MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ufilcmp Structured version   Visualization version   GIF version

Theorem ufilcmp 23919
Description: A space is compact iff every ultrafilter converges. (Contributed by Jeff Hankins, 11-Dec-2009.) (Proof shortened by Mario Carneiro, 12-Apr-2015.) (Revised by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
ufilcmp ((𝑋 ∈ UFL ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝐽 ∈ Comp ↔ ∀𝑓 ∈ (UFil‘𝑋)(𝐽 fLim 𝑓) ≠ ∅))
Distinct variable groups:   𝑓,𝐽   𝑓,𝑋

Proof of Theorem ufilcmp
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 ufilfil 23791 . . . . . 6 (𝑓 ∈ (UFil‘ 𝐽) → 𝑓 ∈ (Fil‘ 𝐽))
2 eqid 2729 . . . . . . 7 𝐽 = 𝐽
32fclscmpi 23916 . . . . . 6 ((𝐽 ∈ Comp ∧ 𝑓 ∈ (Fil‘ 𝐽)) → (𝐽 fClus 𝑓) ≠ ∅)
41, 3sylan2 593 . . . . 5 ((𝐽 ∈ Comp ∧ 𝑓 ∈ (UFil‘ 𝐽)) → (𝐽 fClus 𝑓) ≠ ∅)
54ralrimiva 3125 . . . 4 (𝐽 ∈ Comp → ∀𝑓 ∈ (UFil‘ 𝐽)(𝐽 fClus 𝑓) ≠ ∅)
6 toponuni 22801 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
76fveq2d 6862 . . . . . 6 (𝐽 ∈ (TopOn‘𝑋) → (UFil‘𝑋) = (UFil‘ 𝐽))
87raleqdv 3299 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → (∀𝑓 ∈ (UFil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅ ↔ ∀𝑓 ∈ (UFil‘ 𝐽)(𝐽 fClus 𝑓) ≠ ∅))
98adantl 481 . . . 4 ((𝑋 ∈ UFL ∧ 𝐽 ∈ (TopOn‘𝑋)) → (∀𝑓 ∈ (UFil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅ ↔ ∀𝑓 ∈ (UFil‘ 𝐽)(𝐽 fClus 𝑓) ≠ ∅))
105, 9imbitrrid 246 . . 3 ((𝑋 ∈ UFL ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝐽 ∈ Comp → ∀𝑓 ∈ (UFil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅))
11 ufli 23801 . . . . . . 7 ((𝑋 ∈ UFL ∧ 𝑔 ∈ (Fil‘𝑋)) → ∃𝑓 ∈ (UFil‘𝑋)𝑔𝑓)
1211adantlr 715 . . . . . 6 (((𝑋 ∈ UFL ∧ 𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑔 ∈ (Fil‘𝑋)) → ∃𝑓 ∈ (UFil‘𝑋)𝑔𝑓)
13 r19.29 3094 . . . . . . 7 ((∀𝑓 ∈ (UFil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅ ∧ ∃𝑓 ∈ (UFil‘𝑋)𝑔𝑓) → ∃𝑓 ∈ (UFil‘𝑋)((𝐽 fClus 𝑓) ≠ ∅ ∧ 𝑔𝑓))
14 simpllr 775 . . . . . . . . . . . 12 ((((𝑋 ∈ UFL ∧ 𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑔 ∈ (Fil‘𝑋)) ∧ (𝑓 ∈ (UFil‘𝑋) ∧ 𝑔𝑓)) → 𝐽 ∈ (TopOn‘𝑋))
15 simplr 768 . . . . . . . . . . . 12 ((((𝑋 ∈ UFL ∧ 𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑔 ∈ (Fil‘𝑋)) ∧ (𝑓 ∈ (UFil‘𝑋) ∧ 𝑔𝑓)) → 𝑔 ∈ (Fil‘𝑋))
16 simprr 772 . . . . . . . . . . . 12 ((((𝑋 ∈ UFL ∧ 𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑔 ∈ (Fil‘𝑋)) ∧ (𝑓 ∈ (UFil‘𝑋) ∧ 𝑔𝑓)) → 𝑔𝑓)
17 fclsss2 23910 . . . . . . . . . . . 12 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑔 ∈ (Fil‘𝑋) ∧ 𝑔𝑓) → (𝐽 fClus 𝑓) ⊆ (𝐽 fClus 𝑔))
1814, 15, 16, 17syl3anc 1373 . . . . . . . . . . 11 ((((𝑋 ∈ UFL ∧ 𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑔 ∈ (Fil‘𝑋)) ∧ (𝑓 ∈ (UFil‘𝑋) ∧ 𝑔𝑓)) → (𝐽 fClus 𝑓) ⊆ (𝐽 fClus 𝑔))
19 ssn0 4367 . . . . . . . . . . . 12 (((𝐽 fClus 𝑓) ⊆ (𝐽 fClus 𝑔) ∧ (𝐽 fClus 𝑓) ≠ ∅) → (𝐽 fClus 𝑔) ≠ ∅)
2019ex 412 . . . . . . . . . . 11 ((𝐽 fClus 𝑓) ⊆ (𝐽 fClus 𝑔) → ((𝐽 fClus 𝑓) ≠ ∅ → (𝐽 fClus 𝑔) ≠ ∅))
