Step | Hyp | Ref
| Expression |
1 | | simpll 754 |
. . . . 5
⊢ (((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → 𝑋 ∈ UFL) |
2 | | filfbas 22163 |
. . . . . . . 8
⊢ (𝑓 ∈ (Fil‘𝑌) → 𝑓 ∈ (fBas‘𝑌)) |
3 | 2 | adantl 474 |
. . . . . . 7
⊢ (((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → 𝑓 ∈ (fBas‘𝑌)) |
4 | | filsspw 22166 |
. . . . . . . . 9
⊢ (𝑓 ∈ (Fil‘𝑌) → 𝑓 ⊆ 𝒫 𝑌) |
5 | 4 | adantl 474 |
. . . . . . . 8
⊢ (((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → 𝑓 ⊆ 𝒫 𝑌) |
6 | | simplr 756 |
. . . . . . . . 9
⊢ (((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → 𝑌 ⊆ 𝑋) |
7 | | sspwb 5199 |
. . . . . . . . 9
⊢ (𝑌 ⊆ 𝑋 ↔ 𝒫 𝑌 ⊆ 𝒫 𝑋) |
8 | 6, 7 | sylib 210 |
. . . . . . . 8
⊢ (((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → 𝒫 𝑌 ⊆ 𝒫 𝑋) |
9 | 5, 8 | sstrd 3870 |
. . . . . . 7
⊢ (((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → 𝑓 ⊆ 𝒫 𝑋) |
10 | | fbasweak 22180 |
. . . . . . 7
⊢ ((𝑓 ∈ (fBas‘𝑌) ∧ 𝑓 ⊆ 𝒫 𝑋 ∧ 𝑋 ∈ UFL) → 𝑓 ∈ (fBas‘𝑋)) |
11 | 3, 9, 1, 10 | syl3anc 1351 |
. . . . . 6
⊢ (((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → 𝑓 ∈ (fBas‘𝑋)) |
12 | | fgcl 22193 |
. . . . . 6
⊢ (𝑓 ∈ (fBas‘𝑋) → (𝑋filGen𝑓) ∈ (Fil‘𝑋)) |
13 | 11, 12 | syl 17 |
. . . . 5
⊢ (((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → (𝑋filGen𝑓) ∈ (Fil‘𝑋)) |
14 | | ufli 22229 |
. . . . 5
⊢ ((𝑋 ∈ UFL ∧ (𝑋filGen𝑓) ∈ (Fil‘𝑋)) → ∃𝑢 ∈ (UFil‘𝑋)(𝑋filGen𝑓) ⊆ 𝑢) |
15 | 1, 13, 14 | syl2anc 576 |
. . . 4
⊢ (((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → ∃𝑢 ∈ (UFil‘𝑋)(𝑋filGen𝑓) ⊆ 𝑢) |
16 | | ssfg 22187 |
. . . . . . . . . 10
⊢ (𝑓 ∈ (fBas‘𝑋) → 𝑓 ⊆ (𝑋filGen𝑓)) |
17 | 11, 16 | syl 17 |
. . . . . . . . 9
⊢ (((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → 𝑓 ⊆ (𝑋filGen𝑓)) |
18 | 17 | adantr 473 |
. . . . . . . 8
⊢ ((((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → 𝑓 ⊆ (𝑋filGen𝑓)) |
19 | | simprr 760 |
. . . . . . . 8
⊢ ((((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → (𝑋filGen𝑓) ⊆ 𝑢) |
20 | 18, 19 | sstrd 3870 |
. . . . . . 7
⊢ ((((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → 𝑓 ⊆ 𝑢) |
21 | | filtop 22170 |
. . . . . . . 8
⊢ (𝑓 ∈ (Fil‘𝑌) → 𝑌 ∈ 𝑓) |
22 | 21 | ad2antlr 714 |
. . . . . . 7
⊢ ((((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → 𝑌 ∈ 𝑓) |
23 | 20, 22 | sseldd 3861 |
. . . . . 6
