MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssufl Structured version   Visualization version   GIF version

Theorem ssufl 22769
Description: If 𝑌 is a subset of 𝑋 and filters extend to ultrafilters in 𝑋, then they still do in 𝑌. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
ssufl ((𝑋 ∈ UFL ∧ 𝑌𝑋) → 𝑌 ∈ UFL)

Proof of Theorem ssufl
Dummy variables 𝑓 𝑔 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 767 . . . . 5 (((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → 𝑋 ∈ UFL)
2 filfbas 22699 . . . . . . . 8 (𝑓 ∈ (Fil‘𝑌) → 𝑓 ∈ (fBas‘𝑌))
32adantl 485 . . . . . . 7 (((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → 𝑓 ∈ (fBas‘𝑌))
4 filsspw 22702 . . . . . . . . 9 (𝑓 ∈ (Fil‘𝑌) → 𝑓 ⊆ 𝒫 𝑌)
54adantl 485 . . . . . . . 8 (((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → 𝑓 ⊆ 𝒫 𝑌)
6 simplr 769 . . . . . . . . 9 (((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → 𝑌𝑋)
76sspwd 4514 . . . . . . . 8 (((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → 𝒫 𝑌 ⊆ 𝒫 𝑋)
85, 7sstrd 3897 . . . . . . 7 (((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → 𝑓 ⊆ 𝒫 𝑋)
9 fbasweak 22716 . . . . . . 7 ((𝑓 ∈ (fBas‘𝑌) ∧ 𝑓 ⊆ 𝒫 𝑋𝑋 ∈ UFL) → 𝑓 ∈ (fBas‘𝑋))
103, 8, 1, 9syl3anc 1373 . . . . . 6 (((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → 𝑓 ∈ (fBas‘𝑋))
11 fgcl 22729 . . . . . 6 (𝑓 ∈ (fBas‘𝑋) → (𝑋filGen𝑓) ∈ (Fil‘𝑋))
1210, 11syl 17 . . . . 5 (((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → (𝑋filGen𝑓) ∈ (Fil‘𝑋))
13 ufli 22765 . . . . 5 ((𝑋 ∈ UFL ∧ (𝑋filGen𝑓) ∈ (Fil‘𝑋)) → ∃𝑢 ∈ (UFil‘𝑋)(𝑋filGen𝑓) ⊆ 𝑢)
141, 12, 13syl2anc 587 . . . 4 (((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → ∃𝑢 ∈ (UFil‘𝑋)(𝑋filGen𝑓) ⊆ 𝑢)
15 ssfg 22723 . . . . . . . . . 10 (𝑓 ∈ (fBas‘𝑋) → 𝑓 ⊆ (𝑋filGen𝑓))
1610, 15syl 17 . . . . . . . . 9 (((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → 𝑓 ⊆ (𝑋filGen𝑓))
1716adantr 484 . . . . . . . 8 ((((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → 𝑓 ⊆ (𝑋filGen𝑓))
18 simprr 773 . . . . . . . 8 ((((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → (𝑋filGen𝑓) ⊆ 𝑢)
1917, 18sstrd 3897 . . . . . . 7 ((((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → 𝑓𝑢)
20 filtop 22706 . . . . . . . 8 (𝑓 ∈ (Fil‘𝑌) → 𝑌𝑓)
2120ad2antlr 727 . . . . . . 7 ((((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → 𝑌𝑓)
2219, 21sseldd 3888 . . . . . 6 ((((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → 𝑌𝑢)
23 simprl 771 . . . . . . 7 ((((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → 𝑢 ∈ (UFil‘𝑋))
246adantr 484 . . . . . . 7 ((((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → 𝑌𝑋)
25 trufil 22761 . . . . . . 7 ((𝑢 ∈ (UFil‘𝑋) ∧ 𝑌𝑋) → ((𝑢t 𝑌) ∈ (UFil‘𝑌) ↔ 𝑌𝑢))
2623, 24, 25syl2anc 587 . . . . . 6 ((((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → ((𝑢t 𝑌) ∈ (UFil‘𝑌) ↔ 𝑌𝑢))
2722, 26mpbird 260 . . . . 5 ((((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → (𝑢t 𝑌) ∈ (UFil‘𝑌))
285adantr 484 . . . . . . 7 ((((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → 𝑓 ⊆ 𝒫 𝑌)
29 restid2 16889 . . . . . . 7 ((𝑌𝑓𝑓 ⊆ 𝒫 𝑌) → (𝑓t 𝑌) = 𝑓)
3021, 28, 29syl2anc 587 . . . . . 6 ((((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → (𝑓t 𝑌) = 𝑓)
31 ssrest 22027 . . . . . . 7 ((𝑢 ∈ (UFil‘𝑋) ∧ 𝑓𝑢) → (𝑓t 𝑌) ⊆ (𝑢t 𝑌))
3223, 19, 31syl2anc 587 . . . . . 6 ((((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → (𝑓t 𝑌) ⊆ (𝑢t 𝑌))
3330, 32eqsstrrd 3926 . . . . 5 ((((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → 𝑓 ⊆ (𝑢t 𝑌))
34 sseq2 3913 . . . . . 6 (𝑔 = (𝑢t 𝑌) → (𝑓𝑔𝑓 ⊆ (𝑢t 𝑌)))
3534rspcev 3527 . . . . 5 (((𝑢t 𝑌) ∈ (UFil‘𝑌) ∧ 𝑓 ⊆ (𝑢t 𝑌)) → ∃𝑔 ∈ (UFil‘𝑌)𝑓𝑔)
3627, 33, 35syl2anc 587 . . . 4 ((((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → ∃𝑔 ∈ (UFil‘𝑌)𝑓𝑔)
3714, 36rexlimddv 3200 . . 3 (((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → ∃𝑔 ∈ (UFil‘𝑌)𝑓𝑔)
3837ralrimiva 3095 . 2 ((𝑋 ∈ UFL ∧ 𝑌𝑋) → ∀𝑓 ∈ (Fil‘𝑌)∃𝑔 ∈ (UFil‘𝑌)𝑓𝑔)
39 ssexg 5201 . . . 4 ((𝑌𝑋𝑋 ∈ UFL) → 𝑌 ∈ V)
4039ancoms 462 . . 3 ((𝑋 ∈ UFL ∧ 𝑌𝑋) → 𝑌 ∈ V)
41 isufl 22764 . . 3 (𝑌 ∈ V → (𝑌 ∈ UFL ↔ ∀𝑓 ∈ (Fil‘𝑌)∃𝑔 ∈ (UFil‘𝑌)𝑓𝑔))
4240, 41syl 17 . 2 ((𝑋 ∈ UFL ∧ 𝑌𝑋) → (𝑌 ∈ UFL ↔ ∀𝑓 ∈ (Fil‘𝑌)∃𝑔 ∈ (UFil‘𝑌)𝑓𝑔))
4338, 42mpbird 260 1 ((𝑋 ∈ UFL ∧ 𝑌𝑋) → 𝑌 ∈ UFL)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2112  wral 3051  wrex 3052  Vcvv 3398  wss 3853  𝒫 cpw 4499  cfv 6358  (class class class)co 7191  t crest 16879  fBascfbas 20305  filGencfg 20306  Filcfil 22696  UFilcufil 22750  UFLcufl 22751
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7194  df-oprab 7195  df-mpo 7196  df-1st 7739  df-2nd 7740  df-rest 16881  df-fbas 20314  df-fg 20315  df-fil 22697  df-ufil 22752  df-ufl 22753
This theorem is referenced by:  ufldom  22813
  Copyright terms: Public domain W3C validator