2118, 20syl 17 . . . . . . . . . 10 ((((𝑋 ∈ UFL ∧ 𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑔 ∈ (Fil‘𝑋)) ∧ (𝑓 ∈ (UFil‘𝑋) ∧ 𝑔𝑓)) → ((𝐽 fClus 𝑓) ≠ ∅ → (𝐽 fClus 𝑔) ≠ ∅))
2221expr 456 . . . . . . . . 9 ((((𝑋 ∈ UFL ∧ 𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑔 ∈ (Fil‘𝑋)) ∧ 𝑓 ∈ (UFil‘𝑋)) → (𝑔𝑓 → ((𝐽 fClus 𝑓) ≠ ∅ → (𝐽 fClus 𝑔) ≠ ∅)))
2322impcomd 411 . . . . . . . 8 ((((𝑋 ∈ UFL ∧ 𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑔 ∈ (Fil‘𝑋)) ∧ 𝑓 ∈ (UFil‘𝑋)) → (((𝐽 fClus 𝑓) ≠ ∅ ∧ 𝑔𝑓) → (𝐽 fClus 𝑔) ≠ ∅))
2423rexlimdva 3134 . . . . . . 7 (((𝑋 ∈ UFL ∧ 𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑔 ∈ (Fil‘𝑋)) → (∃𝑓 ∈ (UFil‘𝑋)((𝐽 fClus 𝑓) ≠ ∅ ∧ 𝑔𝑓) → (𝐽 fClus 𝑔) ≠ ∅))
2513, 24syl5 34 . . . . . 6 (((𝑋 ∈ UFL ∧ 𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑔 ∈ (Fil‘𝑋)) → ((∀𝑓 ∈ (UFil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅ ∧ ∃𝑓 ∈ (UFil‘𝑋)𝑔𝑓) → (𝐽 fClus 𝑔) ≠ ∅))
2612, 25mpan2d 694 . . . . 5 (((𝑋 ∈ UFL ∧ 𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑔 ∈ (Fil‘𝑋)) → (∀𝑓 ∈ (UFil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅ → (𝐽 fClus 𝑔) ≠ ∅))
2726ralrimdva 3133 . . . 4 ((𝑋 ∈ UFL ∧ 𝐽 ∈ (TopOn‘𝑋)) → (∀𝑓 ∈ (UFil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅ → ∀𝑔 ∈ (Fil‘𝑋)(𝐽 fClus 𝑔) ≠ ∅))
28 fclscmp 23917 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Comp ↔ ∀𝑔 ∈ (Fil‘𝑋)(𝐽 fClus 𝑔) ≠ ∅))
2928adantl 481 . . . 4 ((𝑋 ∈ UFL ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝐽 ∈ Comp ↔ ∀𝑔 ∈ (Fil‘𝑋)(𝐽 fClus 𝑔) ≠ ∅))
3027, 29sylibrd 259 . . 3 ((𝑋 ∈ UFL ∧ 𝐽 ∈ (TopOn‘𝑋)) → (∀𝑓 ∈ (UFil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅ → 𝐽 ∈ Comp))
3110, 30impbid 212 . 2 ((𝑋 ∈ UFL ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝐽 ∈ Comp ↔ ∀𝑓 ∈ (UFil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅))
32 uffclsflim 23918 . . . 4 (𝑓 ∈ (UFil‘𝑋) → (𝐽 fClus 𝑓) = (𝐽 fLim 𝑓))
3332neeq1d 2984 . . 3 (𝑓 ∈ (UFil‘𝑋) → ((𝐽 fClus 𝑓) ≠ ∅ ↔ (𝐽 fLim 𝑓) ≠ ∅))
3433ralbiia 3073 . 2 (∀𝑓 ∈ (UFil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅ ↔ ∀𝑓 ∈ (UFil‘𝑋)(𝐽 fLim 𝑓) ≠ ∅)
3531, 34bitrdi 287 1 ((𝑋 ∈ UFL ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝐽 ∈ Comp ↔ ∀𝑓 ∈ (UFil‘𝑋)(𝐽 fLim 𝑓) ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  wne 2925  wral 3044  wrex 3053  wss 3914  c0 4296   cuni 4871  cfv 6511  (class class class)co 7387  TopOnctopon 22797  Compccmp 23273  Filcfil 23732  UFilcufil 23786  UFLcufl 23787   fLim cflim 23821   fClus cfcls 23823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1o 8434  df-2o 8435  df-en 8919  df-dom 8920  df-fin 8922  df-fi 9362  df-fbas 21261  df-fg 21262  df-top 22781  df-topon 22798  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-cmp 23274  df-fil 23733  df-ufil 23788  df-ufl 23789  df-flim 23826  df-fcls 23828
This theorem is referenced by:  alexsub  23932
  Copyright terms: Public domain W3C validator