Step | Hyp | Ref
| Expression |
1 | | simpll 764 |
. . . . 5
⊢ (((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → 𝑋 ∈ UFL) |
2 | | filfbas 22999 |
. . . . . . . 8
⊢ (𝑓 ∈ (Fil‘𝑌) → 𝑓 ∈ (fBas‘𝑌)) |
3 | 2 | adantl 482 |
. . . . . . 7
⊢ (((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → 𝑓 ∈ (fBas‘𝑌)) |
4 | | filsspw 23002 |
. . . . . . . . 9
⊢ (𝑓 ∈ (Fil‘𝑌) → 𝑓 ⊆ 𝒫 𝑌) |
5 | 4 | adantl 482 |
. . . . . . . 8
⊢ (((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → 𝑓 ⊆ 𝒫 𝑌) |
6 | | simplr 766 |
. . . . . . . . 9
⊢ (((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → 𝑌 ⊆ 𝑋) |
7 | 6 | sspwd 4548 |
. . . . . . . 8
⊢ (((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → 𝒫 𝑌 ⊆ 𝒫 𝑋) |
8 | 5, 7 | sstrd 3931 |
. . . . . . 7
⊢ (((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → 𝑓 ⊆ 𝒫 𝑋) |
9 | | fbasweak 23016 |
. . . . . . 7
⊢ ((𝑓 ∈ (fBas‘𝑌) ∧ 𝑓 ⊆ 𝒫 𝑋 ∧ 𝑋 ∈ UFL) → 𝑓 ∈ (fBas‘𝑋)) |
10 | 3, 8, 1, 9 | syl3anc 1370 |
. . . . . 6
⊢ (((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → 𝑓 ∈ (fBas‘𝑋)) |
11 | | fgcl 23029 |
. . . . . 6
⊢ (𝑓 ∈ (fBas‘𝑋) → (𝑋filGen𝑓) ∈ (Fil‘𝑋)) |
12 | 10, 11 | syl 17 |
. . . . 5
⊢ (((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → (𝑋filGen𝑓) ∈ (Fil‘𝑋)) |
13 | | ufli 23065 |
. . . . 5
⊢ ((𝑋 ∈ UFL ∧ (𝑋filGen𝑓) ∈ (Fil‘𝑋)) → ∃𝑢 ∈ (UFil‘𝑋)(𝑋filGen𝑓) ⊆ 𝑢) |
14 | 1, 12, 13 | syl2anc 584 |
. . . 4
⊢ (((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → ∃𝑢 ∈ (UFil‘𝑋)(𝑋filGen𝑓) ⊆ 𝑢) |
15 | | ssfg 23023 |
. . . . . . . . . 10
⊢ (𝑓 ∈ (fBas‘𝑋) → 𝑓 ⊆ (𝑋filGen𝑓)) |
16 | 10, 15 | syl 17 |
. . . . . . . . 9
⊢ (((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → 𝑓 ⊆ (𝑋filGen𝑓)) |
17 | 16 | adantr 481 |
. . . . . . . 8
⊢ ((((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → 𝑓 ⊆ (𝑋filGen𝑓)) |
18 | | simprr 770 |
. . . . . . . 8
⊢ ((((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → (𝑋filGen𝑓) ⊆ 𝑢) |
19 | 17, 18 | sstrd 3931 |
. . . . . . 7
⊢ ((((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → 𝑓 ⊆ 𝑢) |
20 | | filtop 23006 |
. . . . . . . 8
⊢ (𝑓 ∈ (Fil‘𝑌) → 𝑌 ∈ 𝑓) |
21 | 20 | ad2antlr 724 |
. . . . . . 7
⊢ ((((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → 𝑌 ∈ 𝑓) |
22 | 19, 21 | sseldd 3922 |
. . . . . 6
⊢ ((((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → 𝑌 ∈ 𝑢) |
