Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1arithufdlem4 Structured version   Visualization version   GIF version

Theorem 1arithufdlem4 33494
Description: Lemma for 1arithufd 33495. Nonzero ring, non-field case. Those trivial cases are handled in the final proof. (Contributed by Thierry Arnoux, 3-Jun-2025.)
Hypotheses
Ref Expression
1arithufd.b 𝐵 = (Base‘𝑅)
1arithufd.0 0 = (0g𝑅)
1arithufd.u 𝑈 = (Unit‘𝑅)
1arithufd.p 𝑃 = (RPrime‘𝑅)
1arithufd.m 𝑀 = (mulGrp‘𝑅)
1arithufd.r (𝜑𝑅 ∈ UFD)
1arithufdlem.2 (𝜑 → ¬ 𝑅 ∈ DivRing)
1arithufdlem.s 𝑆 = {𝑥𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)}
1arithufdlem.3 (𝜑𝑋𝐵)
1arithufdlem.4 (𝜑 → ¬ 𝑋𝑈)
1arithufdlem.5 (𝜑𝑋0 )
Assertion
Ref Expression
1arithufdlem4 (𝜑𝑋𝑆)
Distinct variable groups:   0 ,𝑓   𝑥,𝐵   𝑓,𝑀,𝑥   𝑃,𝑓,𝑥   𝑅,𝑓   𝜑,𝑓,𝑥   𝑥,𝑋   𝑥,𝑈   𝑥,𝑅   𝑥,𝑆   𝑥, 0   𝑈,𝑓   𝐵,𝑓   𝑓,𝑋   𝑆,𝑓

Proof of Theorem 1arithufdlem4
Dummy variables 𝑝 𝑖 𝑗 𝑢 𝑎 𝑏 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2733 . . . . . . . . 9 (𝑥 = 𝑎 → (𝑥 = (𝑀 Σg 𝑓) ↔ 𝑎 = (𝑀 Σg 𝑓)))
21rexbidv 3153 . . . . . . . 8 (𝑥 = 𝑎 → (∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓) ↔ ∃𝑓 ∈ Word 𝑃𝑎 = (𝑀 Σg 𝑓)))
3 eqcom 2736 . . . . . . . . 9 (𝑎 = (𝑀 Σg 𝑓) ↔ (𝑀 Σg 𝑓) = 𝑎)
43rexbii 3076 . . . . . . . 8 (∃𝑓 ∈ Word 𝑃𝑎 = (𝑀 Σg 𝑓) ↔ ∃𝑓 ∈ Word 𝑃(𝑀 Σg 𝑓) = 𝑎)
52, 4bitrdi 287 . . . . . . 7 (𝑥 = 𝑎 → (∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓) ↔ ∃𝑓 ∈ Word 𝑃(𝑀 Σg 𝑓) = 𝑎))
6 1arithufd.b . . . . . . . 8 𝐵 = (Base‘𝑅)
7 1arithufd.p . . . . . . . 8 𝑃 = (RPrime‘𝑅)
8 1arithufd.r . . . . . . . . 9 (𝜑𝑅 ∈ UFD)
98adantr 480 . . . . . . . 8 ((𝜑𝑎𝑃) → 𝑅 ∈ UFD)
10 simpr 484 . . . . . . . 8 ((𝜑𝑎𝑃) → 𝑎𝑃)
116, 7, 9, 10rprmcl 33465 . . . . . . 7 ((𝜑𝑎𝑃) → 𝑎𝐵)
12 oveq2 7361 . . . . . . . . 9 (𝑓 = ⟨“𝑎”⟩ → (𝑀 Σg 𝑓) = (𝑀 Σg ⟨“𝑎”⟩))
1312eqeq1d 2731 . . . . . . . 8 (𝑓 = ⟨“𝑎”⟩ → ((𝑀 Σg 𝑓) = 𝑎 ↔ (𝑀 Σg ⟨“𝑎”⟩) = 𝑎))
1410s1cld 14528 . . . . . . . 8 ((𝜑𝑎𝑃) → ⟨“𝑎”⟩ ∈ Word 𝑃)
15 1arithufd.m . . . . . . . . . . 11 𝑀 = (mulGrp‘𝑅)
1615, 6mgpbas 20048 . . . . . . . . . 10 𝐵 = (Base‘𝑀)
1716gsumws1 18730 . . . . . . . . 9 (𝑎𝐵 → (𝑀 Σg ⟨“𝑎”⟩) = 𝑎)
1811, 17syl 17 . . . . . . . 8 ((𝜑𝑎𝑃) → (𝑀 Σg ⟨“𝑎”⟩) = 𝑎)
1913, 14, 18rspcedvdw 3582 . . . . . . 7 ((𝜑𝑎𝑃) → ∃𝑓 ∈ Word 𝑃(𝑀 Σg 𝑓) = 𝑎)
205, 11, 19elrabd 3652 . . . . . 6 ((𝜑𝑎𝑃) → 𝑎 ∈ {𝑥𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)})
21 1arithufdlem.s . . . . . 6 𝑆 = {𝑥𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)}
2220, 21eleqtrrdi 2839 . . . . 5 ((𝜑𝑎𝑃) → 𝑎𝑆)
2322ex 412 . . . 4 (𝜑 → (𝑎𝑃𝑎𝑆))
2423ssrdv 3943 . . 3 (𝜑𝑃𝑆)
2524adantr 480 . 2 ((𝜑 ∧ ¬ 𝑋𝑆) → 𝑃𝑆)
26 anass 468 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ↔ ((𝜑 ∧ ¬ 𝑋𝑆) ∧ (𝑖 ∈ (LIdeal‘𝑅) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖))))
27 ineq2 4167 . . . . . . . . . . 11 (𝑝 = 𝑖 → (𝑆𝑝) = (𝑆𝑖))
