MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssufl Structured version   Visualization version   GIF version

Theorem ssufl 21943
Description: If 𝑌 is a subset of 𝑋 and filters extend to ultrafilters in 𝑋, then they still do in 𝑌. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
ssufl ((𝑋 ∈ UFL ∧ 𝑌𝑋) → 𝑌 ∈ UFL)

Proof of Theorem ssufl
Dummy variables 𝑓 𝑔 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 744 . . . . 5 (((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → 𝑋 ∈ UFL)
2 filfbas 21873 . . . . . . . 8 (𝑓 ∈ (Fil‘𝑌) → 𝑓 ∈ (fBas‘𝑌))
32adantl 467 . . . . . . 7 (((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → 𝑓 ∈ (fBas‘𝑌))
4 filsspw 21876 . . . . . . . . 9 (𝑓 ∈ (Fil‘𝑌) → 𝑓 ⊆ 𝒫 𝑌)
54adantl 467 . . . . . . . 8 (((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → 𝑓 ⊆ 𝒫 𝑌)
6 simplr 746 . . . . . . . . 9 (((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → 𝑌𝑋)
7 sspwb 5046 . . . . . . . . 9 (𝑌𝑋 ↔ 𝒫 𝑌 ⊆ 𝒫 𝑋)
86, 7sylib 208 . . . . . . . 8 (((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → 𝒫 𝑌 ⊆ 𝒫 𝑋)
95, 8sstrd 3763 . . . . . . 7 (((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → 𝑓 ⊆ 𝒫 𝑋)
10 fbasweak 21890 . . . . . . 7 ((𝑓 ∈ (fBas‘𝑌) ∧ 𝑓 ⊆ 𝒫 𝑋𝑋 ∈ UFL) → 𝑓 ∈ (fBas‘𝑋))
113, 9, 1, 10syl3anc 1476 . . . . . 6 (((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → 𝑓 ∈ (fBas‘𝑋))
12 fgcl 21903 . . . . . 6 (𝑓 ∈ (fBas‘𝑋) → (𝑋filGen𝑓) ∈ (Fil‘𝑋))
1311, 12syl 17 . . . . 5 (((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → (𝑋filGen𝑓) ∈ (Fil‘𝑋))
14 ufli 21939 . . . . 5 ((𝑋 ∈ UFL ∧ (𝑋filGen𝑓) ∈ (Fil‘𝑋)) → ∃𝑢 ∈ (UFil‘𝑋)(𝑋filGen𝑓) ⊆ 𝑢)
151, 13, 14syl2anc 567 . . . 4 (((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → ∃𝑢 ∈ (UFil‘𝑋)(𝑋filGen𝑓) ⊆ 𝑢)
16 ssfg 21897 . . . . . . . . . 10 (𝑓 ∈ (fBas‘𝑋) → 𝑓 ⊆ (𝑋filGen𝑓))
1711, 16syl 17 . . . . . . . . 9 (((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → 𝑓 ⊆ (𝑋filGen𝑓))
1817adantr 466 . . . . . . . 8 ((((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → 𝑓 ⊆ (𝑋filGen𝑓))
19 simprr 750 . . . . . . . 8 ((((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → (𝑋filGen𝑓) ⊆ 𝑢)
2018, 19sstrd 3763 . . . . . . 7 ((((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → 𝑓𝑢)
21 filtop 21880 . . . . . . . 8 (𝑓 ∈ (Fil‘𝑌) → 𝑌𝑓)
2221ad2antlr 700 . . . . . . 7 ((((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → 𝑌𝑓)
2320, 22sseldd 3754 . . . . . 6 ((((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → 𝑌𝑢)
24 simprl 748 . . . . . . 7 ((((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → 𝑢 ∈ (UFil‘𝑋))
