Step | Hyp | Ref
| Expression |
1 | | ufilfil 21929 |
. . . . . 6
⊢ (𝑓 ∈ (UFil‘∪ 𝐽)
→ 𝑓 ∈
(Fil‘∪ 𝐽)) |
2 | | eqid 2771 |
. . . . . . 7
⊢ ∪ 𝐽 =
∪ 𝐽 |
3 | 2 | fclscmpi 22054 |
. . . . . 6
⊢ ((𝐽 ∈ Comp ∧ 𝑓 ∈ (Fil‘∪ 𝐽))
→ (𝐽 fClus 𝑓) ≠ ∅) |
4 | 1, 3 | sylan2 574 |
. . . . 5
⊢ ((𝐽 ∈ Comp ∧ 𝑓 ∈ (UFil‘∪ 𝐽))
→ (𝐽 fClus 𝑓) ≠ ∅) |
5 | 4 | ralrimiva 3115 |
. . . 4
⊢ (𝐽 ∈ Comp →
∀𝑓 ∈
(UFil‘∪ 𝐽)(𝐽 fClus 𝑓) ≠ ∅) |
6 | | toponuni 20940 |
. . . . . . 7
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) |
7 | 6 | fveq2d 6337 |
. . . . . 6
⊢ (𝐽 ∈ (TopOn‘𝑋) → (UFil‘𝑋) = (UFil‘∪ 𝐽)) |
8 | 7 | raleqdv 3293 |
. . . . 5
⊢ (𝐽 ∈ (TopOn‘𝑋) → (∀𝑓 ∈ (UFil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅ ↔ ∀𝑓 ∈ (UFil‘∪ 𝐽)(𝐽 fClus 𝑓) ≠ ∅)) |
9 | 8 | adantl 467 |
. . . 4
⊢ ((𝑋 ∈ UFL ∧ 𝐽 ∈ (TopOn‘𝑋)) → (∀𝑓 ∈ (UFil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅ ↔ ∀𝑓 ∈ (UFil‘∪ 𝐽)(𝐽 fClus 𝑓) ≠ ∅)) |
10 | 5, 9 | syl5ibr 236 |
. . 3
⊢ ((𝑋 ∈ UFL ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝐽 ∈ Comp → ∀𝑓 ∈ (UFil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅)) |
11 | | ufli 21939 |
. . . . . . 7
⊢ ((𝑋 ∈ UFL ∧ 𝑔 ∈ (Fil‘𝑋)) → ∃𝑓 ∈ (UFil‘𝑋)𝑔 ⊆ 𝑓) |
12 | 11 | adantlr 688 |
. . . . . 6
⊢ (((𝑋 ∈ UFL ∧ 𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑔 ∈ (Fil‘𝑋)) → ∃𝑓 ∈ (UFil‘𝑋)𝑔 ⊆ 𝑓) |
13 | | r19.29 3220 |
. . . . . . 7
⊢
((∀𝑓 ∈
(UFil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅ ∧ ∃𝑓 ∈ (UFil‘𝑋)𝑔 ⊆ 𝑓) → ∃𝑓 ∈ (UFil‘𝑋)((𝐽 fClus 𝑓) ≠ ∅ ∧ 𝑔 ⊆ 𝑓)) |
14 | | simpllr 754 |
. . . . . . . . . . . . 13
⊢ ((((𝑋 ∈ UFL ∧ 𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑔 ∈ (Fil‘𝑋)) ∧ (𝑓 ∈ (UFil‘𝑋) ∧ 𝑔 ⊆ 𝑓)) → 𝐽 ∈ (TopOn‘𝑋)) |
15 | | simplr 746 |
. . . . . . . . . . . . 13
⊢ ((((𝑋 ∈ UFL ∧ 𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑔 ∈ (Fil‘𝑋)) ∧ (𝑓 ∈ (UFil‘𝑋) ∧ 𝑔 ⊆ 𝑓)) → 𝑔 ∈ (Fil‘𝑋)) |
16 | | simprr 750 |
. . . . . . . . . . . . 13
⊢ ((((𝑋 ∈ UFL ∧ 𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑔 ∈ (Fil‘𝑋)) ∧ (𝑓 ∈ (UFil‘𝑋) ∧ 𝑔 ⊆ 𝑓)) → 𝑔 ⊆ 𝑓) |
17 | | fclsss2 22048 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑔 ∈ (Fil‘𝑋) ∧ 𝑔 ⊆ 𝑓) → (𝐽 fClus 𝑓) ⊆ (𝐽 fClus 𝑔)) |
18 | 14, 15, 16, 17 | syl3anc 1476 |
. . . . . . . . . . . 12
⊢ ((((𝑋 ∈ UFL ∧ 𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑔 ∈ (Fil‘𝑋)) ∧ (𝑓 ∈ (UFil‘𝑋) ∧ 𝑔 ⊆ 𝑓)) → (𝐽 fClus 𝑓) ⊆ (𝐽 fClus 𝑔)) |
19 | | ssn0 4121 |
. . . . . . . . . . . . 13
⊢ (((𝐽 fClus 𝑓) ⊆ (𝐽 fClus 𝑔) ∧ (𝐽 fClus 𝑓) ≠ ∅) → (𝐽 fClus 𝑔) ≠ ∅) |
20 | 19 | ex 397 |
. . . . . . . . . . . 12
⊢ ((𝐽 fClus 𝑓) ⊆ (𝐽 fClus 𝑔) → ((𝐽 fClus 𝑓) ≠ ∅ → (𝐽 fClus 𝑔) ≠ ∅)) |