2827eqeq1d 2731 . . . . . . . . . 10 (𝑝 = 𝑖 → ((𝑆𝑝) = ∅ ↔ (𝑆𝑖) = ∅))
29 sseq2 3964 . . . . . . . . . 10 (𝑝 = 𝑖 → (((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝 ↔ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖))
3028, 29anbi12d 632 . . . . . . . . 9 (𝑝 = 𝑖 → (((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝) ↔ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)))
3130elrab 3650 . . . . . . . 8 (𝑖 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ↔ (𝑖 ∈ (LIdeal‘𝑅) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)))
3231anbi2i 623 . . . . . . 7 (((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)}) ↔ ((𝜑 ∧ ¬ 𝑋𝑆) ∧ (𝑖 ∈ (LIdeal‘𝑅) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖))))
3326, 32bitr4i 278 . . . . . 6 ((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ↔ ((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)}))
3433anbi1i 624 . . . . 5 (((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ↔ (((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)}) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)))
35 incom 4162 . . . . . . 7 (𝑖𝑆) = (𝑆𝑖)
36 simpllr 775 . . . . . . . 8 ((((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖𝑗) → ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖))
3736simpld 494 . . . . . . 7 ((((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖𝑗) → (𝑆𝑖) = ∅)
3835, 37eqtrid 2776 . . . . . 6 ((((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖𝑗) → (𝑖𝑆) = ∅)
398ad5antr 734 . . . . . . 7 ((((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖𝑗) → 𝑅 ∈ UFD)
40 simplr 768 . . . . . . . 8 ((((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖𝑗) → 𝑖 ∈ (PrmIdeal‘𝑅))
4136simprd 495 . . . . . . . . . 10 ((((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖𝑗) → ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)
428ufdidom 33489 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ IDomn)
4342idomringd 20631 . . . . . . . . . . . 12 (𝜑𝑅 ∈ Ring)
44 1arithufdlem.3 . . . . . . . . . . . 12 (𝜑𝑋𝐵)
45 eqid 2729 . . . . . . . . . . . . 13 (RSpan‘𝑅) = (RSpan‘𝑅)
466, 45rspsnid 33318 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → 𝑋 ∈ ((RSpan‘𝑅)‘{𝑋}))
4743, 44, 46syl2anc 584 . . . . . . . . . . 11 (𝜑𝑋 ∈ ((RSpan‘𝑅)‘{𝑋}))
4847ad5antr 734 . . . . . . . . . 10 ((((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖𝑗) → 𝑋 ∈ ((RSpan‘𝑅)‘{𝑋}))
4941, 48sseldd 3938 . . . . . . . . 9 ((((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖𝑗) → 𝑋𝑖)
50 1arithufdlem.5 . . . . . . . . . . 11 (𝜑𝑋0 )
51 nelsn 4620 . . . . . . . . . . 11 (𝑋0 → ¬ 𝑋 ∈ { 0 })
5250, 51syl 17 . . . . . . . . . 10 (𝜑 → ¬ 𝑋 ∈ { 0 })
5352ad5antr 734 . . . . . . . . 9 ((((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖𝑗) → ¬ 𝑋 ∈ { 0 })
