![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > numufl | Structured version Visualization version GIF version |
Description: Consequence of filssufilg 23414: a set whose double powerset is well-orderable satisfies the ultrafilter lemma. (Contributed by Mario Carneiro, 26-Aug-2015.) |
Ref | Expression |
---|---|
numufl | ⊢ (𝒫 𝒫 𝑋 ∈ dom card → 𝑋 ∈ UFL) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | filssufilg 23414 | . . . 4 ⊢ ((𝑓 ∈ (Fil‘𝑋) ∧ 𝒫 𝒫 𝑋 ∈ dom card) → ∃𝑔 ∈ (UFil‘𝑋)𝑓 ⊆ 𝑔) | |
2 | 1 | ancoms 459 | . . 3 ⊢ ((𝒫 𝒫 𝑋 ∈ dom card ∧ 𝑓 ∈ (Fil‘𝑋)) → ∃𝑔 ∈ (UFil‘𝑋)𝑓 ⊆ 𝑔) |
3 | 2 | ralrimiva 3146 | . 2 ⊢ (𝒫 𝒫 𝑋 ∈ dom card → ∀𝑓 ∈ (Fil‘𝑋)∃𝑔 ∈ (UFil‘𝑋)𝑓 ⊆ 𝑔) |
4 | pwexr 7751 | . . . 4 ⊢ (𝒫 𝒫 𝑋 ∈ dom card → 𝒫 𝑋 ∈ V) | |
5 | pwexb 7752 | . . . 4 ⊢ (𝑋 ∈ V ↔ 𝒫 𝑋 ∈ V) | |
6 | 4, 5 | sylibr 233 | . . 3 ⊢ (𝒫 𝒫 𝑋 ∈ dom card → 𝑋 ∈ V) |
7 | isufl 23416 | . . 3 ⊢ (𝑋 ∈ V → (𝑋 ∈ UFL ↔ ∀𝑓 ∈ (Fil‘𝑋)∃𝑔 ∈ (UFil‘𝑋)𝑓 ⊆ 𝑔)) | |
8 | 6, 7 | syl 17 | . 2 ⊢ (𝒫 𝒫 𝑋 ∈ dom card → (𝑋 ∈ UFL ↔ ∀𝑓 ∈ (Fil‘𝑋)∃𝑔 ∈ (UFil‘𝑋)𝑓 ⊆ 𝑔)) |
9 | 3, 8 | mpbird 256 | 1 ⊢ (𝒫 𝒫 𝑋 ∈ dom card → 𝑋 ∈ UFL) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2106 ∀wral 3061 ∃wrex 3070 Vcvv 3474 ⊆ wss 3948 𝒫 cpw 4602 dom cdm 5676 ‘cfv 6543 cardccrd 9929 Filcfil 23348 UFilcufil 23402 UFLcufl 23403 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-rpss 7712 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-oadd 8469 df-er 8702 df-en 8939 df-dom 8940 df-fin 8942 df-fi 9405 df-dju 9895 df-card 9933 df-fbas 20940 df-fg 20941 df-fil 23349 df-ufil 23404 df-ufl 23405 |
This theorem is referenced by: fiufl 23419 acufl 23420 |
Copyright terms: Public domain | W3C validator |