| Step | Hyp | Ref
| Expression |
| 1 | | ufilfil 23912 |
. . . . . 6
⊢ (𝑓 ∈ (UFil‘∪ 𝐽)
→ 𝑓 ∈
(Fil‘∪ 𝐽)) |
| 2 | | eqid 2737 |
. . . . . . 7
⊢ ∪ 𝐽 =
∪ 𝐽 |
| 3 | 2 | fclscmpi 24037 |
. . . . . 6
⊢ ((𝐽 ∈ Comp ∧ 𝑓 ∈ (Fil‘∪ 𝐽))
→ (𝐽 fClus 𝑓) ≠ ∅) |
| 4 | 1, 3 | sylan2 593 |
. . . . 5
⊢ ((𝐽 ∈ Comp ∧ 𝑓 ∈ (UFil‘∪ 𝐽))
→ (𝐽 fClus 𝑓) ≠ ∅) |
| 5 | 4 | ralrimiva 3146 |
. . . 4
⊢ (𝐽 ∈ Comp →
∀𝑓 ∈
(UFil‘∪ 𝐽)(𝐽 fClus 𝑓) ≠ ∅) |
| 6 | | toponuni 22920 |
. . . . . . 7
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) |
| 7 | 6 | fveq2d 6910 |
. . . . . 6
⊢ (𝐽 ∈ (TopOn‘𝑋) → (UFil‘𝑋) = (UFil‘∪ 𝐽)) |
| 8 | 7 | raleqdv 3326 |
. . . . 5
⊢ (𝐽 ∈ (TopOn‘𝑋) → (∀𝑓 ∈ (UFil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅ ↔ ∀𝑓 ∈ (UFil‘∪ 𝐽)(𝐽 fClus 𝑓) ≠ ∅)) |
| 9 | 8 | adantl 481 |
. . . 4
⊢ ((𝑋 ∈ UFL ∧ 𝐽 ∈ (TopOn‘𝑋)) → (∀𝑓 ∈ (UFil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅ ↔ ∀𝑓 ∈ (UFil‘∪ 𝐽)(𝐽 fClus 𝑓) ≠ ∅)) |
| 10 | 5, 9 | imbitrrid 246 |
. . 3
⊢ ((𝑋 ∈ UFL ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝐽 ∈ Comp → ∀𝑓 ∈ (UFil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅)) |
| 11 | | ufli 23922 |
. . . . . . 7
⊢ ((𝑋 ∈ UFL ∧ 𝑔 ∈ (Fil‘𝑋)) → ∃𝑓 ∈ (UFil‘𝑋)𝑔 ⊆ 𝑓) |
| 12 | 11 | adantlr 715 |
. . . . . 6
⊢ (((𝑋 ∈ UFL ∧ 𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑔 ∈ (Fil‘𝑋)) → ∃𝑓 ∈ (UFil‘𝑋)𝑔 ⊆ 𝑓) |
| 13 | | r19.29 3114 |
. . . . . . 7
⊢
((∀𝑓 ∈
(UFil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅ ∧ ∃𝑓 ∈ (UFil‘𝑋)𝑔 ⊆ 𝑓) → ∃𝑓 ∈ (UFil‘𝑋)((𝐽 fClus 𝑓) ≠ ∅ ∧ 𝑔 ⊆ 𝑓)) |
| 14 | | simpllr 776 |
. . . . . . . . . . . 12
⊢ ((((𝑋 ∈ UFL ∧ 𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑔 ∈ (Fil‘𝑋)) ∧ (𝑓 ∈ (UFil‘𝑋) ∧ 𝑔 ⊆ 𝑓)) → 𝐽 ∈ (TopOn‘𝑋)) |
| 15 | | simplr 769 |
. . . . . . . . . . . 12
⊢ ((((𝑋 ∈ UFL ∧ 𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑔 ∈ (Fil‘𝑋)) ∧ (𝑓 ∈ (UFil‘𝑋) ∧ 𝑔 ⊆ 𝑓)) → 𝑔 ∈ (Fil‘𝑋)) |
| 16 | | simprr 773 |
. . . . . . . . . . . 12
⊢ ((((𝑋 ∈ UFL ∧ 𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑔 ∈ (Fil‘𝑋)) ∧ (𝑓 ∈ (UFil‘𝑋) ∧ 𝑔 ⊆ 𝑓)) → 𝑔 ⊆ 𝑓) |
| 17 | | fclsss2 24031 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑔 ∈ (Fil‘𝑋) ∧ 𝑔 ⊆ 𝑓) → (𝐽 fClus 𝑓) ⊆ (𝐽 fClus 𝑔)) |
| 18 | 14, 15, 16, 17 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ ((((𝑋 ∈ UFL ∧ 𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑔 ∈ (Fil‘𝑋)) ∧ (𝑓 ∈ (UFil‘𝑋) ∧ 𝑔 ⊆ 𝑓)) → (𝐽 fClus 𝑓) ⊆ (𝐽 fClus 𝑔)) |
| 19 | | ssn0 4404 |
. . . . . . . . . . . 12
⊢ (((𝐽 fClus 𝑓) ⊆ (𝐽 fClus 𝑔) ∧ (𝐽 fClus 𝑓) ≠ ∅) → (𝐽 fClus 𝑔) ≠ ∅) |
| 20 | 19 | ex 412 |
. . . . . . . . . . 11