54 nelne1 3022 . . . . . . . . 9 ((𝑋𝑖 ∧ ¬ 𝑋 ∈ { 0 }) → 𝑖 ≠ { 0 })
5549, 53, 54syl2anc 584 . . . . . . . 8 ((((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖𝑗) → 𝑖 ≠ { 0 })
5640, 55eldifsnd 4741 . . . . . . 7 ((((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖𝑗) → 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }}))
57 ineq1 4166 . . . . . . . . 9 (𝑗 = 𝑖 → (𝑗𝑃) = (𝑖𝑃))
5857neeq1d 2984 . . . . . . . 8 (𝑗 = 𝑖 → ((𝑗𝑃) ≠ ∅ ↔ (𝑖𝑃) ≠ ∅))
59 eqid 2729 . . . . . . . . . . 11 (PrmIdeal‘𝑅) = (PrmIdeal‘𝑅)
60 1arithufd.0 . . . . . . . . . . 11 0 = (0g𝑅)
6159, 7, 60isufd 33487 . . . . . . . . . 10 (𝑅 ∈ UFD ↔ (𝑅 ∈ IDomn ∧ ∀𝑗 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})(𝑗𝑃) ≠ ∅))
6261simprbi 496 . . . . . . . . 9 (𝑅 ∈ UFD → ∀𝑗 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})(𝑗𝑃) ≠ ∅)
6362adantr 480 . . . . . . . 8 ((𝑅 ∈ UFD ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → ∀𝑗 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})(𝑗𝑃) ≠ ∅)
64 simpr 484 . . . . . . . 8 ((𝑅 ∈ UFD ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }}))
6558, 63, 64rspcdva 3580 . . . . . . 7 ((𝑅 ∈ UFD ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → (𝑖𝑃) ≠ ∅)
6639, 56, 65syl2anc 584 . . . . . 6 ((((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖𝑗) → (𝑖𝑃) ≠ ∅)
67 sseq0 4356 . . . . . . . . 9 (((𝑖𝑃) ⊆ (𝑖𝑆) ∧ (𝑖𝑆) = ∅) → (𝑖𝑃) = ∅)
6867expcom 413 . . . . . . . 8 ((𝑖𝑆) = ∅ → ((𝑖𝑃) ⊆ (𝑖𝑆) → (𝑖𝑃) = ∅))
6968necon3ad 2938 . . . . . . 7 ((𝑖𝑆) = ∅ → ((𝑖𝑃) ≠ ∅ → ¬ (𝑖𝑃) ⊆ (𝑖𝑆)))
70 sslin 4196 . . . . . . . 8 (𝑃𝑆 → (𝑖𝑃) ⊆ (𝑖𝑆))
7170con3i 154 . . . . . . 7 (¬ (𝑖𝑃) ⊆ (𝑖𝑆) → ¬ 𝑃𝑆)
7269, 71syl6 35 . . . . . 6 ((𝑖𝑆) = ∅ → ((𝑖𝑃) ≠ ∅ → ¬ 𝑃𝑆))
7338, 66, 72sylc 65 . . . . 5 ((((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑆𝑖) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑖)) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖𝑗) → ¬ 𝑃𝑆)
7434, 73sylanbr 582 . . . 4 (((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)}) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖𝑗) → ¬ 𝑃𝑆)
7574anasss 466 . . 3 ((((𝜑 ∧ ¬ 𝑋𝑆) ∧ 𝑖 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)}) ∧ (𝑖 ∈ (PrmIdeal‘𝑅) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖𝑗)) → ¬ 𝑃𝑆)
7642idomcringd 20630 . . . . 5 (𝜑𝑅 ∈ CRing)
7776adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝑋𝑆) → 𝑅 ∈ CRing)
7843adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝑋𝑆) → 𝑅 ∈ Ring)
7944adantr 480 . . . . . 6 ((𝜑 ∧ ¬ 𝑋𝑆) → 𝑋𝐵)
8079snssd 4763 . . . . 5 ((𝜑 ∧ ¬ 𝑋𝑆) → {𝑋} ⊆ 𝐵)
81 eqid 2729 . . . . . 6 (LIdeal‘𝑅) = (LIdeal‘𝑅)
8245, 6, 81rspcl 21160 . . . . 5 ((𝑅 ∈ Ring ∧ {𝑋} ⊆ 𝐵) → ((RSpan‘𝑅)‘{𝑋}) ∈ (LIdeal‘𝑅))
8378, 80, 82syl2anc 584 . . . 4 ((𝜑 ∧ ¬ 𝑋𝑆) → ((RSpan‘𝑅)‘{𝑋}) ∈ (LIdeal‘𝑅))
