MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssufl Structured version   Visualization version   GIF version

Theorem ssufl 23812
Description: If 𝑌 is a subset of 𝑋 and filters extend to ultrafilters in 𝑋, then they still do in 𝑌. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
ssufl ((𝑋 ∈ UFL ∧ 𝑌𝑋) → 𝑌 ∈ UFL)

Proof of Theorem ssufl
Dummy variables 𝑓 𝑔 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 766 . . . . 5 (((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → 𝑋 ∈ UFL)
2 filfbas 23742 . . . . . . . 8 (𝑓 ∈ (Fil‘𝑌) → 𝑓 ∈ (fBas‘𝑌))
32adantl 481 . . . . . . 7 (((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → 𝑓 ∈ (fBas‘𝑌))
4 filsspw 23745 . . . . . . . . 9 (𝑓 ∈ (Fil‘𝑌) → 𝑓 ⊆ 𝒫 𝑌)
54adantl 481 . . . . . . . 8 (((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → 𝑓 ⊆ 𝒫 𝑌)
6 simplr 768 . . . . . . . . 9 (((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → 𝑌𝑋)
76sspwd 4579 . . . . . . . 8 (((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → 𝒫 𝑌 ⊆ 𝒫 𝑋)
85, 7sstrd 3960 . . . . . . 7 (((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → 𝑓 ⊆ 𝒫 𝑋)
9 fbasweak 23759 . . . . . . 7 ((𝑓 ∈ (fBas‘𝑌) ∧ 𝑓 ⊆ 𝒫 𝑋𝑋 ∈ UFL) → 𝑓 ∈ (fBas‘𝑋))
103, 8, 1, 9syl3anc 1373 . . . . . 6 (((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → 𝑓 ∈ (fBas‘𝑋))
11 fgcl 23772 . . . . . 6 (𝑓 ∈ (fBas‘𝑋) → (𝑋filGen𝑓) ∈ (Fil‘𝑋))
1210, 11syl 17 . . . . 5 (((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → (𝑋filGen𝑓) ∈ (Fil‘𝑋))
13 ufli 23808 . . . . 5 ((𝑋 ∈ UFL ∧ (𝑋filGen𝑓) ∈ (Fil‘𝑋)) → ∃𝑢 ∈ (UFil‘𝑋)(𝑋filGen𝑓) ⊆ 𝑢)
141, 12, 13syl2anc 584 . . . 4 (((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → ∃𝑢 ∈ (UFil‘𝑋)(𝑋filGen𝑓) ⊆ 𝑢)
15 ssfg 23766 . . . . . . . . . 10 (𝑓 ∈ (fBas‘𝑋) → 𝑓 ⊆ (𝑋filGen𝑓))
1610, 15syl 17 . . . . . . . . 9 (((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → 𝑓 ⊆ (𝑋filGen𝑓))
1716adantr 480 . . . . . . . 8 ((((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → 𝑓 ⊆ (𝑋filGen𝑓))
18 simprr 772 . . . . . . . 8 ((((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → (𝑋filGen𝑓) ⊆ 𝑢)
1917, 18sstrd 3960 . . . . . . 7 ((((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → 𝑓𝑢)
20 filtop 23749 . . . . . . . 8 (𝑓 ∈ (Fil‘𝑌) → 𝑌𝑓)
2120ad2antlr 727 . . . . . . 7 ((((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → 𝑌𝑓)
2219, 21sseldd 3950 . . . . . 6 ((((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → 𝑌𝑢)
23 simprl 770 . . . . . . 7 ((((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → 𝑢 ∈ (UFil‘𝑋))
246adantr 480 . . . . . . 7 ((((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → 𝑌𝑋)
25 trufil 23804 . . . . . . 7 ((𝑢 ∈ (UFil‘𝑋) ∧ 𝑌𝑋) → ((𝑢t 𝑌) ∈ (UFil‘𝑌) ↔ 𝑌𝑢))
2623, 24, 25syl2anc 584 . . . . . 6 ((((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → ((𝑢t 𝑌) ∈ (UFil‘𝑌) ↔ 𝑌𝑢))
2722, 26mpbird 257 . . . . 5 ((((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → (𝑢t 𝑌) ∈ (UFil‘𝑌))
285adantr 480 . . . . . . 7 ((((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → 𝑓 ⊆ 𝒫 𝑌)
29 restid2 17400 . . . . . . 7 ((𝑌𝑓𝑓 ⊆ 𝒫 𝑌) → (𝑓t 𝑌) = 𝑓)
3021, 28, 29syl2anc 584 . . . . . 6 ((((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → (𝑓t 𝑌) = 𝑓)
31 ssrest 23070 . . . . . . 7 ((𝑢 ∈ (UFil‘𝑋) ∧ 𝑓𝑢) → (𝑓t 𝑌) ⊆ (𝑢t 𝑌))
3223, 19, 31syl2anc 584 . . . . . 6 ((((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → (𝑓t 𝑌) ⊆ (𝑢t 𝑌))
3330, 32eqsstrrd 3985 . . . . 5 ((((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → 𝑓 ⊆ (𝑢t 𝑌))
34 sseq2 3976 . . . . . 6 (𝑔 = (𝑢t 𝑌) → (𝑓𝑔𝑓 ⊆ (𝑢t 𝑌)))
3534rspcev 3591 . . . . 5 (((𝑢t 𝑌) ∈ (UFil‘𝑌) ∧ 𝑓 ⊆ (𝑢t 𝑌)) → ∃𝑔 ∈ (UFil‘𝑌)𝑓𝑔)
3627, 33, 35syl2anc 584 . . . 4 ((((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → ∃𝑔 ∈ (UFil‘𝑌)𝑓𝑔)
3714, 36rexlimddv 3141 . . 3 (((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → ∃𝑔 ∈ (UFil‘𝑌)𝑓𝑔)
3837ralrimiva 3126 . 2 ((𝑋 ∈ UFL ∧ 𝑌𝑋) → ∀𝑓 ∈ (Fil‘𝑌)∃𝑔 ∈ (UFil‘𝑌)𝑓𝑔)
39 ssexg 5281 . . . 4 ((𝑌𝑋𝑋 ∈ UFL) → 𝑌 ∈ V)
4039ancoms 458 . . 3 ((𝑋 ∈ UFL ∧ 𝑌𝑋) → 𝑌 ∈ V)
41 isufl 23807 . . 3 (𝑌 ∈ V → (𝑌 ∈ UFL ↔ ∀𝑓 ∈ (Fil‘𝑌)∃𝑔 ∈ (UFil‘𝑌)𝑓𝑔))
4240, 41syl 17 . 2 ((𝑋 ∈ UFL ∧ 𝑌𝑋) → (𝑌 ∈ UFL ↔ ∀𝑓 ∈ (Fil‘𝑌)∃𝑔 ∈ (UFil‘𝑌)𝑓𝑔))
4338, 42mpbird 257 1 ((𝑋 ∈ UFL ∧ 𝑌𝑋) → 𝑌 ∈ UFL)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  wrex 3054  Vcvv 3450  wss 3917  𝒫 cpw 4566  cfv 6514  (class class class)co 7390  t crest 17390  fBascfbas 21259  filGencfg 21260  Filcfil 23739  UFilcufil 23793  UFLcufl 23794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-rest 17392  df-fbas 21268  df-fg 21269  df-fil 23740  df-ufil 23795  df-ufl 23796
This theorem is referenced by:  ufldom  23856
  Copyright terms: Public domain W3C validator