MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ufldom Structured version   Visualization version   GIF version

Theorem ufldom 22725
Description: The ultrafilter lemma property is a cardinal invariant, so since it transfers to subsets it also transfers over set dominance. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
ufldom ((𝑋 ∈ UFL ∧ 𝑌𝑋) → 𝑌 ∈ UFL)

Proof of Theorem ufldom
Dummy variables 𝑢 𝑥 𝑓 𝑔 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 domeng 8581 . . 3 (𝑋 ∈ UFL → (𝑌𝑋 ↔ ∃𝑥(𝑌𝑥𝑥𝑋)))
2 bren 8576 . . . . . . . 8 (𝑌𝑥 ↔ ∃𝑓 𝑓:𝑌1-1-onto𝑥)
32biimpi 219 . . . . . . 7 (𝑌𝑥 → ∃𝑓 𝑓:𝑌1-1-onto𝑥)
4 ssufl 22681 . . . . . . 7 ((𝑋 ∈ UFL ∧ 𝑥𝑋) → 𝑥 ∈ UFL)
5 simplr 769 . . . . . . . . . . . . . 14 (((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) → 𝑥 ∈ UFL)
6 filfbas 22611 . . . . . . . . . . . . . . . 16 (𝑔 ∈ (Fil‘𝑌) → 𝑔 ∈ (fBas‘𝑌))
76adantl 485 . . . . . . . . . . . . . . 15 (((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) → 𝑔 ∈ (fBas‘𝑌))
8 f1of 6630 . . . . . . . . . . . . . . . 16 (𝑓:𝑌1-1-onto𝑥𝑓:𝑌𝑥)
98ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) → 𝑓:𝑌𝑥)
10 fmfil 22707 . . . . . . . . . . . . . . 15 ((𝑥 ∈ UFL ∧ 𝑔 ∈ (fBas‘𝑌) ∧ 𝑓:𝑌𝑥) → ((𝑥 FilMap 𝑓)‘𝑔) ∈ (Fil‘𝑥))
115, 7, 9, 10syl3anc 1372 . . . . . . . . . . . . . 14 (((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) → ((𝑥 FilMap 𝑓)‘𝑔) ∈ (Fil‘𝑥))
12 ufli 22677 . . . . . . . . . . . . . 14 ((𝑥 ∈ UFL ∧ ((𝑥 FilMap 𝑓)‘𝑔) ∈ (Fil‘𝑥)) → ∃𝑦 ∈ (UFil‘𝑥)((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)
135, 11, 12syl2anc 587 . . . . . . . . . . . . 13 (((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) → ∃𝑦 ∈ (UFil‘𝑥)((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)
14 f1odm 6634 . . . . . . . . . . . . . . . . . 18 (𝑓:𝑌1-1-onto𝑥 → dom 𝑓 = 𝑌)
1514adantr 484 . . . . . . . . . . . . . . . . 17 ((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) → dom 𝑓 = 𝑌)
16 vex 3404 . . . . . . . . . . . . . . . . . 18 𝑓 ∈ V
1716dmex 7654 . . . . . . . . . . . . . . . . 17 dom 𝑓 ∈ V
1815, 17eqeltrrdi 2843 . . . . . . . . . . . . . . . 16 ((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) → 𝑌 ∈ V)
1918ad2antrr 726 . . . . . . . . . . . . . . 15 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → 𝑌 ∈ V)
20 simprl 771 . . . . . . . . . . . . . . 15 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → 𝑦 ∈ (UFil‘𝑥))
21 f1ocnv 6642 . . . . . . . . . . . . . . . . 17 (𝑓:𝑌1-1-onto𝑥𝑓:𝑥1-1-onto𝑌)
2221ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → 𝑓:𝑥1-1-onto𝑌)
23 f1of 6630 . . . . . . . . . . . . . . . 16 (𝑓:𝑥1-1-onto𝑌𝑓:𝑥𝑌)
2422, 23syl 17 . . . . . . . . . . . . . . 15 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → 𝑓:𝑥𝑌)
25 fmufil 22722 . . . . . . . . . . . . . . 15 ((𝑌 ∈ V ∧ 𝑦 ∈ (UFil‘𝑥) ∧ 𝑓:𝑥𝑌) → ((𝑌 FilMap 𝑓)‘𝑦) ∈ (UFil‘𝑌))
2619, 20, 24, 25syl3anc 1372 . . . . . . . . . . . . . 14 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → ((𝑌 FilMap 𝑓)‘𝑦) ∈ (UFil‘𝑌))