⊢ ((𝐽 fClus 𝑓) ⊆ (𝐽 fClus 𝑔) → ((𝐽 fClus 𝑓) ≠ ∅ → (𝐽 fClus 𝑔) ≠ ∅)) |
| 21 | 18, 20 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝑋 ∈ UFL ∧ 𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑔 ∈ (Fil‘𝑋)) ∧ (𝑓 ∈ (UFil‘𝑋) ∧ 𝑔 ⊆ 𝑓)) → ((𝐽 fClus 𝑓) ≠ ∅ → (𝐽 fClus 𝑔) ≠ ∅)) |
| 22 | 21 | expr 456 |
. . . . . . . . 9
⊢ ((((𝑋 ∈ UFL ∧ 𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑔 ∈ (Fil‘𝑋)) ∧ 𝑓 ∈ (UFil‘𝑋)) → (𝑔 ⊆ 𝑓 → ((𝐽 fClus 𝑓) ≠ ∅ → (𝐽 fClus 𝑔) ≠ ∅))) |
| 23 | 22 | impcomd 411 |
. . . . . . . 8
⊢ ((((𝑋 ∈ UFL ∧ 𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑔 ∈ (Fil‘𝑋)) ∧ 𝑓 ∈ (UFil‘𝑋)) → (((𝐽 fClus 𝑓) ≠ ∅ ∧ 𝑔 ⊆ 𝑓) → (𝐽 fClus 𝑔) ≠ ∅)) |
| 24 | 23 | rexlimdva 3155 |
. . . . . . 7
⊢ (((𝑋 ∈ UFL ∧ 𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑔 ∈ (Fil‘𝑋)) → (∃𝑓 ∈ (UFil‘𝑋)((𝐽 fClus 𝑓) ≠ ∅ ∧ 𝑔 ⊆ 𝑓) → (𝐽 fClus 𝑔) ≠ ∅)) |
| 25 | 13, 24 | syl5 34 |
. . . . . 6
⊢ (((𝑋 ∈ UFL ∧ 𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑔 ∈ (Fil‘𝑋)) → ((∀𝑓 ∈ (UFil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅ ∧ ∃𝑓 ∈ (UFil‘𝑋)𝑔 ⊆ 𝑓) → (𝐽 fClus 𝑔) ≠ ∅)) |
| 26 | 12, 25 | mpan2d 694 |
. . . . 5
⊢ (((𝑋 ∈ UFL ∧ 𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑔 ∈ (Fil‘𝑋)) → (∀𝑓 ∈ (UFil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅ → (𝐽 fClus 𝑔) ≠ ∅)) |
| 27 | 26 | ralrimdva 3154 |
. . . 4
⊢ ((𝑋 ∈ UFL ∧ 𝐽 ∈ (TopOn‘𝑋)) → (∀𝑓 ∈ (UFil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅ → ∀𝑔 ∈ (Fil‘𝑋)(𝐽 fClus 𝑔) ≠ ∅)) |
| 28 | | fclscmp 24038 |
. . . . 5
⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Comp ↔ ∀𝑔 ∈ (Fil‘𝑋)(𝐽 fClus 𝑔) ≠ ∅)) |
| 29 | 28 | adantl 481 |
. . . 4
⊢ ((𝑋 ∈ UFL ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝐽 ∈ Comp ↔ ∀𝑔 ∈ (Fil‘𝑋)(𝐽 fClus 𝑔) ≠ ∅)) |
| 30 | 27, 29 | sylibrd 259 |
. . 3
⊢ ((𝑋 ∈ UFL ∧ 𝐽 ∈ (TopOn‘𝑋)) → (∀𝑓 ∈ (UFil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅ → 𝐽 ∈ Comp)) |
| 31 | 10, 30 | impbid 212 |
. 2
⊢ ((𝑋 ∈ UFL ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝐽 ∈ Comp ↔ ∀𝑓 ∈ (UFil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅)) |
| 32 | | uffclsflim 24039 |
. . . 4
⊢ (𝑓 ∈ (UFil‘𝑋) → (𝐽 fClus 𝑓) = (𝐽 fLim 𝑓)) |
| 33 | 32 | neeq1d 3000 |
. . 3
⊢ (𝑓 ∈ (UFil‘𝑋) → ((𝐽 fClus 𝑓) ≠ ∅ ↔ (𝐽 fLim 𝑓) ≠ ∅)) |
| 34 | 33 | ralbiia 3091 |
. 2
⊢
(∀𝑓 ∈
(UFil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅ ↔ ∀𝑓 ∈ (UFil‘𝑋)(𝐽 fLim 𝑓) ≠ ∅) |
| 35 | 31, 34 | bitrdi 287 |
1
⊢ ((𝑋 ∈ UFL ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝐽 ∈ Comp ↔ ∀𝑓 ∈ (UFil‘𝑋)(𝐽 fLim 𝑓) ≠ ∅)) |