![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ufli | Structured version Visualization version GIF version |
Description: Property of a set that satisfies the ultrafilter lemma. (Contributed by Mario Carneiro, 26-Aug-2015.) |
Ref | Expression |
---|---|
ufli | ⊢ ((𝑋 ∈ UFL ∧ 𝐹 ∈ (Fil‘𝑋)) → ∃𝑓 ∈ (UFil‘𝑋)𝐹 ⊆ 𝑓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isufl 23942 | . . 3 ⊢ (𝑋 ∈ UFL → (𝑋 ∈ UFL ↔ ∀𝑔 ∈ (Fil‘𝑋)∃𝑓 ∈ (UFil‘𝑋)𝑔 ⊆ 𝑓)) | |
2 | 1 | ibi 267 | . 2 ⊢ (𝑋 ∈ UFL → ∀𝑔 ∈ (Fil‘𝑋)∃𝑓 ∈ (UFil‘𝑋)𝑔 ⊆ 𝑓) |
3 | sseq1 4034 | . . . 4 ⊢ (𝑔 = 𝐹 → (𝑔 ⊆ 𝑓 ↔ 𝐹 ⊆ 𝑓)) | |
4 | 3 | rexbidv 3185 | . . 3 ⊢ (𝑔 = 𝐹 → (∃𝑓 ∈ (UFil‘𝑋)𝑔 ⊆ 𝑓 ↔ ∃𝑓 ∈ (UFil‘𝑋)𝐹 ⊆ 𝑓)) |
5 | 4 | rspccva 3634 | . 2 ⊢ ((∀𝑔 ∈ (Fil‘𝑋)∃𝑓 ∈ (UFil‘𝑋)𝑔 ⊆ 𝑓 ∧ 𝐹 ∈ (Fil‘𝑋)) → ∃𝑓 ∈ (UFil‘𝑋)𝐹 ⊆ 𝑓) |
6 | 2, 5 | sylan 579 | 1 ⊢ ((𝑋 ∈ UFL ∧ 𝐹 ∈ (Fil‘𝑋)) → ∃𝑓 ∈ (UFil‘𝑋)𝐹 ⊆ 𝑓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 ⊆ wss 3976 ‘cfv 6573 Filcfil 23874 UFilcufil 23928 UFLcufl 23929 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ufl 23931 |
This theorem is referenced by: ssufl 23947 ufldom 23991 ufilcmp 24061 |
Copyright terms: Public domain | W3C validator |