ((((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖𝑗) → (𝑖𝑃) ≠ ∅)
67 sseq0 4408 . . . . . . . . 9 (((𝑖𝑃) ⊆ (𝑖𝑆) ∧ (𝑖𝑆) = ∅) → (𝑖𝑃) = ∅)
6867expcom 413 . . . . . . . 8 ((𝑖𝑆) = ∅ → ((𝑖𝑃) ⊆ (𝑖𝑆) → (𝑖𝑃) = ∅))
6968necon3ad 2950 . . . . . . 7 ((𝑖𝑆) = ∅ → ((𝑖𝑃) ≠ ∅ → ¬ (𝑖𝑃) ⊆ (𝑖𝑆)))
70 sslin 4250 . . . . . . . 8 (𝑃𝑆 → (𝑖𝑃) ⊆ (𝑖𝑆))
7170con3i 154 . . . . . . 7 (¬ (𝑖𝑃) ⊆ (𝑖𝑆) → ¬ 𝑃𝑆)
7269, 71syl6 35 . . . . . 6 ((𝑖𝑆) = ∅ → ((𝑖𝑃) ≠ ∅ → ¬ 𝑃𝑆))
7338, 66, 72sylc 65 . . . . 5 ((((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖𝑗) → ¬ 𝑃𝑆)
7434, 73sylanbr 582 . . . 4 (((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)}) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖𝑗) → ¬ 𝑃𝑆)
7574anasss 466 . . 3 ((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)}) ∧ (𝑖 ∈ (PrmIdeal‘𝑅) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖𝑗)) → ¬ 𝑃𝑆)
7642idomcringd 20743 . . . . 5 (𝜑𝑅 ∈ CRing)
7776adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝑋𝑆) → 𝑅 ∈ CRing)
7843adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝑋𝑆) → 𝑅 ∈ Ring)
7944adantr 480 . . . . . 6 ((𝜑 ∧ ¬ 𝑋𝑆) → 𝑋𝐵)
8079snssd 4813 . . . . 5 ((𝜑 ∧ ¬ 𝑋𝑆) → {𝑋} ⊆ 𝐵)
81 eqid 2734 . . . . . 6 (LIdeal‘𝑅) = (LIdeal‘𝑅)
8245, 6, 81rspcl 21262 . . . . 5 ((𝑅 ∈ Ring ∧ {𝑋} ⊆ 𝐵) → ((RSpan‘𝑅)‘{𝑋}) ∈ (LIdeal‘𝑅))
8378, 80, 82syl2anc 584 . . . 4 ((𝜑 ∧ ¬ 𝑋𝑆) → ((RSpan‘𝑅)‘{𝑋}) ∈ (LIdeal‘𝑅))
8415ringmgp 20256 . . . . . . 7 (𝑅 ∈ Ring → 𝑀 ∈ Mnd)
8543, 84syl 17 . . . . . 6 (𝜑𝑀 ∈ Mnd)
8621ssrab3 4091 . . . . . . 7 𝑆𝐵
8786a1i 11 . . . . . 6 (𝜑𝑆𝐵)
88 eqeq1 2738 . . . . . . . . . 10 (𝑥 = (1r𝑅) → (𝑥 = (𝑀 Σg 𝑓) ↔ (1r𝑅) = (𝑀 Σg 𝑓)))
8988rexbidv 3176 . . . . . . . . 9 (𝑥 = (1r𝑅) → (∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓) ↔ ∃𝑓 ∈ Word 𝑃(1r𝑅) = (𝑀 Σg 𝑓)))
90 eqcom 2741 . . . . . . . . . 10 ((1r𝑅) = (𝑀 Σg 𝑓) ↔ (𝑀 Σg 𝑓) = (1r𝑅))
9190rexbii 3091 . . . . . . . . 9 (∃𝑓 ∈ Word 𝑃(1r𝑅) = (𝑀 Σg 𝑓) ↔ ∃𝑓 ∈ Word 𝑃(𝑀 Σg 𝑓) = (1r𝑅))
9289, 91bitrdi 287 . . . . . . . 8 (𝑥 = (1r𝑅) → (∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓) ↔ ∃𝑓 ∈ Word 𝑃(𝑀 Σg 𝑓) = (1r𝑅)))
93 eqid 2734 . . . . . . . . . 10 (1r𝑅) = (1r𝑅)
946, 93ringidcl 20279 . . . . . . . . 9 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
9543, 94syl 17 . . . . . . . 8 (𝜑 → (1r𝑅) ∈ 𝐵)
96 oveq2 7438 . . . . . . . . . 10 (𝑓 = ∅ → (𝑀 Σg 𝑓) = (𝑀 Σg ∅))
9796eqeq1d 2736 . . . . . . . . 9 (𝑓 = ∅ → ((𝑀 Σg 𝑓) = (1r𝑅) ↔ (𝑀 Σg ∅) = (1r𝑅)))