21 | 18, 20 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝑋 ∈ UFL ∧ 𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑔 ∈ (Fil‘𝑋)) ∧ (𝑓 ∈ (UFil‘𝑋) ∧ 𝑔 ⊆ 𝑓)) → ((𝐽 fClus 𝑓) ≠ ∅ → (𝐽 fClus 𝑔) ≠ ∅)) |
22 | 21 | expr 444 |
. . . . . . . . . 10
⊢ ((((𝑋 ∈ UFL ∧ 𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑔 ∈ (Fil‘𝑋)) ∧ 𝑓 ∈ (UFil‘𝑋)) → (𝑔 ⊆ 𝑓 → ((𝐽 fClus 𝑓) ≠ ∅ → (𝐽 fClus 𝑔) ≠ ∅))) |
23 | 22 | com23 86 |
. . . . . . . . 9
⊢ ((((𝑋 ∈ UFL ∧ 𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑔 ∈ (Fil‘𝑋)) ∧ 𝑓 ∈ (UFil‘𝑋)) → ((𝐽 fClus 𝑓) ≠ ∅ → (𝑔 ⊆ 𝑓 → (𝐽 fClus 𝑔) ≠ ∅))) |
24 | 23 | impd 396 |
. . . . . . . 8
⊢ ((((𝑋 ∈ UFL ∧ 𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑔 ∈ (Fil‘𝑋)) ∧ 𝑓 ∈ (UFil‘𝑋)) → (((𝐽 fClus 𝑓) ≠ ∅ ∧ 𝑔 ⊆ 𝑓) → (𝐽 fClus 𝑔) ≠ ∅)) |
25 | 24 | rexlimdva 3179 |
. . . . . . 7
⊢ (((𝑋 ∈ UFL ∧ 𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑔 ∈ (Fil‘𝑋)) → (∃𝑓 ∈ (UFil‘𝑋)((𝐽 fClus 𝑓) ≠ ∅ ∧ 𝑔 ⊆ 𝑓) → (𝐽 fClus 𝑔) ≠ ∅)) |
26 | 13, 25 | syl5 34 |
. . . . . 6
⊢ (((𝑋 ∈ UFL ∧ 𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑔 ∈ (Fil‘𝑋)) → ((∀𝑓 ∈ (UFil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅ ∧ ∃𝑓 ∈ (UFil‘𝑋)𝑔 ⊆ 𝑓) → (𝐽 fClus 𝑔) ≠ ∅)) |
27 | 12, 26 | mpan2d 668 |
. . . . 5
⊢ (((𝑋 ∈ UFL ∧ 𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑔 ∈ (Fil‘𝑋)) → (∀𝑓 ∈ (UFil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅ → (𝐽 fClus 𝑔) ≠ ∅)) |
28 | 27 | ralrimdva 3118 |
. . . 4
⊢ ((𝑋 ∈ UFL ∧ 𝐽 ∈ (TopOn‘𝑋)) → (∀𝑓 ∈ (UFil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅ → ∀𝑔 ∈ (Fil‘𝑋)(𝐽 fClus 𝑔) ≠ ∅)) |
29 | | fclscmp 22055 |
. . . . 5
⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Comp ↔ ∀𝑔 ∈ (Fil‘𝑋)(𝐽 fClus 𝑔) ≠ ∅)) |
30 | 29 | adantl 467 |
. . . 4
⊢ ((𝑋 ∈ UFL ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝐽 ∈ Comp ↔ ∀𝑔 ∈ (Fil‘𝑋)(𝐽 fClus 𝑔) ≠ ∅)) |
31 | 28, 30 | sylibrd 249 |
. . 3
⊢ ((𝑋 ∈ UFL ∧ 𝐽 ∈ (TopOn‘𝑋)) → (∀𝑓 ∈ (UFil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅ → 𝐽 ∈ Comp)) |
32 | 10, 31 | impbid 202 |
. 2
⊢ ((𝑋 ∈ UFL ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝐽 ∈ Comp ↔ ∀𝑓 ∈ (UFil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅)) |
33 | | uffclsflim 22056 |
. . . 4
⊢ (𝑓 ∈ (UFil‘𝑋) → (𝐽 fClus 𝑓) = (𝐽 fLim 𝑓)) |
34 | 33 | neeq1d 3002 |
. . 3
⊢ (𝑓 ∈ (UFil‘𝑋) → ((𝐽 fClus 𝑓) ≠ ∅ ↔ (𝐽 fLim 𝑓) ≠ ∅)) |
35 | 34 | ralbiia 3128 |
. 2
⊢
(∀𝑓 ∈
(UFil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅ ↔ ∀𝑓 ∈ (UFil‘𝑋)(𝐽 fLim 𝑓) ≠ ∅) |
36 | 32, 35 | syl6bb 276 |
1
⊢ ((𝑋 ∈ UFL ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝐽 ∈ Comp ↔ ∀𝑓 ∈ (UFil‘𝑋)(𝐽 fLim 𝑓) ≠ ∅)) |