Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1arithufdlem4 Structured version   Visualization version   GIF version

Theorem 1arithufdlem4 33576
Description: Lemma for 1arithufd 33577. Nonzero ring, non-field case. Those trivial cases are handled in the final proof. (Contributed by Thierry Arnoux, 3-Jun-2025.)
Hypotheses
Ref Expression
1arithufd.b 𝐵 = (Base‘𝑅)
1arithufd.0 0 = (0g𝑅)
1arithufd.u 𝑈 = (Unit‘𝑅)
1arithufd.p 𝑃 = (RPrime‘𝑅)
1arithufd.m 𝑀 = (mulGrp‘𝑅)
1arithufd.r (𝜑𝑅 ∈ UFD)
1arithufdlem.2 (𝜑 → ¬ 𝑅 ∈ DivRing)
1arithufdlem.s 𝑆 = {𝑥𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)}
1arithufdlem.3 (𝜑𝑋𝐵)
1arithufdlem.4 (𝜑 → ¬ 𝑋𝑈)
1arithufdlem.5 (𝜑𝑋0 )
Assertion
Ref Expression
1arithufdlem4 (𝜑𝑋𝑆)
Distinct variable groups:   0 ,𝑓   𝑥,𝐵   𝑓,𝑀,𝑥   𝑃,𝑓,𝑥   𝑅,𝑓   𝜑,𝑓,𝑥   𝑥,𝑋   𝑥,𝑈   𝑥,𝑅   𝑥,𝑆   𝑥, 0   𝑈,𝑓   𝐵,𝑓   𝑓,𝑋   𝑆,𝑓

Proof of Theorem 1arithufdlem4
Dummy variables 𝑝 𝑖 𝑗 𝑢 𝑎 𝑏 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2740 . . . . . . . . 9 (𝑥 = 𝑎 → (𝑥 = (𝑀 Σg 𝑓) ↔ 𝑎 = (𝑀 Σg 𝑓)))
21rexbidv 3178 . . . . . . . 8 (𝑥 = 𝑎 → (∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓) ↔ ∃𝑓 ∈ Word 𝑃𝑎 = (𝑀 Σg 𝑓)))
3 eqcom 2743 . . . . . . . . 9 (𝑎 = (𝑀 Σg 𝑓) ↔ (𝑀 Σg 𝑓) = 𝑎)
43rexbii 3093 . . . . . . . 8 (∃𝑓 ∈ Word 𝑃𝑎 = (𝑀 Σg 𝑓) ↔ ∃𝑓 ∈ Word 𝑃(𝑀 Σg 𝑓) = 𝑎)
52, 4bitrdi 287 . . . . . . 7 (𝑥 = 𝑎 → (∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓) ↔ ∃𝑓 ∈ Word 𝑃(𝑀 Σg 𝑓) = 𝑎))
6 1arithufd.b . . . . . . . 8 𝐵 = (Base‘𝑅)
7 1arithufd.p . . . . . . . 8 𝑃 = (RPrime‘𝑅)
8 1arithufd.r . . . . . . . . 9 (𝜑𝑅 ∈ UFD)
98adantr 480 . . . . . . . 8 ((𝜑𝑎𝑃) → 𝑅 ∈ UFD)
10 simpr 484 . . . . . . . 8 ((𝜑𝑎𝑃) → 𝑎𝑃)
116, 7, 9, 10rprmcl 33547 . . . . . . 7 ((𝜑𝑎𝑃) → 𝑎𝐵)
12 oveq2 7440 . . . . . . . . 9 (𝑓 = ⟨“𝑎”⟩ → (𝑀 Σg 𝑓) = (𝑀 Σg ⟨“𝑎”⟩))
1312eqeq1d 2738 . . . . . . . 8 (𝑓 = ⟨“𝑎”⟩ → ((𝑀 Σg 𝑓) = 𝑎 ↔ (𝑀 Σg ⟨“𝑎”⟩) = 𝑎))
1410s1cld 14642 . . . . . . . 8 ((𝜑𝑎𝑃) → ⟨“𝑎”⟩ ∈ Word 𝑃)
15 1arithufd.m . . . . . . . . . . 11 𝑀 = (mulGrp‘𝑅)
1615, 6mgpbas 20143 . . . . . . . . . 10 𝐵 = (Base‘𝑀)
1716gsumws1 18852 . . . . . . . . 9 (𝑎𝐵 → (𝑀 Σg ⟨“𝑎”⟩) = 𝑎)
1811, 17syl 17 . . . . . . . 8 ((𝜑𝑎𝑃) → (𝑀 Σg ⟨“𝑎”⟩) = 𝑎)
1913, 14, 18rspcedvdw 3624 . . . . . . 7 ((𝜑𝑎𝑃) → ∃𝑓 ∈ Word 𝑃(𝑀 Σg 𝑓) = 𝑎)
205, 11, 19elrabd 3693 . . . . . 6 ((𝜑𝑎𝑃) → 𝑎 ∈ {𝑥𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)})
21 1arithufdlem.s . . . . . 6 𝑆 = {𝑥𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)}
2220, 21eleqtrrdi 2851 . . . . 5 ((𝜑𝑎𝑃) → 𝑎𝑆)
2322ex 412 . . . 4 (𝜑 → (𝑎𝑃𝑎𝑆))
2423ssrdv 3988 . . 3 (𝜑𝑃𝑆)
2524adantr 480 . 2 ((𝜑 ∧ ¬ 𝑋𝑆) → 𝑃𝑆)
26 anass 468 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ↔ ((𝜑 ∧ ¬ 𝑋𝑆) ∧ (𝑖 ∈ (LIdeal‘𝑅) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖))))