98 wrd0 14573 . . . . . . . . . 10 ∅ ∈ Word 𝑃
9998a1i 11 . . . . . . . . 9 (𝜑 → ∅ ∈ Word 𝑃)
10015, 93ringidval 20200 . . . . . . . . . . 11 (1r𝑅) = (0g𝑀)
101100gsum0 18709 . . . . . . . . . 10 (𝑀 Σg ∅) = (1r𝑅)
102101a1i 11 . . . . . . . . 9 (𝜑 → (𝑀 Σg ∅) = (1r𝑅))
10397, 99, 102rspcedvdw 3624 . . . . . . . 8 (𝜑 → ∃𝑓 ∈ Word 𝑃(𝑀 Σg 𝑓) = (1r𝑅))
10492, 95, 103elrabd 3696 . . . . . . 7 (𝜑 → (1r𝑅) ∈ {𝑥𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)})
105104, 21eleqtrrdi 2849 . . . . . 6 (𝜑 → (1r𝑅) ∈ 𝑆)
106 1arithufd.u . . . . . . . . 9 𝑈 = (Unit‘𝑅)
1078ad2antrr 726 . . . . . . . . 9 (((𝜑𝑎𝑆) ∧ 𝑏𝑆) → 𝑅 ∈ UFD)
108 1arithufdlem.2 . . . . . . . . . 10 (𝜑 → ¬ 𝑅 ∈ DivRing)
109108ad2antrr 726 . . . . . . . . 9 (((𝜑𝑎𝑆) ∧ 𝑏𝑆) → ¬ 𝑅 ∈ DivRing)
110 eqid 2734 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
111 simplr 769 . . . . . . . . 9 (((𝜑𝑎𝑆) ∧ 𝑏𝑆) → 𝑎𝑆)
112 simpr 484 . . . . . . . . 9 (((𝜑𝑎𝑆) ∧ 𝑏𝑆) → 𝑏𝑆)
1136, 60, 106, 7, 15, 107, 109, 21, 110, 111, 1121arithufdlem2 33552 . . . . . . . 8 (((𝜑𝑎𝑆) ∧ 𝑏𝑆) → (𝑎(.r𝑅)𝑏) ∈ 𝑆)
114113anasss 466 . . . . . . 7 ((𝜑 ∧ (𝑎𝑆𝑏𝑆)) → (𝑎(.r𝑅)𝑏) ∈ 𝑆)
115114ralrimivva 3199 . . . . . 6 (𝜑 → ∀𝑎𝑆𝑏𝑆 (𝑎(.r𝑅)𝑏) ∈ 𝑆)
11615, 110mgpplusg 20155 . . . . . . . 8 (.r𝑅) = (+g𝑀)
11716, 100, 116issubm 18828 . . . . . . 7 (𝑀 ∈ Mnd → (𝑆 ∈ (SubMnd‘𝑀) ↔ (𝑆𝐵 ∧ (1r𝑅) ∈ 𝑆 ∧ ∀𝑎𝑆𝑏𝑆 (𝑎(.r𝑅)𝑏) ∈ 𝑆)))
118117biimpar 477 . . . . . 6 ((𝑀 ∈ Mnd ∧ (𝑆𝐵 ∧ (1r𝑅) ∈ 𝑆 ∧ ∀𝑎𝑆𝑏𝑆 (𝑎(.r𝑅)𝑏) ∈ 𝑆)) → 𝑆 ∈ (SubMnd‘𝑀))
11985, 87, 105, 115, 118syl13anc 1371 . . . . 5 (𝜑𝑆 ∈ (SubMnd‘𝑀))
120119adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝑋𝑆) → 𝑆 ∈ (SubMnd‘𝑀))
121 neq0 4357 . . . . . . . . 9 (¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅ ↔ ∃𝑢 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})))
122121biimpi 216 . . . . . . . 8 (¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅ → ∃𝑢 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})))
123122adantl 481 . . . . . . 7 ((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) → ∃𝑢 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})))
1248ad4antr 732 . . . . . . . . 9 (((((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) ∧ 𝑦𝐵) ∧ 𝑢 = (𝑦(.r𝑅)𝑋)) → 𝑅 ∈ UFD)
125108ad4antr 732 . . . . . . . . 9 (((((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) ∧ 𝑦𝐵) ∧ 𝑢 = (𝑦(.r𝑅)𝑋)) → ¬ 𝑅 ∈ DivRing)
12644ad4antr 732 . . . . . . . . 9 (((((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) ∧ 𝑦𝐵) ∧ 𝑢 = (𝑦(.r𝑅)𝑋)) → 𝑋𝐵)
