MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ufilcmp Structured version   Visualization version   GIF version

Theorem ufilcmp 22643
Description: A space is compact iff every ultrafilter converges. (Contributed by Jeff Hankins, 11-Dec-2009.) (Proof shortened by Mario Carneiro, 12-Apr-2015.) (Revised by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
ufilcmp ((𝑋 ∈ UFL ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝐽 ∈ Comp ↔ ∀𝑓 ∈ (UFil‘𝑋)(𝐽 fLim 𝑓) ≠ ∅))
Distinct variable groups:   𝑓,𝐽   𝑓,𝑋

Proof of Theorem ufilcmp
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 ufilfil 22515 . . . . . 6 (𝑓 ∈ (UFil‘ 𝐽) → 𝑓 ∈ (Fil‘ 𝐽))
2 eqid 2824 . . . . . . 7 𝐽 = 𝐽
32fclscmpi 22640 . . . . . 6 ((𝐽 ∈ Comp ∧ 𝑓 ∈ (Fil‘ 𝐽)) → (𝐽 fClus 𝑓) ≠ ∅)
41, 3sylan2 594 . . . . 5 ((𝐽 ∈ Comp ∧ 𝑓 ∈ (UFil‘ 𝐽)) → (𝐽 fClus 𝑓) ≠ ∅)
54ralrimiva 3185 . . . 4 (𝐽 ∈ Comp → ∀𝑓 ∈ (UFil‘ 𝐽)(𝐽 fClus 𝑓) ≠ ∅)
6 toponuni 21525 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
76fveq2d 6677 . . . . . 6 (𝐽 ∈ (TopOn‘𝑋) → (UFil‘𝑋) = (UFil‘ 𝐽))
87raleqdv 3418 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → (∀𝑓 ∈ (UFil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅ ↔ ∀𝑓 ∈ (UFil‘ 𝐽)(𝐽 fClus 𝑓) ≠ ∅))
98adantl 484 . . . 4 ((𝑋 ∈ UFL ∧ 𝐽 ∈ (TopOn‘𝑋)) → (∀𝑓 ∈ (UFil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅ ↔ ∀𝑓 ∈ (UFil‘ 𝐽)(𝐽 fClus 𝑓) ≠ ∅))
105, 9syl5ibr 248 . . 3 ((𝑋 ∈ UFL ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝐽 ∈ Comp → ∀𝑓 ∈ (UFil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅))
11 ufli 22525 . . . . . . 7 ((𝑋 ∈ UFL ∧ 𝑔 ∈ (Fil‘𝑋)) → ∃𝑓 ∈ (UFil‘𝑋)𝑔𝑓)
1211adantlr 713 . . . . . 6 (((𝑋 ∈ UFL ∧ 𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑔 ∈ (Fil‘𝑋)) → ∃𝑓 ∈ (UFil‘𝑋)𝑔𝑓)
13 r19.29 3257 . . . . . . 7 ((∀𝑓 ∈ (UFil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅ ∧ ∃𝑓 ∈ (UFil‘𝑋)𝑔𝑓) → ∃𝑓 ∈ (UFil‘𝑋)((𝐽 fClus 𝑓) ≠ ∅ ∧ 𝑔𝑓))
14 simpllr 774 . . . . . . . . . . . 12 ((((𝑋 ∈ UFL ∧ 𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑔 ∈ (Fil‘𝑋)) ∧ (𝑓 ∈ (UFil‘𝑋) ∧ 𝑔𝑓)) → 𝐽 ∈ (TopOn‘𝑋))
15 simplr 767 . . . . . . . . . . . 12 ((((𝑋 ∈ UFL ∧ 𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑔 ∈ (Fil‘𝑋)) ∧ (𝑓 ∈ (UFil‘𝑋) ∧ 𝑔𝑓)) → 𝑔 ∈ (Fil‘𝑋))
16 simprr 771 . . . . . . . . . . . 12 ((((𝑋 ∈ UFL ∧ 𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑔 ∈ (Fil‘𝑋)) ∧ (𝑓 ∈ (UFil‘𝑋) ∧ 𝑔𝑓)) → 𝑔𝑓)
17 fclsss2 22634 . . . . . . . . . . . 12 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑔 ∈ (Fil‘𝑋) ∧ 𝑔𝑓) → (𝐽 fClus 𝑓) ⊆ (𝐽 fClus 𝑔))
1814, 15, 16, 17syl3anc 1367 . . . . . . . . . . 11 ((((𝑋 ∈ UFL ∧ 𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑔 ∈ (Fil‘𝑋)) ∧ (𝑓 ∈ (UFil‘𝑋) ∧ 𝑔𝑓)) → (𝐽 fClus 𝑓) ⊆ (𝐽 fClus 𝑔))
19 ssn0 4357 . . . . . . . . . . . 12 (((𝐽 fClus 𝑓) ⊆ (𝐽 fClus 𝑔) ∧ (𝐽 fClus 𝑓) ≠ ∅) → (𝐽 fClus 𝑔) ≠ ∅)
2019ex 415 . . . . . . . . . . 11 ((𝐽 fClus 𝑓) ⊆ (𝐽 fClus 𝑔) → ((𝐽 fClus 𝑓) ≠ ∅ → (𝐽 fClus 𝑔) ≠ ∅))