27 ineq2 4213 . . . . . . . . . . 11 (𝑝 = 𝑖 → (𝑆𝑝) = (𝑆𝑖))
2827eqeq1d 2738 . . . . . . . . . 10 (𝑝 = 𝑖 → ((𝑆𝑝) = ∅ ↔ (𝑆𝑖) = ∅))
29 sseq2 4009 . . . . . . . . . 10 (𝑝 = 𝑖 → (((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝 ↔ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖))
3028, 29anbi12d 632 . . . . . . . . 9 (𝑝 = 𝑖 → (((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝) ↔ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)))
3130elrab 3691 . . . . . . . 8 (𝑖 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ↔ (𝑖 ∈ (LIdeal‘𝑅) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)))
3231anbi2i 623 . . . . . . 7 (((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)}) ↔ ((𝜑 ∧ ¬ 𝑋𝑆) ∧ (𝑖 ∈ (LIdeal‘𝑅) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖))))
3326, 32bitr4i 278 . . . . . 6 ((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ↔ ((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)}))
3433anbi1i 624 . . . . 5 (((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ↔ (((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)}) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)))
35 incom 4208 . . . . . . 7 (𝑖𝑆) = (𝑆𝑖)
36 simpllr 775 . . . . . . . 8 ((((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖𝑗) → ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖))
3736simpld 494 . . . . . . 7 ((((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖𝑗) → (𝑆𝑖) = ∅)
3835, 37eqtrid 2788 . . . . . 6 ((((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖𝑗) → (𝑖𝑆) = ∅)
398ad5antr 734 . . . . . . 7 ((((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖𝑗) → 𝑅 ∈ UFD)
40 simplr 768 . . . . . . . 8 ((((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖𝑗) → 𝑖 ∈ (PrmIdeal‘𝑅))
4136simprd 495 . . . . . . . . . 10 ((((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖𝑗) → ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)
428ufdidom 33571 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ IDomn)
4342idomringd 20729 . . . . . . . . . . . 12 (𝜑𝑅 ∈ Ring)
44 1arithufdlem.3 . . . . . . . . . . . 12 (𝜑𝑋𝐵)
45 eqid 2736 . . . . . . . . . . . . 13 (RSpan‘𝑅) = (RSpan‘𝑅)
466, 45rspsnid 33400 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → 𝑋 ∈ ((RSpan‘𝑅)‘{𝑋}))
4743, 44, 46syl2anc 584 . . . . . . . . . . 11 (𝜑𝑋 ∈ ((RSpan‘𝑅)‘{𝑋}))
4847ad5antr 734 . . . . . . . . . 10 ((((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖𝑗) → 𝑋 ∈ ((RSpan‘𝑅)‘{𝑋}))
4941, 48sseldd 3983 . . . . . . . . 9 ((((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖𝑗) → 𝑋𝑖)
50 1arithufdlem.5 . . . . . . . . . . 11 (𝜑𝑋0 )
51 nelsn 4665 . . . . . . . . . . 11 (𝑋0 → ¬ 𝑋 ∈ { 0 })
5250, 51syl 17 . . . . . . . . . 10 (𝜑 → ¬ 𝑋 ∈ { 0 })
