Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ufli | Structured version Visualization version GIF version |
Description: Property of a set that satisfies the ultrafilter lemma. (Contributed by Mario Carneiro, 26-Aug-2015.) |
Ref | Expression |
---|---|
ufli | ⊢ ((𝑋 ∈ UFL ∧ 𝐹 ∈ (Fil‘𝑋)) → ∃𝑓 ∈ (UFil‘𝑋)𝐹 ⊆ 𝑓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isufl 23064 | . . 3 ⊢ (𝑋 ∈ UFL → (𝑋 ∈ UFL ↔ ∀𝑔 ∈ (Fil‘𝑋)∃𝑓 ∈ (UFil‘𝑋)𝑔 ⊆ 𝑓)) | |
2 | 1 | ibi 266 | . 2 ⊢ (𝑋 ∈ UFL → ∀𝑔 ∈ (Fil‘𝑋)∃𝑓 ∈ (UFil‘𝑋)𝑔 ⊆ 𝑓) |
3 | sseq1 3946 | . . . 4 ⊢ (𝑔 = 𝐹 → (𝑔 ⊆ 𝑓 ↔ 𝐹 ⊆ 𝑓)) | |
4 | 3 | rexbidv 3226 | . . 3 ⊢ (𝑔 = 𝐹 → (∃𝑓 ∈ (UFil‘𝑋)𝑔 ⊆ 𝑓 ↔ ∃𝑓 ∈ (UFil‘𝑋)𝐹 ⊆ 𝑓)) |
5 | 4 | rspccva 3560 | . 2 ⊢ ((∀𝑔 ∈ (Fil‘𝑋)∃𝑓 ∈ (UFil‘𝑋)𝑔 ⊆ 𝑓 ∧ 𝐹 ∈ (Fil‘𝑋)) → ∃𝑓 ∈ (UFil‘𝑋)𝐹 ⊆ 𝑓) |
6 | 2, 5 | sylan 580 | 1 ⊢ ((𝑋 ∈ UFL ∧ 𝐹 ∈ (Fil‘𝑋)) → ∃𝑓 ∈ (UFil‘𝑋)𝐹 ⊆ 𝑓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∃wrex 3065 ⊆ wss 3887 ‘cfv 6433 Filcfil 22996 UFilcufil 23050 UFLcufl 23051 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-ufl 23053 |
This theorem is referenced by: ssufl 23069 ufldom 23113 ufilcmp 23183 |
Copyright terms: Public domain | W3C validator |