256adantr 466 . . . . . . 7 ((((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → 𝑌𝑋)
26 trufil 21935 . . . . . . 7 ((𝑢 ∈ (UFil‘𝑋) ∧ 𝑌𝑋) → ((𝑢t 𝑌) ∈ (UFil‘𝑌) ↔ 𝑌𝑢))
2724, 25, 26syl2anc 567 . . . . . 6 ((((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → ((𝑢t 𝑌) ∈ (UFil‘𝑌) ↔ 𝑌𝑢))
2823, 27mpbird 247 . . . . 5 ((((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → (𝑢t 𝑌) ∈ (UFil‘𝑌))
295adantr 466 . . . . . . 7 ((((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → 𝑓 ⊆ 𝒫 𝑌)
30 restid2 16300 . . . . . . 7 ((𝑌𝑓𝑓 ⊆ 𝒫 𝑌) → (𝑓t 𝑌) = 𝑓)
3122, 29, 30syl2anc 567 . . . . . 6 ((((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → (𝑓t 𝑌) = 𝑓)
32 ssrest 21202 . . . . . . 7 ((𝑢 ∈ (UFil‘𝑋) ∧ 𝑓𝑢) → (𝑓t 𝑌) ⊆ (𝑢t 𝑌))
3324, 20, 32syl2anc 567 . . . . . 6 ((((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → (𝑓t 𝑌) ⊆ (𝑢t 𝑌))
3431, 33eqsstr3d 3790 . . . . 5 ((((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → 𝑓 ⊆ (𝑢t 𝑌))
35 sseq2 3777 . . . . . 6 (𝑔 = (𝑢t 𝑌) → (𝑓𝑔𝑓 ⊆ (𝑢t 𝑌)))
3635rspcev 3461 . . . . 5 (((𝑢t 𝑌) ∈ (UFil‘𝑌) ∧ 𝑓 ⊆ (𝑢t 𝑌)) → ∃𝑔 ∈ (UFil‘𝑌)𝑓𝑔)
3728, 34, 36syl2anc 567 . . . 4 ((((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → ∃𝑔 ∈ (UFil‘𝑌)𝑓𝑔)
3815, 37rexlimddv 3183 . . 3 (((𝑋 ∈ UFL ∧ 𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → ∃𝑔 ∈ (UFil‘𝑌)𝑓𝑔)
3938ralrimiva 3115 . 2 ((𝑋 ∈ UFL ∧ 𝑌𝑋) → ∀𝑓 ∈ (Fil‘𝑌)∃𝑔 ∈ (UFil‘𝑌)𝑓𝑔)
40 ssexg 4939 . . . 4 ((𝑌𝑋𝑋 ∈ UFL) → 𝑌 ∈ V)
4140ancoms 455 . . 3 ((𝑋 ∈ UFL ∧ 𝑌𝑋) → 𝑌 ∈ V)
42 isufl 21938 . . 3 (𝑌 ∈ V → (𝑌 ∈ UFL ↔ ∀𝑓 ∈ (Fil‘𝑌)∃𝑔 ∈ (UFil‘𝑌)𝑓𝑔))
4341, 42syl 17 . 2 ((𝑋 ∈ UFL ∧ 𝑌𝑋) → (𝑌 ∈ UFL ↔ ∀𝑓 ∈ (Fil‘𝑌)∃𝑔 ∈ (UFil‘𝑌)𝑓𝑔))
4439, 43mpbird 247 1 ((𝑋 ∈ UFL ∧ 𝑌𝑋) → 𝑌 ∈ UFL)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  wral 3061  wrex 3062  Vcvv 3351  wss 3724  𝒫 cpw 4298  cfv 6032  (class class class)co 6794  t crest 16290  fBascfbas 19950  filGencfg 19951  Filcfil 21870  UFilcufil 21924  UFLcufl 21925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7097
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 829  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3589  df-csb 3684  df-dif 3727  df-un 3729  df-in 3731  df-ss 3738  df-nul 4065  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-id 5158  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-iota 5995  df-fun 6034  df-fn 6035  df-f 6036  df-f1 6037  df-fo 6038  df-f1o 6039  df-fv 6040  df-ov 6797  df-oprab 6798  df-mpt2 6799  df-1st 7316  df-2nd 7317  df-rest 16292  df-fbas 19959  df-fg 19960  df-fil 21871  df-ufil 21926  df-ufl 21927
This theorem is referenced by:  ufldom  21987
  Copyright terms: Public domain W3C validator