8415ringmgp 20142 . . . . . . 7 (𝑅 ∈ Ring → 𝑀 ∈ Mnd)
8543, 84syl 17 . . . . . 6 (𝜑𝑀 ∈ Mnd)
8621ssrab3 4035 . . . . . . 7 𝑆𝐵
8786a1i 11 . . . . . 6 (𝜑𝑆𝐵)
88 eqeq1 2733 . . . . . . . . . 10 (𝑥 = (1r𝑅) → (𝑥 = (𝑀 Σg 𝑓) ↔ (1r𝑅) = (𝑀 Σg 𝑓)))
8988rexbidv 3153 . . . . . . . . 9 (𝑥 = (1r𝑅) → (∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓) ↔ ∃𝑓 ∈ Word 𝑃(1r𝑅) = (𝑀 Σg 𝑓)))
90 eqcom 2736 . . . . . . . . . 10 ((1r𝑅) = (𝑀 Σg 𝑓) ↔ (𝑀 Σg 𝑓) = (1r𝑅))
9190rexbii 3076 . . . . . . . . 9 (∃𝑓 ∈ Word 𝑃(1r𝑅) = (𝑀 Σg 𝑓) ↔ ∃𝑓 ∈ Word 𝑃(𝑀 Σg 𝑓) = (1r𝑅))
9289, 91bitrdi 287 . . . . . . . 8 (𝑥 = (1r𝑅) → (∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓) ↔ ∃𝑓 ∈ Word 𝑃(𝑀 Σg 𝑓) = (1r𝑅)))
93 eqid 2729 . . . . . . . . . 10 (1r𝑅) = (1r𝑅)
946, 93ringidcl 20168 . . . . . . . . 9 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
9543, 94syl 17 . . . . . . . 8 (𝜑 → (1r𝑅) ∈ 𝐵)
96 oveq2 7361 . . . . . . . . . 10 (𝑓 = ∅ → (𝑀 Σg 𝑓) = (𝑀 Σg ∅))
9796eqeq1d 2731 . . . . . . . . 9 (𝑓 = ∅ → ((𝑀 Σg 𝑓) = (1r𝑅) ↔ (𝑀 Σg ∅) = (1r𝑅)))
98 wrd0 14464 . . . . . . . . . 10 ∅ ∈ Word 𝑃
9998a1i 11 . . . . . . . . 9 (𝜑 → ∅ ∈ Word 𝑃)
10015, 93ringidval 20086 . . . . . . . . . . 11 (1r𝑅) = (0g𝑀)
101100gsum0 18576 . . . . . . . . . 10 (𝑀 Σg ∅) = (1r𝑅)
102101a1i 11 . . . . . . . . 9 (𝜑 → (𝑀 Σg ∅) = (1r𝑅))
10397, 99, 102rspcedvdw 3582 . . . . . . . 8 (𝜑 → ∃𝑓 ∈ Word 𝑃(𝑀 Σg 𝑓) = (1r𝑅))
10492, 95, 103elrabd 3652 . . . . . . 7 (𝜑 → (1r𝑅) ∈ {𝑥𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)})
105104, 21eleqtrrdi 2839 . . . . . 6 (𝜑 → (1r𝑅) ∈ 𝑆)
106 1arithufd.u . . . . . . . . 9 𝑈 = (Unit‘𝑅)
1078ad2antrr 726 . . . . . . . . 9 (((𝜑𝑎𝑆) ∧ 𝑏𝑆) → 𝑅 ∈ UFD)
108 1arithufdlem.2 . . . . . . . . . 10 (𝜑 → ¬ 𝑅 ∈ DivRing)
109108ad2antrr 726 . . . . . . . . 9 (((𝜑𝑎𝑆) ∧ 𝑏𝑆) → ¬ 𝑅 ∈ DivRing)
110 eqid 2729 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
111 simplr 768 . . . . . . . . 9 (((𝜑𝑎𝑆) ∧ 𝑏𝑆) → 𝑎𝑆)
112 simpr 484 . . . . . . . . 9 (((𝜑𝑎𝑆) ∧ 𝑏𝑆) → 𝑏𝑆)
1136, 60, 106, 7, 15, 107, 109, 21, 110, 111, 1121arithufdlem2 33492 . . . . . . . 8 (((𝜑𝑎𝑆) ∧ 𝑏𝑆) → (𝑎(.r𝑅)𝑏) ∈ 𝑆)
114113anasss 466 . . . . . . 7 ((𝜑 ∧ (𝑎𝑆𝑏𝑆)) → (𝑎(.r𝑅)𝑏) ∈ 𝑆)
115114ralrimivva 3172 . . . . . 6 (𝜑 → ∀𝑎𝑆𝑏𝑆 (𝑎(.r𝑅)𝑏) ∈ 𝑆)
11615, 110mgpplusg 20047 . . . . . . . 8 (.r𝑅) = (+g𝑀)
11716, 100, 116issubm 18695 . . . . . . 7 (𝑀 ∈ Mnd → (𝑆 ∈ (SubMnd‘𝑀) ↔ (𝑆𝐵 ∧ (1r𝑅) ∈ 𝑆 ∧ ∀𝑎𝑆𝑏𝑆 (𝑎(.r𝑅)𝑏) ∈ 𝑆)))
118117biimpar 477 . . . . . 6 ((𝑀 ∈ Mnd ∧ (𝑆𝐵 ∧ (1r𝑅) ∈ 𝑆 ∧ ∀𝑎𝑆𝑏𝑆 (𝑎(.r𝑅)𝑏) ∈ 𝑆)) → 𝑆 ∈ (SubMnd‘𝑀))
11985, 87, 105, 115, 118syl13anc 1374 . . . . 5 (𝜑𝑆 ∈ (SubMnd‘𝑀))
120119adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝑋𝑆) → 𝑆 ∈ (SubMnd‘𝑀))
121 neq0 4305 . . . . . . . . 9 (¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅ ↔ ∃𝑢 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})))
