| Step | Hyp | Ref
| Expression |
| 1 | | simpll 767 |
. . . . 5
⊢ (((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → 𝑋 ∈ UFL) |
| 2 | | filfbas 23856 |
. . . . . . . 8
⊢ (𝑓 ∈ (Fil‘𝑌) → 𝑓 ∈ (fBas‘𝑌)) |
| 3 | 2 | adantl 481 |
. . . . . . 7
⊢ (((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → 𝑓 ∈ (fBas‘𝑌)) |
| 4 | | filsspw 23859 |
. . . . . . . . 9
⊢ (𝑓 ∈ (Fil‘𝑌) → 𝑓 ⊆ 𝒫 𝑌) |
| 5 | 4 | adantl 481 |
. . . . . . . 8
⊢ (((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → 𝑓 ⊆ 𝒫 𝑌) |
| 6 | | simplr 769 |
. . . . . . . . 9
⊢ (((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → 𝑌 ⊆ 𝑋) |
| 7 | 6 | sspwd 4613 |
. . . . . . . 8
⊢ (((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → 𝒫 𝑌 ⊆ 𝒫 𝑋) |
| 8 | 5, 7 | sstrd 3994 |
. . . . . . 7
⊢ (((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → 𝑓 ⊆ 𝒫 𝑋) |
| 9 | | fbasweak 23873 |
. . . . . . 7
⊢ ((𝑓 ∈ (fBas‘𝑌) ∧ 𝑓 ⊆ 𝒫 𝑋 ∧ 𝑋 ∈ UFL) → 𝑓 ∈ (fBas‘𝑋)) |
| 10 | 3, 8, 1, 9 | syl3anc 1373 |
. . . . . 6
⊢ (((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → 𝑓 ∈ (fBas‘𝑋)) |
| 11 | | fgcl 23886 |
. . . . . 6
⊢ (𝑓 ∈ (fBas‘𝑋) → (𝑋filGen𝑓) ∈ (Fil‘𝑋)) |
| 12 | 10, 11 | syl 17 |
. . . . 5
⊢ (((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → (𝑋filGen𝑓) ∈ (Fil‘𝑋)) |
| 13 | | ufli 23922 |
. . . . 5
⊢ ((𝑋 ∈ UFL ∧ (𝑋filGen𝑓) ∈ (Fil‘𝑋)) → ∃𝑢 ∈ (UFil‘𝑋)(𝑋filGen𝑓) ⊆ 𝑢) |
| 14 | 1, 12, 13 | syl2anc 584 |
. . . 4
⊢ (((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → ∃𝑢 ∈ (UFil‘𝑋)(𝑋filGen𝑓) ⊆ 𝑢) |
| 15 | | ssfg 23880 |
. . . . . . . . . 10
⊢ (𝑓 ∈ (fBas‘𝑋) → 𝑓 ⊆ (𝑋filGen𝑓)) |
| 16 | 10, 15 | syl 17 |
. . . . . . . . 9
⊢ (((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → 𝑓 ⊆ (𝑋filGen𝑓)) |
| 17 | 16 | adantr 480 |
. . . . . . . 8
⊢ ((((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → 𝑓 ⊆ (𝑋filGen𝑓)) |
| 18 | | simprr 773 |
. . . . . . . 8
⊢ ((((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → (𝑋filGen𝑓) ⊆ 𝑢) |
| 19 | 17, 18 | sstrd 3994 |
. . . . . . 7
⊢ ((((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → 𝑓 ⊆ 𝑢) |
| 20 | | filtop 23863 |
. . . . . . . 8
⊢ (𝑓 ∈ (Fil‘𝑌) → 𝑌 ∈ 𝑓) |
| 21 | 20 | ad2antlr 727 |
. . . . . . 7
⊢ ((((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → 𝑌 ∈ 𝑓) |
| 22 | 19, 21 | sseldd 3984 |
. . . . . 6
⊢ ((((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → 𝑌 ∈ 𝑢) |
