| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > numufl | Structured version Visualization version GIF version | ||
| Description: Consequence of filssufilg 23798: a set whose double powerset is well-orderable satisfies the ultrafilter lemma. (Contributed by Mario Carneiro, 26-Aug-2015.) |
| Ref | Expression |
|---|---|
| numufl | ⊢ (𝒫 𝒫 𝑋 ∈ dom card → 𝑋 ∈ UFL) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | filssufilg 23798 | . . . 4 ⊢ ((𝑓 ∈ (Fil‘𝑋) ∧ 𝒫 𝒫 𝑋 ∈ dom card) → ∃𝑔 ∈ (UFil‘𝑋)𝑓 ⊆ 𝑔) | |
| 2 | 1 | ancoms 458 | . . 3 ⊢ ((𝒫 𝒫 𝑋 ∈ dom card ∧ 𝑓 ∈ (Fil‘𝑋)) → ∃𝑔 ∈ (UFil‘𝑋)𝑓 ⊆ 𝑔) |
| 3 | 2 | ralrimiva 3125 | . 2 ⊢ (𝒫 𝒫 𝑋 ∈ dom card → ∀𝑓 ∈ (Fil‘𝑋)∃𝑔 ∈ (UFil‘𝑋)𝑓 ⊆ 𝑔) |
| 4 | pwexr 7741 | . . . 4 ⊢ (𝒫 𝒫 𝑋 ∈ dom card → 𝒫 𝑋 ∈ V) | |
| 5 | pwexb 7742 | . . . 4 ⊢ (𝑋 ∈ V ↔ 𝒫 𝑋 ∈ V) | |
| 6 | 4, 5 | sylibr 234 | . . 3 ⊢ (𝒫 𝒫 𝑋 ∈ dom card → 𝑋 ∈ V) |
| 7 | isufl 23800 | . . 3 ⊢ (𝑋 ∈ V → (𝑋 ∈ UFL ↔ ∀𝑓 ∈ (Fil‘𝑋)∃𝑔 ∈ (UFil‘𝑋)𝑓 ⊆ 𝑔)) | |
| 8 | 6, 7 | syl 17 | . 2 ⊢ (𝒫 𝒫 𝑋 ∈ dom card → (𝑋 ∈ UFL ↔ ∀𝑓 ∈ (Fil‘𝑋)∃𝑔 ∈ (UFil‘𝑋)𝑓 ⊆ 𝑔)) |
| 9 | 3, 8 | mpbird 257 | 1 ⊢ (𝒫 𝒫 𝑋 ∈ dom card → 𝑋 ∈ UFL) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 Vcvv 3447 ⊆ wss 3914 𝒫 cpw 4563 dom cdm 5638 ‘cfv 6511 cardccrd 9888 Filcfil 23732 UFilcufil 23786 UFLcufl 23787 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-rpss 7699 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-oadd 8438 df-er 8671 df-en 8919 df-dom 8920 df-fin 8922 df-fi 9362 df-dju 9854 df-card 9892 df-fbas 21261 df-fg 21262 df-fil 23733 df-ufil 23788 df-ufl 23789 |
| This theorem is referenced by: fiufl 23803 acufl 23804 |
| Copyright terms: Public domain | W3C validator |