![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ufli | Structured version Visualization version GIF version |
Description: Property of a set that satisfies the ultrafilter lemma. (Contributed by Mario Carneiro, 26-Aug-2015.) |
Ref | Expression |
---|---|
ufli | ⊢ ((𝑋 ∈ UFL ∧ 𝐹 ∈ (Fil‘𝑋)) → ∃𝑓 ∈ (UFil‘𝑋)𝐹 ⊆ 𝑓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isufl 23417 | . . 3 ⊢ (𝑋 ∈ UFL → (𝑋 ∈ UFL ↔ ∀𝑔 ∈ (Fil‘𝑋)∃𝑓 ∈ (UFil‘𝑋)𝑔 ⊆ 𝑓)) | |
2 | 1 | ibi 267 | . 2 ⊢ (𝑋 ∈ UFL → ∀𝑔 ∈ (Fil‘𝑋)∃𝑓 ∈ (UFil‘𝑋)𝑔 ⊆ 𝑓) |
3 | sseq1 4008 | . . . 4 ⊢ (𝑔 = 𝐹 → (𝑔 ⊆ 𝑓 ↔ 𝐹 ⊆ 𝑓)) | |
4 | 3 | rexbidv 3179 | . . 3 ⊢ (𝑔 = 𝐹 → (∃𝑓 ∈ (UFil‘𝑋)𝑔 ⊆ 𝑓 ↔ ∃𝑓 ∈ (UFil‘𝑋)𝐹 ⊆ 𝑓)) |
5 | 4 | rspccva 3612 | . 2 ⊢ ((∀𝑔 ∈ (Fil‘𝑋)∃𝑓 ∈ (UFil‘𝑋)𝑔 ⊆ 𝑓 ∧ 𝐹 ∈ (Fil‘𝑋)) → ∃𝑓 ∈ (UFil‘𝑋)𝐹 ⊆ 𝑓) |
6 | 2, 5 | sylan 581 | 1 ⊢ ((𝑋 ∈ UFL ∧ 𝐹 ∈ (Fil‘𝑋)) → ∃𝑓 ∈ (UFil‘𝑋)𝐹 ⊆ 𝑓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∀wral 3062 ∃wrex 3071 ⊆ wss 3949 ‘cfv 6544 Filcfil 23349 UFilcufil 23403 UFLcufl 23404 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-iota 6496 df-fv 6552 df-ufl 23406 |
This theorem is referenced by: ssufl 23422 ufldom 23466 ufilcmp 23536 |
Copyright terms: Public domain | W3C validator |