5352ad5antr 734 . . . . . . . . 9 ((((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖𝑗) → ¬ 𝑋 ∈ { 0 })
54 nelne1 3038 . . . . . . . . 9 ((𝑋𝑖 ∧ ¬ 𝑋 ∈ { 0 }) → 𝑖 ≠ { 0 })
5549, 53, 54syl2anc 584 . . . . . . . 8 ((((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖𝑗) → 𝑖 ≠ { 0 })
5640, 55eldifsnd 4786 . . . . . . 7 ((((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖𝑗) → 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }}))
57 ineq1 4212 . . . . . . . . 9 (𝑗 = 𝑖 → (𝑗𝑃) = (𝑖𝑃))
5857neeq1d 2999 . . . . . . . 8 (𝑗 = 𝑖 → ((𝑗𝑃) ≠ ∅ ↔ (𝑖𝑃) ≠ ∅))
59 eqid 2736 . . . . . . . . . . 11 (PrmIdeal‘𝑅) = (PrmIdeal‘𝑅)
60 1arithufd.0 . . . . . . . . . . 11 0 = (0g𝑅)
6159, 7, 60isufd 33569 . . . . . . . . . 10 (𝑅 ∈ UFD ↔ (𝑅 ∈ IDomn ∧ ∀𝑗 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})(𝑗𝑃) ≠ ∅))
6261simprbi 496 . . . . . . . . 9 (𝑅 ∈ UFD → ∀𝑗 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})(𝑗𝑃) ≠ ∅)
6362adantr 480 . . . . . . . 8 ((𝑅 ∈ UFD ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → ∀𝑗 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})(𝑗𝑃) ≠ ∅)
64 simpr 484 . . . . . . . 8 ((𝑅 ∈ UFD ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }}))
6558, 63, 64rspcdva 3622 . . . . . . 7 ((𝑅 ∈ UFD ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → (𝑖𝑃) ≠ ∅)
6639, 56, 65syl2anc 584 . . . . . 6 ((((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖𝑗) → (𝑖𝑃) ≠ ∅)
67 sseq0 4402 . . . . . . . . 9 (((𝑖𝑃) ⊆ (𝑖𝑆) ∧ (𝑖𝑆) = ∅) → (𝑖𝑃) = ∅)
6867expcom 413 . . . . . . . 8 ((𝑖𝑆) = ∅ → ((𝑖𝑃) ⊆ (𝑖𝑆) → (𝑖𝑃) = ∅))
6968necon3ad 2952 . . . . . . 7 ((𝑖𝑆) = ∅ → ((𝑖𝑃) ≠ ∅ → ¬ (𝑖𝑃) ⊆ (𝑖𝑆)))
70 sslin 4242 . . . . . . . 8 (𝑃𝑆 → (𝑖𝑃) ⊆ (𝑖𝑆))
7170con3i 154 . . . . . . 7 (¬ (𝑖𝑃) ⊆ (𝑖𝑆) → ¬ 𝑃𝑆)
7269, 71syl6 35 . . . . . 6 ((𝑖𝑆) = ∅ → ((𝑖𝑃) ≠ ∅ → ¬ 𝑃𝑆))
7338, 66, 72sylc 65 . . . . 5 ((((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖𝑗) → ¬ 𝑃𝑆)
7434, 73sylanbr 582 . . . 4 (((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)}) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖𝑗) → ¬ 𝑃𝑆)
7574anasss 466 . . 3 ((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)}) ∧ (𝑖 ∈ (PrmIdeal‘𝑅) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖𝑗)) → ¬ 𝑃𝑆)
7642idomcringd 20728 . . . . 5 (𝜑𝑅 ∈ CRing)
7776adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝑋𝑆) → 𝑅 ∈ CRing)
7843adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝑋𝑆) → 𝑅 ∈ Ring)
7944adantr 480 . . . . . 6 ((𝜑 ∧ ¬ 𝑋𝑆) → 𝑋𝐵)
8079snssd 4808 . . . . 5 ((𝜑 ∧ ¬ 𝑋𝑆) → {𝑋} ⊆ 𝐵)
81 eqid 2736 . . . . . 6 (LIdeal‘𝑅) = (LIdeal‘𝑅)
8245, 6, 81rspcl 21246 . . . . 5 ((𝑅 ∈ Ring ∧ {𝑋} ⊆ 𝐵) → ((RSpan‘𝑅)‘{𝑋}) ∈ (LIdeal‘𝑅))
8378, 80, 82syl2anc 584 . . . 4 ((𝜑 ∧ ¬ 𝑋𝑆) → ((RSpan‘𝑅)‘{𝑋}) ∈ (LIdeal‘𝑅))
8415ringmgp 20237 . . . . . . 7 (𝑅 ∈ Ring → 𝑀 ∈ Mnd)