23 | | simprl 768 |
. . . . . . 7
⊢ ((((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → 𝑢 ∈ (UFil‘𝑋)) |
24 | 6 | adantr 481 |
. . . . . . 7
⊢ ((((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → 𝑌 ⊆ 𝑋) |
25 | | trufil 23061 |
. . . . . . 7
⊢ ((𝑢 ∈ (UFil‘𝑋) ∧ 𝑌 ⊆ 𝑋) → ((𝑢 ↾t 𝑌) ∈ (UFil‘𝑌) ↔ 𝑌 ∈ 𝑢)) |
26 | 23, 24, 25 | syl2anc 584 |
. . . . . 6
⊢ ((((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → ((𝑢 ↾t 𝑌) ∈ (UFil‘𝑌) ↔ 𝑌 ∈ 𝑢)) |
27 | 22, 26 | mpbird 256 |
. . . . 5
⊢ ((((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → (𝑢 ↾t 𝑌) ∈ (UFil‘𝑌)) |
28 | 5 | adantr 481 |
. . . . . . 7
⊢ ((((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → 𝑓 ⊆ 𝒫 𝑌) |
29 | | restid2 17141 |
. . . . . . 7
⊢ ((𝑌 ∈ 𝑓 ∧ 𝑓 ⊆ 𝒫 𝑌) → (𝑓 ↾t 𝑌) = 𝑓) |
30 | 21, 28, 29 | syl2anc 584 |
. . . . . 6
⊢ ((((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → (𝑓 ↾t 𝑌) = 𝑓) |
31 | | ssrest 22327 |
. . . . . . 7
⊢ ((𝑢 ∈ (UFil‘𝑋) ∧ 𝑓 ⊆ 𝑢) → (𝑓 ↾t 𝑌) ⊆ (𝑢 ↾t 𝑌)) |
32 | 23, 19, 31 | syl2anc 584 |
. . . . . 6
⊢ ((((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → (𝑓 ↾t 𝑌) ⊆ (𝑢 ↾t 𝑌)) |
33 | 30, 32 | eqsstrrd 3960 |
. . . . 5
⊢ ((((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → 𝑓 ⊆ (𝑢 ↾t 𝑌)) |
34 | | sseq2 3947 |
. . . . . 6
⊢ (𝑔 = (𝑢 ↾t 𝑌) → (𝑓 ⊆ 𝑔 ↔ 𝑓 ⊆ (𝑢 ↾t 𝑌))) |
35 | 34 | rspcev 3561 |
. . . . 5
⊢ (((𝑢 ↾t 𝑌) ∈ (UFil‘𝑌) ∧ 𝑓 ⊆ (𝑢 ↾t 𝑌)) → ∃𝑔 ∈ (UFil‘𝑌)𝑓 ⊆ 𝑔) |
36 | 27, 33, 35 | syl2anc 584 |
. . . 4
⊢ ((((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → ∃𝑔 ∈ (UFil‘𝑌)𝑓 ⊆ 𝑔) |
37 | 14, 36 | rexlimddv 3220 |
. . 3
⊢ (((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → ∃𝑔 ∈ (UFil‘𝑌)𝑓 ⊆ 𝑔) |
38 | 37 | ralrimiva 3103 |
. 2
⊢ ((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) → ∀𝑓 ∈ (Fil‘𝑌)∃𝑔 ∈ (UFil‘𝑌)𝑓 ⊆ 𝑔) |
39 | | ssexg 5247 |
. . . 4
⊢ ((𝑌 ⊆ 𝑋 ∧ 𝑋 ∈ UFL) → 𝑌 ∈ V) |
40 | 39 | ancoms 459 |
. . 3
⊢ ((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) → 𝑌 ∈ V) |
41 | | isufl 23064 |
. . 3
⊢ (𝑌 ∈ V → (𝑌 ∈ UFL ↔ ∀𝑓 ∈ (Fil‘𝑌)∃𝑔 ∈ (UFil‘𝑌)𝑓 ⊆ 𝑔)) |
42 | 40, 41 | syl 17 |
. 2
⊢ ((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) → (𝑌 ∈ UFL ↔ ∀𝑓 ∈ (Fil‘𝑌)∃𝑔 ∈ (UFil‘𝑌)𝑓 ⊆ 𝑔)) |
43 | 38, 42 | mpbird 256 |
1
⊢ ((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) → 𝑌 ∈ UFL) |