27 f1ococnv1 6658 . . . . . . . . . . . . . . . . . . 19 (𝑓:𝑌1-1-onto𝑥 → (𝑓𝑓) = ( I ↾ 𝑌))
2827ad3antrrr 730 . . . . . . . . . . . . . . . . . 18 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → (𝑓𝑓) = ( I ↾ 𝑌))
2928oveq2d 7198 . . . . . . . . . . . . . . . . 17 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → (𝑌 FilMap (𝑓𝑓)) = (𝑌 FilMap ( I ↾ 𝑌)))
3029fveq1d 6688 . . . . . . . . . . . . . . . 16 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → ((𝑌 FilMap (𝑓𝑓))‘𝑔) = ((𝑌 FilMap ( I ↾ 𝑌))‘𝑔))
315adantr 484 . . . . . . . . . . . . . . . . 17 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → 𝑥 ∈ UFL)
327adantr 484 . . . . . . . . . . . . . . . . 17 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → 𝑔 ∈ (fBas‘𝑌))
338ad3antrrr 730 . . . . . . . . . . . . . . . . 17 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → 𝑓:𝑌𝑥)
34 fmco 22724 . . . . . . . . . . . . . . . . 17 (((𝑌 ∈ V ∧ 𝑥 ∈ UFL ∧ 𝑔 ∈ (fBas‘𝑌)) ∧ (𝑓:𝑥𝑌𝑓:𝑌𝑥)) → ((𝑌 FilMap (𝑓𝑓))‘𝑔) = ((𝑌 FilMap 𝑓)‘((𝑥 FilMap 𝑓)‘𝑔)))
3519, 31, 32, 24, 33, 34syl32anc 1379 . . . . . . . . . . . . . . . 16 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → ((𝑌 FilMap (𝑓𝑓))‘𝑔) = ((𝑌 FilMap 𝑓)‘((𝑥 FilMap 𝑓)‘𝑔)))
36 simplr 769 . . . . . . . . . . . . . . . . 17 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → 𝑔 ∈ (Fil‘𝑌))
37 fmid 22723 . . . . . . . . . . . . . . . . 17 (𝑔 ∈ (Fil‘𝑌) → ((𝑌 FilMap ( I ↾ 𝑌))‘𝑔) = 𝑔)
3836, 37syl 17 . . . . . . . . . . . . . . . 16 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → ((𝑌 FilMap ( I ↾ 𝑌))‘𝑔) = 𝑔)
3930, 35, 383eqtr3d 2782 . . . . . . . . . . . . . . 15 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → ((𝑌 FilMap 𝑓)‘((𝑥 FilMap 𝑓)‘𝑔)) = 𝑔)
4011adantr 484 . . . . . . . . . . . . . . . . 17 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → ((𝑥 FilMap 𝑓)‘𝑔) ∈ (Fil‘𝑥))
41 filfbas 22611 . . . . . . . . . . . . . . . . 17 (((𝑥 FilMap 𝑓)‘𝑔) ∈ (Fil‘𝑥) → ((𝑥 FilMap 𝑓)‘𝑔) ∈ (fBas‘𝑥))
4240, 41syl 17 . . . . . . . . . . . . . . . 16 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → ((𝑥 FilMap 𝑓)‘𝑔) ∈ (fBas‘𝑥))
43 ufilfil 22667 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (UFil‘𝑥) → 𝑦 ∈ (Fil‘𝑥))
44 filfbas 22611 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (Fil‘𝑥) → 𝑦 ∈ (fBas‘𝑥))
4520, 43, 443syl 18 . . . . . . . . . . . . . . . 16 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → 𝑦 ∈ (fBas‘𝑥))
46 simprr 773 . . . . . . . . . . . . . . . 16 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)
47 fmss 22709 . . . . . . . . . . . . . . . 16 (((𝑌 ∈ V ∧ ((𝑥 FilMap 𝑓)‘𝑔) ∈ (fBas‘𝑥) ∧ 𝑦 ∈ (fBas‘𝑥)) ∧ (𝑓:𝑥𝑌 ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → ((𝑌 FilMap 𝑓)‘((𝑥 FilMap 𝑓)‘𝑔)) ⊆ ((𝑌 FilMap 𝑓)‘𝑦))
4819, 42, 45, 24, 46, 47syl32anc 1379 . . . . . . . . . . . . . . 15 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → ((𝑌 FilMap 𝑓)‘((𝑥 FilMap 𝑓)‘𝑔)) ⊆ ((𝑌 FilMap 𝑓)‘𝑦))
