| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ufli | Structured version Visualization version GIF version | ||
| Description: Property of a set that satisfies the ultrafilter lemma. (Contributed by Mario Carneiro, 26-Aug-2015.) |
| Ref | Expression |
|---|---|
| ufli | ⊢ ((𝑋 ∈ UFL ∧ 𝐹 ∈ (Fil‘𝑋)) → ∃𝑓 ∈ (UFil‘𝑋)𝐹 ⊆ 𝑓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isufl 23833 | . . 3 ⊢ (𝑋 ∈ UFL → (𝑋 ∈ UFL ↔ ∀𝑔 ∈ (Fil‘𝑋)∃𝑓 ∈ (UFil‘𝑋)𝑔 ⊆ 𝑓)) | |
| 2 | 1 | ibi 267 | . 2 ⊢ (𝑋 ∈ UFL → ∀𝑔 ∈ (Fil‘𝑋)∃𝑓 ∈ (UFil‘𝑋)𝑔 ⊆ 𝑓) |
| 3 | sseq1 3969 | . . . 4 ⊢ (𝑔 = 𝐹 → (𝑔 ⊆ 𝑓 ↔ 𝐹 ⊆ 𝑓)) | |
| 4 | 3 | rexbidv 3157 | . . 3 ⊢ (𝑔 = 𝐹 → (∃𝑓 ∈ (UFil‘𝑋)𝑔 ⊆ 𝑓 ↔ ∃𝑓 ∈ (UFil‘𝑋)𝐹 ⊆ 𝑓)) |
| 5 | 4 | rspccva 3584 | . 2 ⊢ ((∀𝑔 ∈ (Fil‘𝑋)∃𝑓 ∈ (UFil‘𝑋)𝑔 ⊆ 𝑓 ∧ 𝐹 ∈ (Fil‘𝑋)) → ∃𝑓 ∈ (UFil‘𝑋)𝐹 ⊆ 𝑓) |
| 6 | 2, 5 | sylan 580 | 1 ⊢ ((𝑋 ∈ UFL ∧ 𝐹 ∈ (Fil‘𝑋)) → ∃𝑓 ∈ (UFil‘𝑋)𝐹 ⊆ 𝑓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ⊆ wss 3911 ‘cfv 6499 Filcfil 23765 UFilcufil 23819 UFLcufl 23820 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-iota 6452 df-fv 6507 df-ufl 23822 |
| This theorem is referenced by: ssufl 23838 ufldom 23882 ufilcmp 23952 |
| Copyright terms: Public domain | W3C validator |