127 1arithufdlem.4 . . . . . . . . . 10 (𝜑 → ¬ 𝑋𝑈)
128127ad4antr 732 . . . . . . . . 9 (((((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) ∧ 𝑦𝐵) ∧ 𝑢 = (𝑦(.r𝑅)𝑋)) → ¬ 𝑋𝑈)
12950ad4antr 732 . . . . . . . . 9 (((((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) ∧ 𝑦𝐵) ∧ 𝑢 = (𝑦(.r𝑅)𝑋)) → 𝑋0 )
130 simplr 769 . . . . . . . . 9 (((((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) ∧ 𝑦𝐵) ∧ 𝑢 = (𝑦(.r𝑅)𝑋)) → 𝑦𝐵)
131 simpr 484 . . . . . . . . . 10 (((((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) ∧ 𝑦𝐵) ∧ 𝑢 = (𝑦(.r𝑅)𝑋)) → 𝑢 = (𝑦(.r𝑅)𝑋))
132 simpllr 776 . . . . . . . . . . 11 (((((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) ∧ 𝑦𝐵) ∧ 𝑢 = (𝑦(.r𝑅)𝑋)) → 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})))
133132elin1d 4213 . . . . . . . . . 10 (((((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) ∧ 𝑦𝐵) ∧ 𝑢 = (𝑦(.r𝑅)𝑋)) → 𝑢𝑆)
134131, 133eqeltrrd 2839 . . . . . . . . 9 (((((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) ∧ 𝑦𝐵) ∧ 𝑢 = (𝑦(.r𝑅)𝑋)) → (𝑦(.r𝑅)𝑋) ∈ 𝑆)
1356, 60, 106, 7, 15, 124, 125, 21, 126, 128, 129, 110, 130, 1341arithufdlem3 33553 . . . . . . . 8 (((((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) ∧ 𝑦𝐵) ∧ 𝑢 = (𝑦(.r𝑅)𝑋)) → 𝑋𝑆)
13643ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) → 𝑅 ∈ Ring)
13744ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) → 𝑋𝐵)
138 simpr 484 . . . . . . . . . 10 (((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) → 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})))
139138elin2d 4214 . . . . . . . . 9 (((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) → 𝑢 ∈ ((RSpan‘𝑅)‘{𝑋}))
1406, 110, 45elrspsn 21267 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑢 ∈ ((RSpan‘𝑅)‘{𝑋}) ↔ ∃𝑦𝐵 𝑢 = (𝑦(.r𝑅)𝑋)))
141140biimpa 476 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ 𝑢 ∈ ((RSpan‘𝑅)‘{𝑋})) → ∃𝑦𝐵 𝑢 = (𝑦(.r𝑅)𝑋))
142136, 137, 139, 141syl21anc 838 . . . . . . . 8 (((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) → ∃𝑦𝐵 𝑢 = (𝑦(.r𝑅)𝑋))
143135, 142r19.29a 3159 . . . . . . 7 (((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) → 𝑋𝑆)
144123, 143exlimddv 1932 . . . . . 6 ((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) → 𝑋𝑆)
145144adantlr 715 . . . . 5 (((𝜑 ∧ ¬ 𝑋𝑆) ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) → 𝑋𝑆)
146 simplr 769 . . . . 5 (((𝜑 ∧ ¬ 𝑋𝑆) ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) → ¬ 𝑋𝑆)