| 23 | | simprl 771 |
. . . . . . 7
⊢ ((((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → 𝑢 ∈ (UFil‘𝑋)) |
| 24 | 6 | adantr 480 |
. . . . . . 7
⊢ ((((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → 𝑌 ⊆ 𝑋) |
| 25 | | trufil 23918 |
. . . . . . 7
⊢ ((𝑢 ∈ (UFil‘𝑋) ∧ 𝑌 ⊆ 𝑋) → ((𝑢 ↾t 𝑌) ∈ (UFil‘𝑌) ↔ 𝑌 ∈ 𝑢)) |
| 26 | 23, 24, 25 | syl2anc 584 |
. . . . . 6
⊢ ((((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → ((𝑢 ↾t 𝑌) ∈ (UFil‘𝑌) ↔ 𝑌 ∈ 𝑢)) |
| 27 | 22, 26 | mpbird 257 |
. . . . 5
⊢ ((((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → (𝑢 ↾t 𝑌) ∈ (UFil‘𝑌)) |
| 28 | 5 | adantr 480 |
. . . . . . 7
⊢ ((((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → 𝑓 ⊆ 𝒫 𝑌) |
| 29 | | restid2 17475 |
. . . . . . 7
⊢ ((𝑌 ∈ 𝑓 ∧ 𝑓 ⊆ 𝒫 𝑌) → (𝑓 ↾t 𝑌) = 𝑓) |
| 30 | 21, 28, 29 | syl2anc 584 |
. . . . . 6
⊢ ((((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → (𝑓 ↾t 𝑌) = 𝑓) |
| 31 | | ssrest 23184 |
. . . . . . 7
⊢ ((𝑢 ∈ (UFil‘𝑋) ∧ 𝑓 ⊆ 𝑢) → (𝑓 ↾t 𝑌) ⊆ (𝑢 ↾t 𝑌)) |
| 32 | 23, 19, 31 | syl2anc 584 |
. . . . . 6
⊢ ((((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → (𝑓 ↾t 𝑌) ⊆ (𝑢 ↾t 𝑌)) |
| 33 | 30, 32 | eqsstrrd 4019 |
. . . . 5
⊢ ((((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → 𝑓 ⊆ (𝑢 ↾t 𝑌)) |
| 34 | | sseq2 4010 |
. . . . . 6
⊢ (𝑔 = (𝑢 ↾t 𝑌) → (𝑓 ⊆ 𝑔 ↔ 𝑓 ⊆ (𝑢 ↾t 𝑌))) |
| 35 | 34 | rspcev 3622 |
. . . . 5
⊢ (((𝑢 ↾t 𝑌) ∈ (UFil‘𝑌) ∧ 𝑓 ⊆ (𝑢 ↾t 𝑌)) → ∃𝑔 ∈ (UFil‘𝑌)𝑓 ⊆ 𝑔) |
| 36 | 27, 33, 35 | syl2anc 584 |
. . . 4
⊢ ((((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → ∃𝑔 ∈ (UFil‘𝑌)𝑓 ⊆ 𝑔) |
| 37 | 14, 36 | rexlimddv 3161 |
. . 3
⊢ (((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → ∃𝑔 ∈ (UFil‘𝑌)𝑓 ⊆ 𝑔) |
| 38 | 37 | ralrimiva 3146 |
. 2
⊢ ((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) → ∀𝑓 ∈ (Fil‘𝑌)∃𝑔 ∈ (UFil‘𝑌)𝑓 ⊆ 𝑔) |
| 39 | | ssexg 5323 |
. . . 4
⊢ ((𝑌 ⊆ 𝑋 ∧ 𝑋 ∈ UFL) → 𝑌 ∈ V) |
| 40 | 39 | ancoms 458 |
. . 3
⊢ ((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) → 𝑌 ∈ V) |
| 41 | | isufl 23921 |
. . 3
⊢ (𝑌 ∈ V → (𝑌 ∈ UFL ↔ ∀𝑓 ∈ (Fil‘𝑌)∃𝑔 ∈ (UFil‘𝑌)𝑓 ⊆ 𝑔)) |
| 42 | 40, 41 | syl 17 |
. 2
⊢ ((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) → (𝑌 ∈ UFL ↔ ∀𝑓 ∈ (Fil‘𝑌)∃𝑔 ∈ (UFil‘𝑌)𝑓 ⊆ 𝑔)) |
| 43 | 38, 42 | mpbird 257 |
1
⊢ ((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) → 𝑌 ∈ UFL) |