8543, 84syl 17 . . . . . 6 (𝜑𝑀 ∈ Mnd)
8621ssrab3 4081 . . . . . . 7 𝑆𝐵
8786a1i 11 . . . . . 6 (𝜑𝑆𝐵)
88 eqeq1 2740 . . . . . . . . . 10 (𝑥 = (1r𝑅) → (𝑥 = (𝑀 Σg 𝑓) ↔ (1r𝑅) = (𝑀 Σg 𝑓)))
8988rexbidv 3178 . . . . . . . . 9 (𝑥 = (1r𝑅) → (∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓) ↔ ∃𝑓 ∈ Word 𝑃(1r𝑅) = (𝑀 Σg 𝑓)))
90 eqcom 2743 . . . . . . . . . 10 ((1r𝑅) = (𝑀 Σg 𝑓) ↔ (𝑀 Σg 𝑓) = (1r𝑅))
9190rexbii 3093 . . . . . . . . 9 (∃𝑓 ∈ Word 𝑃(1r𝑅) = (𝑀 Σg 𝑓) ↔ ∃𝑓 ∈ Word 𝑃(𝑀 Σg 𝑓) = (1r𝑅))
9289, 91bitrdi 287 . . . . . . . 8 (𝑥 = (1r𝑅) → (∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓) ↔ ∃𝑓 ∈ Word 𝑃(𝑀 Σg 𝑓) = (1r𝑅)))
93 eqid 2736 . . . . . . . . . 10 (1r𝑅) = (1r𝑅)
946, 93ringidcl 20263 . . . . . . . . 9 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
9543, 94syl 17 . . . . . . . 8 (𝜑 → (1r𝑅) ∈ 𝐵)
96 oveq2 7440 . . . . . . . . . 10 (𝑓 = ∅ → (𝑀 Σg 𝑓) = (𝑀 Σg ∅))
9796eqeq1d 2738 . . . . . . . . 9 (𝑓 = ∅ → ((𝑀 Σg 𝑓) = (1r𝑅) ↔ (𝑀 Σg ∅) = (1r𝑅)))
98 wrd0 14578 . . . . . . . . . 10 ∅ ∈ Word 𝑃
9998a1i 11 . . . . . . . . 9 (𝜑 → ∅ ∈ Word 𝑃)
10015, 93ringidval 20181 . . . . . . . . . . 11 (1r𝑅) = (0g𝑀)
101100gsum0 18698 . . . . . . . . . 10 (𝑀 Σg ∅) = (1r𝑅)
102101a1i 11 . . . . . . . . 9 (𝜑 → (𝑀 Σg ∅) = (1r𝑅))
10397, 99, 102rspcedvdw 3624 . . . . . . . 8 (𝜑 → ∃𝑓 ∈ Word 𝑃(𝑀 Σg 𝑓) = (1r𝑅))
10492, 95, 103elrabd 3693 . . . . . . 7 (𝜑 → (1r𝑅) ∈ {𝑥𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)})
105104, 21eleqtrrdi 2851 . . . . . 6 (𝜑 → (1r𝑅) ∈ 𝑆)
106 1arithufd.u . . . . . . . . 9 𝑈 = (Unit‘𝑅)
1078ad2antrr 726 . . . . . . . . 9 (((𝜑𝑎𝑆) ∧ 𝑏𝑆) → 𝑅 ∈ UFD)
108 1arithufdlem.2 . . . . . . . . . 10 (𝜑 → ¬ 𝑅 ∈ DivRing)
109108ad2antrr 726 . . . . . . . . 9 (((𝜑𝑎𝑆) ∧ 𝑏𝑆) → ¬ 𝑅 ∈ DivRing)
110 eqid 2736 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
111 simplr 768 . . . . . . . . 9 (((𝜑𝑎𝑆) ∧ 𝑏𝑆) → 𝑎𝑆)
112 simpr 484 . . . . . . . . 9 (((𝜑𝑎𝑆) ∧ 𝑏𝑆) → 𝑏𝑆)
1136, 60, 106, 7, 15, 107, 109, 21, 110, 111, 1121arithufdlem2 33574 . . . . . . . 8 (((𝜑𝑎𝑆) ∧ 𝑏𝑆) → (𝑎(.r𝑅)𝑏) ∈ 𝑆)
114113anasss 466 . . . . . . 7 ((𝜑 ∧ (𝑎𝑆𝑏𝑆)) → (𝑎(.r𝑅)𝑏) ∈ 𝑆)
115114ralrimivva 3201 . . . . . 6 (𝜑 → ∀𝑎𝑆𝑏𝑆 (𝑎(.r𝑅)𝑏) ∈ 𝑆)
11615, 110mgpplusg 20142 . . . . . . . 8 (.r𝑅) = (+g𝑀)
11716, 100, 116issubm 18817 . . . . . . 7 (𝑀 ∈ Mnd → (𝑆 ∈ (SubMnd‘𝑀) ↔ (𝑆𝐵 ∧ (1r𝑅) ∈ 𝑆 ∧ ∀𝑎𝑆𝑏𝑆 (𝑎(.r𝑅)𝑏) ∈ 𝑆)))
118117biimpar 477 . . . . . 6 ((𝑀 ∈ Mnd ∧ (𝑆𝐵 ∧ (1r𝑅) ∈ 𝑆 ∧ ∀𝑎𝑆𝑏𝑆 (𝑎(.r𝑅)𝑏) ∈ 𝑆)) → 𝑆 ∈ (SubMnd‘𝑀))
11985, 87, 105, 115, 118syl13anc 1373 . . . . 5 (𝜑𝑆 ∈ (SubMnd‘𝑀))
120119adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝑋𝑆) → 𝑆 ∈ (SubMnd‘𝑀))
121 neq0 4351 . . . . . . . . 9 (¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅ ↔ ∃𝑢 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})))