122121biimpi 216 . . . . . . . 8 (¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅ → ∃𝑢 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})))
123122adantl 481 . . . . . . 7 ((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) → ∃𝑢 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})))
1248ad4antr 732 . . . . . . . . 9 (((((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) ∧ 𝑦𝐵) ∧ 𝑢 = (𝑦(.r𝑅)𝑋)) → 𝑅 ∈ UFD)
125108ad4antr 732 . . . . . . . . 9 (((((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) ∧ 𝑦𝐵) ∧ 𝑢 = (𝑦(.r𝑅)𝑋)) → ¬ 𝑅 ∈ DivRing)
12644ad4antr 732 . . . . . . . . 9 (((((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) ∧ 𝑦𝐵) ∧ 𝑢 = (𝑦(.r𝑅)𝑋)) → 𝑋𝐵)
127 1arithufdlem.4 . . . . . . . . . 10 (𝜑 → ¬ 𝑋𝑈)
128127ad4antr 732 . . . . . . . . 9 (((((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) ∧ 𝑦𝐵) ∧ 𝑢 = (𝑦(.r𝑅)𝑋)) → ¬ 𝑋𝑈)
12950ad4antr 732 . . . . . . . . 9 (((((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) ∧ 𝑦𝐵) ∧ 𝑢 = (𝑦(.r𝑅)𝑋)) → 𝑋0 )
130 simplr 768 . . . . . . . . 9 (((((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) ∧ 𝑦𝐵) ∧ 𝑢 = (𝑦(.r𝑅)𝑋)) → 𝑦𝐵)
131 simpr 484 . . . . . . . . . 10 (((((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) ∧ 𝑦𝐵) ∧ 𝑢 = (𝑦(.r𝑅)𝑋)) → 𝑢 = (𝑦(.r𝑅)𝑋))
132 simpllr 775 . . . . . . . . . . 11 (((((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) ∧ 𝑦𝐵) ∧ 𝑢 = (𝑦(.r𝑅)𝑋)) → 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})))
133132elin1d 4157 . . . . . . . . . 10 (((((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) ∧ 𝑦𝐵) ∧ 𝑢 = (𝑦(.r𝑅)𝑋)) → 𝑢𝑆)
134131, 133eqeltrrd 2829 . . . . . . . . 9 (((((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) ∧ 𝑦𝐵) ∧ 𝑢 = (𝑦(.r𝑅)𝑋)) → (𝑦(.r𝑅)𝑋) ∈ 𝑆)
1356, 60, 106, 7, 15, 124, 125, 21, 126, 128, 129, 110, 130, 1341arithufdlem3 33493 . . . . . . . 8 (((((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) ∧ 𝑦𝐵) ∧ 𝑢 = (𝑦(.r𝑅)𝑋)) → 𝑋𝑆)
13643ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) → 𝑅 ∈ Ring)
13744ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) → 𝑋𝐵)
138 simpr 484 . . . . . . . . . 10 (((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) → 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})))
139138elin2d 4158 . . . . . . . . 9 (((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) → 𝑢 ∈ ((RSpan‘𝑅)‘{𝑋}))
1406, 110, 45elrspsn 21165 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑢 ∈ ((RSpan‘𝑅)‘{𝑋}) ↔ ∃𝑦𝐵 𝑢 = (𝑦(.r𝑅)𝑋)))
141140biimpa 476 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ 𝑢 ∈ ((RSpan‘𝑅)‘{𝑋})) → ∃𝑦𝐵 𝑢 = (𝑦(.r𝑅)𝑋))
142136, 137, 139, 141syl21anc 837 . . . . . . . 8 (((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) → ∃𝑦𝐵 𝑢 = (𝑦(.r𝑅)𝑋))
