MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ufli Structured version   Visualization version   GIF version

Theorem ufli 23938
Description: Property of a set that satisfies the ultrafilter lemma. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
ufli ((𝑋 ∈ UFL ∧ 𝐹 ∈ (Fil‘𝑋)) → ∃𝑓 ∈ (UFil‘𝑋)𝐹𝑓)
Distinct variable groups:   𝑓,𝐹   𝑓,𝑋

Proof of Theorem ufli
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 isufl 23937 . . 3 (𝑋 ∈ UFL → (𝑋 ∈ UFL ↔ ∀𝑔 ∈ (Fil‘𝑋)∃𝑓 ∈ (UFil‘𝑋)𝑔𝑓))
21ibi 267 . 2 (𝑋 ∈ UFL → ∀𝑔 ∈ (Fil‘𝑋)∃𝑓 ∈ (UFil‘𝑋)𝑔𝑓)
3 sseq1 4021 . . . 4 (𝑔 = 𝐹 → (𝑔𝑓𝐹𝑓))
43rexbidv 3177 . . 3 (𝑔 = 𝐹 → (∃𝑓 ∈ (UFil‘𝑋)𝑔𝑓 ↔ ∃𝑓 ∈ (UFil‘𝑋)𝐹𝑓))
54rspccva 3621 . 2 ((∀𝑔 ∈ (Fil‘𝑋)∃𝑓 ∈ (UFil‘𝑋)𝑔𝑓𝐹 ∈ (Fil‘𝑋)) → ∃𝑓 ∈ (UFil‘𝑋)𝐹𝑓)
62, 5sylan 580 1 ((𝑋 ∈ UFL ∧ 𝐹 ∈ (Fil‘𝑋)) → ∃𝑓 ∈ (UFil‘𝑋)𝐹𝑓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wral 3059  wrex 3068  wss 3963  cfv 6563  Filcfil 23869  UFilcufil 23923  UFLcufl 23924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-iota 6516  df-fv 6571  df-ufl 23926
This theorem is referenced by:  ssufl  23942  ufldom  23986  ufilcmp  24056
  Copyright terms: Public domain W3C validator