122121biimpi 216 . . . . . . . 8 (¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅ → ∃𝑢 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})))
123122adantl 481 . . . . . . 7 ((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) → ∃𝑢 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})))
1248ad4antr 732 . . . . . . . . 9 (((((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) ∧ 𝑦𝐵) ∧ 𝑢 = (𝑦(.r𝑅)𝑋)) → 𝑅 ∈ UFD)
125108ad4antr 732 . . . . . . . . 9 (((((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) ∧ 𝑦𝐵) ∧ 𝑢 = (𝑦(.r𝑅)𝑋)) → ¬ 𝑅 ∈ DivRing)
12644ad4antr 732 . . . . . . . . 9 (((((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) ∧ 𝑦𝐵) ∧ 𝑢 = (𝑦(.r𝑅)𝑋)) → 𝑋𝐵)
127 1arithufdlem.4 . . . . . . . . . 10 (𝜑 → ¬ 𝑋𝑈)
128127ad4antr 732 . . . . . . . . 9 (((((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) ∧ 𝑦𝐵) ∧ 𝑢 = (𝑦(.r𝑅)𝑋)) → ¬ 𝑋𝑈)
12950ad4antr 732 . . . . . . . . 9 (((((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) ∧ 𝑦𝐵) ∧ 𝑢 = (𝑦(.r𝑅)𝑋)) → 𝑋0 )
130 simplr 768 . . . . . . . . 9 (((((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) ∧ 𝑦𝐵) ∧ 𝑢 = (𝑦(.r𝑅)𝑋)) → 𝑦𝐵)
131 simpr 484 . . . . . . . . . 10 (((((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) ∧ 𝑦𝐵) ∧ 𝑢 = (𝑦(.r𝑅)𝑋)) → 𝑢 = (𝑦(.r𝑅)𝑋))
132 simpllr 775 . . . . . . . . . . 11 (((((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) ∧ 𝑦𝐵) ∧ 𝑢 = (𝑦(.r𝑅)𝑋)) → 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})))
133132elin1d 4203 . . . . . . . . . 10 (((((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) ∧ 𝑦𝐵) ∧ 𝑢 = (𝑦(.r𝑅)𝑋)) → 𝑢𝑆)
134131, 133eqeltrrd 2841 . . . . . . . . 9 (((((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) ∧ 𝑦𝐵) ∧ 𝑢 = (𝑦(.r𝑅)𝑋)) → (𝑦(.r𝑅)𝑋) ∈ 𝑆)
1356, 60, 106, 7, 15, 124, 125, 21, 126, 128, 129, 110, 130, 1341arithufdlem3 33575 . . . . . . . 8 (((((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) ∧ 𝑦𝐵) ∧ 𝑢 = (𝑦(.r𝑅)𝑋)) → 𝑋𝑆)
13643ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) → 𝑅 ∈ Ring)
13744ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) → 𝑋𝐵)
138 simpr 484 . . . . . . . . . 10 (((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) → 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})))
139138elin2d 4204 . . . . . . . . 9 (((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) → 𝑢 ∈ ((RSpan‘𝑅)‘{𝑋}))
1406, 110, 45elrspsn 21251 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑢 ∈ ((RSpan‘𝑅)‘{𝑋}) ↔ ∃𝑦𝐵 𝑢 = (𝑦(.r𝑅)𝑋)))
141140biimpa 476 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ 𝑢 ∈ ((RSpan‘𝑅)‘{𝑋})) → ∃𝑦𝐵 𝑢 = (𝑦(.r𝑅)𝑋))
142136, 137, 139, 141syl21anc 837 . . . . . . . 8 (((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) → ∃𝑦𝐵 𝑢 = (𝑦(.r𝑅)𝑋))
143135, 142r19.29a 3161 . . . . . . 7 (((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) → 𝑋𝑆)