143135, 142r19.29a 3137 . . . . . . 7 (((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) ∧ 𝑢 ∈ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋}))) → 𝑋𝑆)
144123, 143exlimddv 1935 . . . . . 6 ((𝜑 ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) → 𝑋𝑆)
145144adantlr 715 . . . . 5 (((𝜑 ∧ ¬ 𝑋𝑆) ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) → 𝑋𝑆)
146 simplr 768 . . . . 5 (((𝜑 ∧ ¬ 𝑋𝑆) ∧ ¬ (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅) → ¬ 𝑋𝑆)
147145, 146condan 817 . . . 4 ((𝜑 ∧ ¬ 𝑋𝑆) → (𝑆 ∩ ((RSpan‘𝑅)‘{𝑋})) = ∅)
148 eqid 2729 . . . 4 {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} = {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)}
1496, 77, 83, 120, 15, 147, 148ssdifidlprm 33405 . . 3 ((𝜑 ∧ ¬ 𝑋𝑆) → ∃𝑖 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} (𝑖 ∈ (PrmIdeal‘𝑅) ∧ ∀𝑗 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ ((RSpan‘𝑅)‘{𝑋}) ⊆ 𝑝)} ¬ 𝑖𝑗))
15075, 149r19.29a 3137 . 2 ((𝜑 ∧ ¬ 𝑋𝑆) → ¬ 𝑃𝑆)
15125, 150condan 817 1 (𝜑𝑋𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3396  cdif 3902  cin 3904  wss 3905  wpss 3906  c0 4286  {csn 4579  cfv 6486  (class class class)co 7353  Word cword 14438  ⟨“cs1 14520  Basecbs 17138  .rcmulr 17180  0gc0g 17361   Σg cgsu 17362  Mndcmnd 18626  SubMndcsubmnd 18674  mulGrpcmgp 20043  1rcur 20084  Ringcrg 20136  CRingccrg 20137  Unitcui 20258  RPrimecrpm 20335  IDomncidom 20596  DivRingcdr 20632  LIdealclidl 21131  RSpancrsp 21132  PrmIdealcprmidl 33382  UFDcufd 33485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-ac2 10376  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-rpss 7663  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-tpos 8166  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-oadd 8399  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-oi 9421  df-dju 9816  df-card 9854  df-ac 10029  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-n0 12403  df-xnn0 12476  df-z 12490  df-uz 12754  df-fz 13429  df-fzo 13576  df-seq 13927  df-hash 14256  df-word 14439  df-lsw 14488  df-concat 14496  df-s1 14521  df-substr 14566  df-pfx 14596  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-ip 17197  df-0g 17363  df-gsum 17364  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-grp 18833  df-minusg 18834  df-sbg 18835  df-subg 19020  df-cntz 19214  df-lsm 19533  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-cring 20139  df-oppr 20240  df-dvdsr 20260  df-unit 20261  df-invr 20291  df-rprm 20336  df-nzr 20416  df-subrg 20473  df-domn 20598  df-idom 20599  df-lmod 20783  df-lss 20853  df-lsp 20893  df-sra 21095  df-rgmod 21096  df-lidl 21133  df-rsp 21134  df-prmidl 33383  df-ufd 33486
This theorem is referenced by:  1arithufd  33495
  Copyright terms: Public domain W3C validator