4939, 48eqsstrrd 3926 . . . . . . . . . . . . . 14 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → 𝑔 ⊆ ((𝑌 FilMap 𝑓)‘𝑦))
50 sseq2 3913 . . . . . . . . . . . . . . 15 (𝑢 = ((𝑌 FilMap 𝑓)‘𝑦) → (𝑔𝑢𝑔 ⊆ ((𝑌 FilMap 𝑓)‘𝑦)))
5150rspcev 3529 . . . . . . . . . . . . . 14 ((((𝑌 FilMap 𝑓)‘𝑦) ∈ (UFil‘𝑌) ∧ 𝑔 ⊆ ((𝑌 FilMap 𝑓)‘𝑦)) → ∃𝑢 ∈ (UFil‘𝑌)𝑔𝑢)
5226, 49, 51syl2anc 587 . . . . . . . . . . . . 13 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → ∃𝑢 ∈ (UFil‘𝑌)𝑔𝑢)
5313, 52rexlimddv 3202 . . . . . . . . . . . 12 (((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) → ∃𝑢 ∈ (UFil‘𝑌)𝑔𝑢)
5453ralrimiva 3097 . . . . . . . . . . 11 ((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) → ∀𝑔 ∈ (Fil‘𝑌)∃𝑢 ∈ (UFil‘𝑌)𝑔𝑢)
55 isufl 22676 . . . . . . . . . . . 12 (𝑌 ∈ V → (𝑌 ∈ UFL ↔ ∀𝑔 ∈ (Fil‘𝑌)∃𝑢 ∈ (UFil‘𝑌)𝑔𝑢))
5618, 55syl 17 . . . . . . . . . . 11 ((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) → (𝑌 ∈ UFL ↔ ∀𝑔 ∈ (Fil‘𝑌)∃𝑢 ∈ (UFil‘𝑌)𝑔𝑢))
5754, 56mpbird 260 . . . . . . . . . 10 ((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) → 𝑌 ∈ UFL)
5857ex 416 . . . . . . . . 9 (𝑓:𝑌1-1-onto𝑥 → (𝑥 ∈ UFL → 𝑌 ∈ UFL))
5958exlimiv 1937 . . . . . . . 8 (∃𝑓 𝑓:𝑌1-1-onto𝑥 → (𝑥 ∈ UFL → 𝑌 ∈ UFL))
6059imp 410 . . . . . . 7 ((∃𝑓 𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) → 𝑌 ∈ UFL)
613, 4, 60syl2an 599 . . . . . 6 ((𝑌𝑥 ∧ (𝑋 ∈ UFL ∧ 𝑥𝑋)) → 𝑌 ∈ UFL)
6261an12s 649 . . . . 5 ((𝑋 ∈ UFL ∧ (𝑌𝑥𝑥𝑋)) → 𝑌 ∈ UFL)
6362ex 416 . . . 4 (𝑋 ∈ UFL → ((𝑌𝑥𝑥𝑋) → 𝑌 ∈ UFL))
6463exlimdv 1940 . . 3 (𝑋 ∈ UFL → (∃𝑥(𝑌𝑥𝑥𝑋) → 𝑌 ∈ UFL))
651, 64sylbid 243 . 2 (𝑋 ∈ UFL → (𝑌𝑋𝑌 ∈ UFL))
6665imp 410 1 ((𝑋 ∈ UFL ∧ 𝑌𝑋) → 𝑌 ∈ UFL)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1542  wex 1786  wcel 2114  wral 3054  wrex 3055  Vcvv 3400  wss 3853   class class class wbr 5040   I cid 5438  ccnv 5534  dom cdm 5535  cres 5537  ccom 5539  wf 6345  1-1-ontowf1o 6348  cfv 6349  (class class class)co 7182  cen 8564  cdom 8565  fBascfbas 20217  Filcfil 22608  UFilcufil 22662  UFLcufl 22663   FilMap cfm 22696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5242  ax-pr 5306  ax-un 7491
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3402  df-sbc 3686  df-csb 3801  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4222  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4807  df-int 4847  df-iun 4893  df-br 5041  df-opab 5103  df-mpt 5121  df-tr 5147  df-id 5439  df-eprel 5444  df-po 5452  df-so 5453  df-fr 5493  df-we 5495  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-rn 5546  df-res 5547  df-ima 5548  df-ord 6185  df-on 6186  df-lim 6187  df-suc 6188  df-iota 6307  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-ov 7185  df-oprab 7186  df-mpo 7187  df-om 7612  df-1st 7726  df-2nd 7727  df-1o 8143  df-er 8332  df-en 8568  df-dom 8569  df-fin 8571  df-fi 8960  df-rest 16811  df-fbas 20226  df-fg 20227  df-fil 22609  df-ufil 22664  df-ufl 22665  df-fm 22701
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator