MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ufli Structured version   Visualization version   GIF version

Theorem ufli 23943
Description: Property of a set that satisfies the ultrafilter lemma. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
ufli ((𝑋 ∈ UFL ∧ 𝐹 ∈ (Fil‘𝑋)) → ∃𝑓 ∈ (UFil‘𝑋)𝐹𝑓)
Distinct variable groups:   𝑓,𝐹   𝑓,𝑋

Proof of Theorem ufli
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 isufl 23942 . . 3 (𝑋 ∈ UFL → (𝑋 ∈ UFL ↔ ∀𝑔 ∈ (Fil‘𝑋)∃𝑓 ∈ (UFil‘𝑋)𝑔𝑓))
21ibi 267 . 2 (𝑋 ∈ UFL → ∀𝑔 ∈ (Fil‘𝑋)∃𝑓 ∈ (UFil‘𝑋)𝑔𝑓)
3 sseq1 4034 . . . 4 (𝑔 = 𝐹 → (𝑔𝑓𝐹𝑓))
43rexbidv 3185 . . 3 (𝑔 = 𝐹 → (∃𝑓 ∈ (UFil‘𝑋)𝑔𝑓 ↔ ∃𝑓 ∈ (UFil‘𝑋)𝐹𝑓))
54rspccva 3634 . 2 ((∀𝑔 ∈ (Fil‘𝑋)∃𝑓 ∈ (UFil‘𝑋)𝑔𝑓𝐹 ∈ (Fil‘𝑋)) → ∃𝑓 ∈ (UFil‘𝑋)𝐹𝑓)
62, 5sylan 579 1 ((𝑋 ∈ UFL ∧ 𝐹 ∈ (Fil‘𝑋)) → ∃𝑓 ∈ (UFil‘𝑋)𝐹𝑓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  wrex 3076  wss 3976  cfv 6573  Filcfil 23874  UFilcufil 23928  UFLcufl 23929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581  df-ufl 23931
This theorem is referenced by:  ssufl  23947  ufldom  23991  ufilcmp  24061
  Copyright terms: Public domain W3C validator