147145, 146condan 818 . . . 4 ((𝜑 ∧ ¬ 𝑋𝑆) → (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅)
148 eqid 2734 . . . 4 {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} = {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)}
1496, 77, 83, 120, 15, 147, 148ssdifidlprm 33465 . . 3 ((𝜑 ∧ ¬ 𝑋𝑆) → ∃𝑖 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} (𝑖 ∈ (PrmIdeal‘𝑅) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖𝑗))
15075, 149r19.29a 3159 . 2 ((𝜑 ∧ ¬ 𝑋𝑆) → ¬ 𝑃𝑆)
15125, 150condan 818 1 (𝜑𝑋𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1536  wex 1775  wcel 2105  wne 2937  wral 3058  wrex 3067  {crab 3432  cdif 3959  cin 3961  wss 3962  wpss 3963  c0 4338  {csn 4630  cfv 6562  (class class class)co 7430  Word cword 14548  ⟨“cs1 14629  Basecbs 17244  .rcmulr 17298  0gc0g 17485   Σg cgsu 17486  Mndcmnd 18759  SubMndcsubmnd 18807  mulGrpcmgp 20151  1rcur 20198  Ringcrg 20250  CRingccrg 20251  Unitcui 20371  RPrimecrpm 20448  IDomncidom 20709  DivRingcdr 20745  LIdealclidl 21233  RSpancrsp 21234  PrmIdealcprmidl 33442  UFDcufd 33545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-ac2 10500  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-rpss 7741  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-tpos 8249  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-oadd 8508  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-oi 9547  df-dju 9938  df-card 9976  df-ac 10153  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-n0 12524  df-xnn0 12597  df-z 12611  df-uz 12876  df-fz 13544  df-fzo 13691  df-seq 14039  df-hash 14366  df-word 14549  df-lsw 14597  df-concat 14605  df-s1 14630  df-substr 14675  df-pfx 14705  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-ip 17315  df-0g 17487  df-gsum 17488  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-submnd 18809  df-grp 18966  df-minusg 18967  df-sbg 18968  df-subg 19153  df-cntz 19347  df-lsm 19668  df-cmn 19814  df-abl 19815  df-mgp 20152  df-rng 20170  df-ur 20199  df-ring 20252  df-cring 20253  df-oppr 20350  df-dvdsr 20373  df-unit 20374  df-invr 20404  df-rprm 20449  df-nzr 20529  df-subrg 20586  df-domn 20711  df-idom 20712  df-lmod 20876  df-lss 20947  df-lsp 20987  df-sra 21189  df-rgmod 21190  df-lidl 21235  df-rsp 21236  df-prmidl 33443  df-ufd 33546
This theorem is referenced by:  1arithufd  33555
  Copyright terms: Public domain W3C validator