MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssufl Structured version   Visualization version   GIF version

Theorem ssufl 23913
Description: If 𝑌 is a subset of 𝑋 and filters extend to ultrafilters in 𝑋, then they still do in 𝑌. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
ssufl ((𝑋 ∈ UFL ∧ 𝑌𝑋) → 𝑌 ∈ UFL)

Proof of Theorem ssufl
Dummy variables 𝑓 𝑔 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 765 . . . . 5 (((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → 𝑋 ∈ UFL)
2 filfbas 23843 . . . . . . . 8 (𝑓 ∈ (Fil‘𝑌) → 𝑓 ∈ (fBas‘𝑌))
32adantl 480 . . . . . . 7 (((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → 𝑓 ∈ (fBas‘𝑌))
4 filsspw 23846 . . . . . . . . 9 (𝑓 ∈ (Fil‘𝑌) → 𝑓 ⊆ 𝒫 𝑌)
54adantl 480 . . . . . . . 8 (((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → 𝑓 ⊆ 𝒫 𝑌)
6 simplr 767 . . . . . . . . 9 (((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → 𝑌𝑋)
76sspwd 4620 . . . . . . . 8 (((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → 𝒫 𝑌 ⊆ 𝒫 𝑋)
85, 7sstrd 3990 . . . . . . 7 (((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → 𝑓 ⊆ 𝒫 𝑋)
9 fbasweak 23860 . . . . . . 7 ((𝑓 ∈ (fBas‘𝑌) ∧ 𝑓 ⊆ 𝒫 𝑋𝑋 ∈ UFL) → 𝑓 ∈ (fBas‘𝑋))
103, 8, 1, 9syl3anc 1368 . . . . . 6 (((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → 𝑓 ∈ (fBas‘𝑋))
11 fgcl 23873 . . . . . 6 (𝑓 ∈ (fBas‘𝑋) → (𝑋filGen𝑓) ∈ (Fil‘𝑋))
1210, 11syl 17 . . . . 5 (((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → (𝑋filGen𝑓) ∈ (Fil‘𝑋))
13 ufli 23909 . . . . 5 ((𝑋 ∈ UFL ∧ (𝑋filGen𝑓) ∈ (Fil‘𝑋)) → ∃𝑢 ∈ (UFil‘𝑋)(𝑋filGen𝑓) ⊆ 𝑢)
141, 12, 13syl2anc 582 . . . 4 (((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → ∃𝑢 ∈ (UFil‘𝑋)(𝑋filGen𝑓) ⊆ 𝑢)
15 ssfg 23867 . . . . . . . . . 10 (𝑓 ∈ (fBas‘𝑋) → 𝑓 ⊆ (𝑋filGen𝑓))
1610, 15syl 17 . . . . . . . . 9 (((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → 𝑓 ⊆ (𝑋filGen𝑓))
1716adantr 479 . . . . . . . 8 ((((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → 𝑓 ⊆ (𝑋filGen𝑓))
18 simprr 771 . . . . . . . 8 ((((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → (𝑋filGen𝑓) ⊆ 𝑢)
1917, 18sstrd 3990 . . . . . . 7 ((((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → 𝑓𝑢)
20 filtop 23850 . . . . . . . 8 (𝑓 ∈ (Fil‘𝑌) → 𝑌𝑓)
2120ad2antlr 725 . . . . . . 7 ((((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → 𝑌𝑓)
2219, 21sseldd 3980 . . . . . 6 ((((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → 𝑌𝑢)
23 simprl 769 . . . . . . 7 ((((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → 𝑢 ∈ (UFil‘𝑋))
246adantr 479 . . . . . . 7 ((((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → 𝑌𝑋)
25 trufil 23905 . . . . . . 7 ((𝑢 ∈ (UFil‘𝑋) ∧ 𝑌𝑋) → ((𝑢t 𝑌) ∈ (UFil‘𝑌) ↔ 𝑌𝑢))
2623, 24, 25syl2anc 582 . . . . . 6 ((((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → ((𝑢t 𝑌) ∈ (UFil‘𝑌) ↔ 𝑌𝑢))
2722, 26mpbird 256 . . . . 5 ((((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → (𝑢t 𝑌) ∈ (UFil‘𝑌))
285adantr 479 . . . . . . 7 ((((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → 𝑓 ⊆ 𝒫 𝑌)
29 restid2 17445 . . . . . . 7 ((𝑌𝑓𝑓 ⊆ 𝒫 𝑌) → (𝑓t 𝑌) = 𝑓)
3021, 28, 29syl2anc 582 . . . . . 6 ((((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → (𝑓t 𝑌) = 𝑓)
31 ssrest 23171 . . . . . . 7 ((𝑢 ∈ (UFil‘𝑋) ∧ 𝑓𝑢) → (𝑓t 𝑌) ⊆ (𝑢t 𝑌))
3223, 19, 31syl2anc 582 . . . . . 6 ((((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → (𝑓t 𝑌) ⊆ (𝑢t 𝑌))
3330, 32eqsstrrd 4019 . . . . 5 ((((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → 𝑓 ⊆ (𝑢t 𝑌))
34 sseq2 4006 . . . . . 6 (𝑔 = (𝑢t 𝑌) → (𝑓𝑔𝑓 ⊆ (𝑢t 𝑌)))
3534rspcev 3608 . . . . 5 (((𝑢t 𝑌) ∈ (UFil‘𝑌) ∧ 𝑓 ⊆ (𝑢t 𝑌)) → ∃𝑔 ∈ (UFil‘𝑌)𝑓𝑔)
3627, 33, 35syl2anc 582 . . . 4 ((((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → ∃𝑔 ∈ (UFil‘𝑌)𝑓𝑔)
3714, 36rexlimddv 3151 . . 3 (((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → ∃𝑔 ∈ (UFil‘𝑌)𝑓𝑔)
3837ralrimiva 3136 . 2 ((𝑋 ∈ UFL ∧ 𝑌𝑋) → ∀𝑓 ∈ (Fil‘𝑌)∃𝑔 ∈ (UFil‘𝑌)𝑓𝑔)
39 ssexg 5328 . . . 4 ((𝑌𝑋𝑋 ∈ UFL) → 𝑌 ∈ V)
4039ancoms 457 . . 3 ((𝑋 ∈ UFL ∧ 𝑌𝑋) → 𝑌 ∈ V)
41 isufl 23908 . . 3 (𝑌 ∈ V → (𝑌 ∈ UFL ↔ ∀𝑓 ∈ (Fil‘𝑌)∃𝑔 ∈ (UFil‘𝑌)𝑓𝑔))
4240, 41syl 17 . 2 ((𝑋 ∈ UFL ∧ 𝑌𝑋) → (𝑌 ∈ UFL ↔ ∀𝑓 ∈ (Fil‘𝑌)∃𝑔 ∈ (UFil‘𝑌)𝑓𝑔))
4338, 42mpbird 256 1 ((𝑋 ∈ UFL ∧ 𝑌𝑋) → 𝑌 ∈ UFL)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1534  wcel 2099  wral 3051  wrex 3060  Vcvv 3462  wss 3947  𝒫 cpw 4607  cfv 6554  (class class class)co 7424  t crest 17435  fBascfbas 21331  filGencfg 21332  Filcfil 23840  UFilcufil 23894  UFLcufl 23895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-ov 7427  df-oprab 7428  df-mpo 7429  df-1st 8003  df-2nd 8004  df-rest 17437  df-fbas 21340  df-fg 21341  df-fil 23841  df-ufil 23896  df-ufl 23897
This theorem is referenced by:  ufldom  23957
  Copyright terms: Public domain W3C validator