144123, 143exlimddv 1934 . . . . . 6 ((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) → 𝑋𝑆)
145144adantlr 715 . . . . 5 (((𝜑 ∧ ¬ 𝑋𝑆) ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) → 𝑋𝑆)
146 simplr 768 . . . . 5 (((𝜑 ∧ ¬ 𝑋𝑆) ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) → ¬ 𝑋𝑆)
147145, 146condan 817 . . . 4 ((𝜑 ∧ ¬ 𝑋𝑆) → (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅)
148 eqid 2736 . . . 4 {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} = {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)}
1496, 77, 83, 120, 15, 147, 148ssdifidlprm 33487 . . 3 ((𝜑 ∧ ¬ 𝑋𝑆) → ∃𝑖 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} (𝑖 ∈ (PrmIdeal‘𝑅) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖𝑗))
15075, 149r19.29a 3161 . 2 ((𝜑 ∧ ¬ 𝑋𝑆) → ¬ 𝑃𝑆)
15125, 150condan 817 1 (𝜑𝑋𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1539  wex 1778  wcel 2107  wne 2939  wral 3060  wrex 3069  {crab 3435  cdif 3947  cin 3949  wss 3950  wpss 3951  c0 4332  {csn 4625  cfv 6560  (class class class)co 7432  Word cword 14553  ⟨“cs1 14634  Basecbs 17248  .rcmulr 17299  0gc0g 17485   Σg cgsu 17486  Mndcmnd 18748  SubMndcsubmnd 18796  mulGrpcmgp 20138  1rcur 20179  Ringcrg 20231  CRingccrg 20232  Unitcui 20356  RPrimecrpm 20433  IDomncidom 20694  DivRingcdr 20730  LIdealclidl 21217  RSpancrsp 21218  PrmIdealcprmidl 33464  UFDcufd 33567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-ac2 10504  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-rpss 7744  df-om 7889  df-1st 8015  df-2nd 8016  df-supp 8187  df-tpos 8252  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-oadd 8511  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fsupp 9403  df-oi 9551  df-dju 9942  df-card 9980  df-ac 10157  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-n0 12529  df-xnn0 12602  df-z 12616  df-uz 12880  df-fz 13549  df-fzo 13696  df-seq 14044  df-hash 14371  df-word 14554  df-lsw 14602  df-concat 14610  df-s1 14635  df-substr 14680  df-pfx 14710  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-0g 17487  df-gsum 17488  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-submnd 18798  df-grp 18955  df-minusg 18956  df-sbg 18957  df-subg 19142  df-cntz 19336  df-lsm 19655  df-cmn 19801  df-abl 19802  df-mgp 20139  df-rng 20151  df-ur 20180  df-ring 20233  df-cring 20234  df-oppr 20335  df-dvdsr 20358  df-unit 20359  df-invr 20389  df-rprm 20434  df-nzr 20514  df-subrg 20571  df-domn 20696  df-idom 20697  df-lmod 20861  df-lss 20931  df-lsp 20971  df-sra 21173  df-rgmod 21174  df-lidl 21219  df-rsp 21220  df-prmidl 33465  df-ufd 33568
This theorem is referenced by:  1arithufd  33577
  Copyright terms: Public domain W3C validator