⊢ ((((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → 𝑌 ∈ 𝑢) |
24 | | simprl 758 |
. . . . . . 7
⊢ ((((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → 𝑢 ∈ (UFil‘𝑋)) |
25 | 6 | adantr 473 |
. . . . . . 7
⊢ ((((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → 𝑌 ⊆ 𝑋) |
26 | | trufil 22225 |
. . . . . . 7
⊢ ((𝑢 ∈ (UFil‘𝑋) ∧ 𝑌 ⊆ 𝑋) → ((𝑢 ↾t 𝑌) ∈ (UFil‘𝑌) ↔ 𝑌 ∈ 𝑢)) |
27 | 24, 25, 26 | syl2anc 576 |
. . . . . 6
⊢ ((((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → ((𝑢 ↾t 𝑌) ∈ (UFil‘𝑌) ↔ 𝑌 ∈ 𝑢)) |
28 | 23, 27 | mpbird 249 |
. . . . 5
⊢ ((((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → (𝑢 ↾t 𝑌) ∈ (UFil‘𝑌)) |
29 | 5 | adantr 473 |
. . . . . . 7
⊢ ((((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → 𝑓 ⊆ 𝒫 𝑌) |
30 | | restid2 16563 |
. . . . . . 7
⊢ ((𝑌 ∈ 𝑓 ∧ 𝑓 ⊆ 𝒫 𝑌) → (𝑓 ↾t 𝑌) = 𝑓) |
31 | 22, 29, 30 | syl2anc 576 |
. . . . . 6
⊢ ((((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → (𝑓 ↾t 𝑌) = 𝑓) |
32 | | ssrest 21491 |
. . . . . . 7
⊢ ((𝑢 ∈ (UFil‘𝑋) ∧ 𝑓 ⊆ 𝑢) → (𝑓 ↾t 𝑌) ⊆ (𝑢 ↾t 𝑌)) |
33 | 24, 20, 32 | syl2anc 576 |
. . . . . 6
⊢ ((((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → (𝑓 ↾t 𝑌) ⊆ (𝑢 ↾t 𝑌)) |
34 | 31, 33 | eqsstr3d 3898 |
. . . . 5
⊢ ((((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → 𝑓 ⊆ (𝑢 ↾t 𝑌)) |
35 | | sseq2 3885 |
. . . . . 6
⊢ (𝑔 = (𝑢 ↾t 𝑌) → (𝑓 ⊆ 𝑔 ↔ 𝑓 ⊆ (𝑢 ↾t 𝑌))) |
36 | 35 | rspcev 3535 |
. . . . 5
⊢ (((𝑢 ↾t 𝑌) ∈ (UFil‘𝑌) ∧ 𝑓 ⊆ (𝑢 ↾t 𝑌)) → ∃𝑔 ∈ (UFil‘𝑌)𝑓 ⊆ 𝑔) |
37 | 28, 34, 36 | syl2anc 576 |
. . . 4
⊢ ((((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → ∃𝑔 ∈ (UFil‘𝑌)𝑓 ⊆ 𝑔) |
38 | 15, 37 | rexlimddv 3236 |
. . 3
⊢ (((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → ∃𝑔 ∈ (UFil‘𝑌)𝑓 ⊆ 𝑔) |
39 | 38 | ralrimiva 3132 |
. 2
⊢ ((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) → ∀𝑓 ∈ (Fil‘𝑌)∃𝑔 ∈ (UFil‘𝑌)𝑓 ⊆ 𝑔) |
40 | | ssexg 5084 |
. . . 4
⊢ ((𝑌 ⊆ 𝑋 ∧ 𝑋 ∈ UFL) → 𝑌 ∈ V) |
41 | 40 | ancoms 451 |
. . 3
⊢ ((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) → 𝑌 ∈ V) |
42 | | isufl 22228 |
. . 3
⊢ (𝑌 ∈ V → (𝑌 ∈ UFL ↔ ∀𝑓 ∈ (Fil‘𝑌)∃𝑔 ∈ (UFil‘𝑌)𝑓 ⊆ 𝑔)) |
43 | 41, 42 | syl 17 |
. 2
⊢ ((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) → (𝑌 ∈ UFL ↔ ∀𝑓 ∈ (Fil‘𝑌)∃𝑔 ∈ (UFil‘𝑌)𝑓 ⊆ 𝑔)) |
44 | 39, 43 | mpbird 249 |
1
⊢ ((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) → 𝑌 ∈ UFL) |