2118, 20syl 17 . . . . . . . . . 10 ((((𝑋 ∈ UFL ∧ 𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑔 ∈ (Fil‘𝑋)) ∧ (𝑓 ∈ (UFil‘𝑋) ∧ 𝑔𝑓)) → ((𝐽 fClus 𝑓) ≠ ∅ → (𝐽 fClus 𝑔) ≠ ∅))
2221expr 459 . . . . . . . . 9 ((((𝑋 ∈ UFL ∧ 𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑔 ∈ (Fil‘𝑋)) ∧ 𝑓 ∈ (UFil‘𝑋)) → (𝑔𝑓 → ((𝐽 fClus 𝑓) ≠ ∅ → (𝐽 fClus 𝑔) ≠ ∅)))
2322impcomd 414 . . . . . . . 8 ((((𝑋 ∈ UFL ∧ 𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑔 ∈ (Fil‘𝑋)) ∧ 𝑓 ∈ (UFil‘𝑋)) → (((𝐽 fClus 𝑓) ≠ ∅ ∧ 𝑔𝑓) → (𝐽 fClus 𝑔) ≠ ∅))
2423rexlimdva 3287 . . . . . . 7 (((𝑋 ∈ UFL ∧ 𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑔 ∈ (Fil‘𝑋)) → (∃𝑓 ∈ (UFil‘𝑋)((𝐽 fClus 𝑓) ≠ ∅ ∧ 𝑔𝑓) → (𝐽 fClus 𝑔) ≠ ∅))
2513, 24syl5 34 . . . . . 6 (((𝑋 ∈ UFL ∧ 𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑔 ∈ (Fil‘𝑋)) → ((∀𝑓 ∈ (UFil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅ ∧ ∃𝑓 ∈ (UFil‘𝑋)𝑔𝑓) → (𝐽 fClus 𝑔) ≠ ∅))
2612, 25mpan2d 692 . . . . 5 (((𝑋 ∈ UFL ∧ 𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑔 ∈ (Fil‘𝑋)) → (∀𝑓 ∈ (UFil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅ → (𝐽 fClus 𝑔) ≠ ∅))
2726ralrimdva 3192 . . . 4 ((𝑋 ∈ UFL ∧ 𝐽 ∈ (TopOn‘𝑋)) → (∀𝑓 ∈ (UFil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅ → ∀𝑔 ∈ (Fil‘𝑋)(𝐽 fClus 𝑔) ≠ ∅))
28 fclscmp 22641 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Comp ↔ ∀𝑔 ∈ (Fil‘𝑋)(𝐽 fClus 𝑔) ≠ ∅))
2928adantl 484 . . . 4 ((𝑋 ∈ UFL ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝐽 ∈ Comp ↔ ∀𝑔 ∈ (Fil‘𝑋)(𝐽 fClus 𝑔) ≠ ∅))
3027, 29sylibrd 261 . . 3 ((𝑋 ∈ UFL ∧ 𝐽 ∈ (TopOn‘𝑋)) → (∀𝑓 ∈ (UFil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅ → 𝐽 ∈ Comp))
3110, 30impbid 214 . 2 ((𝑋 ∈ UFL ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝐽 ∈ Comp ↔ ∀𝑓 ∈ (UFil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅))
32 uffclsflim 22642 . . . 4 (𝑓 ∈ (UFil‘𝑋) → (𝐽 fClus 𝑓) = (𝐽 fLim 𝑓))
3332neeq1d 3078 . . 3 (𝑓 ∈ (UFil‘𝑋) → ((𝐽 fClus 𝑓) ≠ ∅ ↔ (𝐽 fLim 𝑓) ≠ ∅))
3433ralbiia 3167 . 2 (∀𝑓 ∈ (UFil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅ ↔ ∀𝑓 ∈ (UFil‘𝑋)(𝐽 fLim 𝑓) ≠ ∅)
3531, 34syl6bb 289 1 ((𝑋 ∈ UFL ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝐽 ∈ Comp ↔ ∀𝑓 ∈ (UFil‘𝑋)(𝐽 fLim 𝑓) ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wcel 2113  wne 3019  wral 3141  wrex 3142  wss 3939  c0 4294   cuni 4841  cfv 6358  (class class class)co 7159  TopOnctopon 21521  Compccmp 21997  Filcfil 22456  UFilcufil 22510  UFLcufl 22511   fLim cflim 22545   fClus cfcls 22547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-iin 4925  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-2o 8106  df-oadd 8109  df-er 8292  df-map 8411  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-fi 8878  df-fbas 20545  df-fg 20546  df-top 21505  df-topon 21522  df-cld 21630  df-ntr 21631  df-cls 21632  df-nei 21709  df-cmp 21998  df-fil 22457  df-ufil 22512  df-ufl 22513  df-flim 22550  df-fcls 22552
This theorem is referenced by:  alexsub  22656
  Copyright terms: Public domain W3C validator