MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssufl Structured version   Visualization version   GIF version

Theorem ssufl 23803
Description: If 𝑌 is a subset of 𝑋 and filters extend to ultrafilters in 𝑋, then they still do in 𝑌. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
ssufl ((𝑋 ∈ UFL ∧ 𝑌𝑋) → 𝑌 ∈ UFL)

Proof of Theorem ssufl
Dummy variables 𝑓 𝑔 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 766 . . . . 5 (((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → 𝑋 ∈ UFL)
2 filfbas 23733 . . . . . . . 8 (𝑓 ∈ (Fil‘𝑌) → 𝑓 ∈ (fBas‘𝑌))
32adantl 481 . . . . . . 7 (((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → 𝑓 ∈ (fBas‘𝑌))
4 filsspw 23736 . . . . . . . . 9 (𝑓 ∈ (Fil‘𝑌) → 𝑓 ⊆ 𝒫 𝑌)
54adantl 481 . . . . . . . 8 (((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → 𝑓 ⊆ 𝒫 𝑌)
6 simplr 768 . . . . . . . . 9 (((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → 𝑌𝑋)
76sspwd 4564 . . . . . . . 8 (((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → 𝒫 𝑌 ⊆ 𝒫 𝑋)
85, 7sstrd 3946 . . . . . . 7 (((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → 𝑓 ⊆ 𝒫 𝑋)
9 fbasweak 23750 . . . . . . 7 ((𝑓 ∈ (fBas‘𝑌) ∧ 𝑓 ⊆ 𝒫 𝑋𝑋 ∈ UFL) → 𝑓 ∈ (fBas‘𝑋))
103, 8, 1, 9syl3anc 1373 . . . . . 6 (((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → 𝑓 ∈ (fBas‘𝑋))
11 fgcl 23763 . . . . . 6 (𝑓 ∈ (fBas‘𝑋) → (𝑋filGen𝑓) ∈ (Fil‘𝑋))
1210, 11syl 17 . . . . 5 (((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → (𝑋filGen𝑓) ∈ (Fil‘𝑋))
13 ufli 23799 . . . . 5 ((𝑋 ∈ UFL ∧ (𝑋filGen𝑓) ∈ (Fil‘𝑋)) → ∃𝑢 ∈ (UFil‘𝑋)(𝑋filGen𝑓) ⊆ 𝑢)
141, 12, 13syl2anc 584 . . . 4 (((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → ∃𝑢 ∈ (UFil‘𝑋)(𝑋filGen𝑓) ⊆ 𝑢)
15 ssfg 23757 . . . . . . . . . 10 (𝑓 ∈ (fBas‘𝑋) → 𝑓 ⊆ (𝑋filGen𝑓))
1610, 15syl 17 . . . . . . . . 9 (((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → 𝑓 ⊆ (𝑋filGen𝑓))
1716adantr 480 . . . . . . . 8 ((((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → 𝑓 ⊆ (𝑋filGen𝑓))
18 simprr 772 . . . . . . . 8 ((((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → (𝑋filGen𝑓) ⊆ 𝑢)
1917, 18sstrd 3946 . . . . . . 7 ((((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → 𝑓𝑢)
20 filtop 23740 . . . . . . . 8 (𝑓 ∈ (Fil‘𝑌) → 𝑌𝑓)
2120ad2antlr 727 . . . . . . 7 ((((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → 𝑌𝑓)
2219, 21sseldd 3936 . . . . . 6 ((((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → 𝑌𝑢)
23 simprl 770 . . . . . . 7 ((((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → 𝑢 ∈ (UFil‘𝑋))
246adantr 480 . . . . . . 7 ((((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → 𝑌𝑋)
25 trufil 23795 . . . . . . 7 ((𝑢 ∈ (UFil‘𝑋) ∧ 𝑌𝑋) → ((𝑢t 𝑌) ∈ (UFil‘𝑌) ↔ 𝑌𝑢))
2623, 24, 25syl2anc 584 . . . . . 6 ((((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → ((𝑢t 𝑌) ∈ (UFil‘𝑌) ↔ 𝑌𝑢))
2722, 26mpbird 257 . . . . 5 ((((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → (𝑢t 𝑌) ∈ (UFil‘𝑌))
285adantr 480 . . . . . . 7 ((((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → 𝑓 ⊆ 𝒫 𝑌)
29 restid2 17334 . . . . . . 7 ((𝑌𝑓𝑓 ⊆ 𝒫 𝑌) → (𝑓t 𝑌) = 𝑓)
3021, 28, 29syl2anc 584 . . . . . 6 ((((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → (𝑓t 𝑌) = 𝑓)
31 ssrest 23061 . . . . . . 7 ((𝑢 ∈ (UFil‘𝑋) ∧ 𝑓𝑢) → (𝑓t 𝑌) ⊆ (𝑢t 𝑌))
3223, 19, 31syl2anc 584 . . . . . 6 ((((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → (𝑓t 𝑌) ⊆ (𝑢t 𝑌))
3330, 32eqsstrrd 3971 . . . . 5 ((((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → 𝑓 ⊆ (𝑢t 𝑌))
34 sseq2 3962 . . . . . 6 (𝑔 = (𝑢t 𝑌) → (𝑓𝑔𝑓 ⊆ (𝑢t 𝑌)))
3534rspcev 3577 . . . . 5 (((𝑢t 𝑌) ∈ (UFil‘𝑌) ∧ 𝑓 ⊆ (𝑢t 𝑌)) → ∃𝑔 ∈ (UFil‘𝑌)𝑓𝑔)
3627, 33, 35syl2anc 584 . . . 4 ((((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → ∃𝑔 ∈ (UFil‘𝑌)𝑓𝑔)
3714, 36rexlimddv 3136 . . 3 (((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → ∃𝑔 ∈ (UFil‘𝑌)𝑓𝑔)
3837ralrimiva 3121 . 2 ((𝑋 ∈ UFL ∧ 𝑌𝑋) → ∀𝑓 ∈ (Fil‘𝑌)∃𝑔 ∈ (UFil‘𝑌)𝑓𝑔)
39 ssexg 5262 . . . 4 ((𝑌𝑋𝑋 ∈ UFL) → 𝑌 ∈ V)
4039ancoms 458 . . 3 ((𝑋 ∈ UFL ∧ 𝑌𝑋) → 𝑌 ∈ V)
41 isufl 23798 . . 3 (𝑌 ∈ V → (𝑌 ∈ UFL ↔ ∀𝑓 ∈ (Fil‘𝑌)∃𝑔 ∈ (UFil‘𝑌)𝑓𝑔))
4240, 41syl 17 . 2 ((𝑋 ∈ UFL ∧ 𝑌𝑋) → (𝑌 ∈ UFL ↔ ∀𝑓 ∈ (Fil‘𝑌)∃𝑔 ∈ (UFil‘𝑌)𝑓𝑔))
4338, 42mpbird 257 1 ((𝑋 ∈ UFL ∧ 𝑌𝑋) → 𝑌 ∈ UFL)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  Vcvv 3436  wss 3903  𝒫 cpw 4551  cfv 6482  (class class class)co 7349  t crest 17324  fBascfbas 21249  filGencfg 21250  Filcfil 23730  UFilcufil 23784  UFLcufl 23785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-rest 17326  df-fbas 21258  df-fg 21259  df-fil 23731  df-ufil 23786  df-ufl 23787
This theorem is referenced by:  ufldom  23847
  Copyright terms: Public domain W3C validator