Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  numufl Structured version   Visualization version   GIF version

Theorem numufl 22499
 Description: Consequence of filssufilg 22495: a set whose double powerset is well-orderable satisfies the ultrafilter lemma. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
numufl (𝒫 𝒫 𝑋 ∈ dom card → 𝑋 ∈ UFL)

Proof of Theorem numufl
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 filssufilg 22495 . . . 4 ((𝑓 ∈ (Fil‘𝑋) ∧ 𝒫 𝒫 𝑋 ∈ dom card) → ∃𝑔 ∈ (UFil‘𝑋)𝑓𝑔)
21ancoms 462 . . 3 ((𝒫 𝒫 𝑋 ∈ dom card ∧ 𝑓 ∈ (Fil‘𝑋)) → ∃𝑔 ∈ (UFil‘𝑋)𝑓𝑔)
32ralrimiva 3170 . 2 (𝒫 𝒫 𝑋 ∈ dom card → ∀𝑓 ∈ (Fil‘𝑋)∃𝑔 ∈ (UFil‘𝑋)𝑓𝑔)
4 pwexr 7462 . . . 4 (𝒫 𝒫 𝑋 ∈ dom card → 𝒫 𝑋 ∈ V)
5 pwexb 7463 . . . 4 (𝑋 ∈ V ↔ 𝒫 𝑋 ∈ V)
64, 5sylibr 237 . . 3 (𝒫 𝒫 𝑋 ∈ dom card → 𝑋 ∈ V)
7 isufl 22497 . . 3 (𝑋 ∈ V → (𝑋 ∈ UFL ↔ ∀𝑓 ∈ (Fil‘𝑋)∃𝑔 ∈ (UFil‘𝑋)𝑓𝑔))
86, 7syl 17 . 2 (𝒫 𝒫 𝑋 ∈ dom card → (𝑋 ∈ UFL ↔ ∀𝑓 ∈ (Fil‘𝑋)∃𝑔 ∈ (UFil‘𝑋)𝑓𝑔))
93, 8mpbird 260 1 (𝒫 𝒫 𝑋 ∈ dom card → 𝑋 ∈ UFL)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∈ wcel 2115  ∀wral 3126  ∃wrex 3127  Vcvv 3471   ⊆ wss 3910  𝒫 cpw 4512  dom cdm 5528  ‘cfv 6328  cardccrd 9340  Filcfil 22429  UFilcufil 22483  UFLcufl 22484 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rmo 3134  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-int 4850  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-se 5488  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-rpss 7424  df-om 7556  df-1st 7664  df-2nd 7665  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-1o 8077  df-oadd 8081  df-er 8264  df-en 8485  df-dom 8486  df-fin 8488  df-fi 8851  df-dju 9306  df-card 9344  df-fbas 20518  df-fg 20519  df-fil 22430  df-ufil 22485  df-ufl 22486 This theorem is referenced by:  fiufl  22500  acufl  22501
 Copyright terms: Public domain W3C validator