MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ufldom Structured version   Visualization version   GIF version

Theorem ufldom 23900
Description: The ultrafilter lemma property is a cardinal invariant, so since it transfers to subsets it also transfers over set dominance. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
ufldom ((𝑋 ∈ UFL ∧ 𝑌𝑋) → 𝑌 ∈ UFL)

Proof of Theorem ufldom
Dummy variables 𝑢 𝑥 𝑓 𝑔 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 domeng 8977 . . 3 (𝑋 ∈ UFL → (𝑌𝑋 ↔ ∃𝑥(𝑌𝑥𝑥𝑋)))
2 bren 8969 . . . . . . . 8 (𝑌𝑥 ↔ ∃𝑓 𝑓:𝑌1-1-onto𝑥)
32biimpi 216 . . . . . . 7 (𝑌𝑥 → ∃𝑓 𝑓:𝑌1-1-onto𝑥)
4 ssufl 23856 . . . . . . 7 ((𝑋 ∈ UFL ∧ 𝑥𝑋) → 𝑥 ∈ UFL)
5 simplr 768 . . . . . . . . . . . . . 14 (((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) → 𝑥 ∈ UFL)
6 filfbas 23786 . . . . . . . . . . . . . . . 16 (𝑔 ∈ (Fil‘𝑌) → 𝑔 ∈ (fBas‘𝑌))
76adantl 481 . . . . . . . . . . . . . . 15 (((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) → 𝑔 ∈ (fBas‘𝑌))
8 f1of 6818 . . . . . . . . . . . . . . . 16 (𝑓:𝑌1-1-onto𝑥𝑓:𝑌𝑥)
98ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) → 𝑓:𝑌𝑥)
10 fmfil 23882 . . . . . . . . . . . . . . 15 ((𝑥 ∈ UFL ∧ 𝑔 ∈ (fBas‘𝑌) ∧ 𝑓:𝑌𝑥) → ((𝑥 FilMap 𝑓)‘𝑔) ∈ (Fil‘𝑥))
115, 7, 9, 10syl3anc 1373 . . . . . . . . . . . . . 14 (((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) → ((𝑥 FilMap 𝑓)‘𝑔) ∈ (Fil‘𝑥))
12 ufli 23852 . . . . . . . . . . . . . 14 ((𝑥 ∈ UFL ∧ ((𝑥 FilMap 𝑓)‘𝑔) ∈ (Fil‘𝑥)) → ∃𝑦 ∈ (UFil‘𝑥)((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)
135, 11, 12syl2anc 584 . . . . . . . . . . . . 13 (((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) → ∃𝑦 ∈ (UFil‘𝑥)((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)
14 f1odm 6822 . . . . . . . . . . . . . . . . . 18 (𝑓:𝑌1-1-onto𝑥 → dom 𝑓 = 𝑌)
1514adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) → dom 𝑓 = 𝑌)
16 vex 3463 . . . . . . . . . . . . . . . . . 18 𝑓 ∈ V
1716dmex 7905 . . . . . . . . . . . . . . . . 17 dom 𝑓 ∈ V
1815, 17eqeltrrdi 2843 . . . . . . . . . . . . . . . 16 ((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) → 𝑌 ∈ V)
1918ad2antrr 726 . . . . . . . . . . . . . . 15 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → 𝑌 ∈ V)
20 simprl 770 . . . . . . . . . . . . . . 15 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → 𝑦 ∈ (UFil‘𝑥))
21 f1ocnv 6830 . . . . . . . . . . . . . . . . 17 (𝑓:𝑌1-1-onto𝑥𝑓:𝑥1-1-onto𝑌)
2221ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → 𝑓:𝑥1-1-onto𝑌)
23 f1of 6818 . . . . . . . . . . . . . . . 16 (𝑓:𝑥1-1-onto𝑌𝑓:𝑥𝑌)
2422, 23syl 17 . . . . . . . . . . . . . . 15 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → 𝑓:𝑥𝑌)
25 fmufil 23897 . . . . . . . . . . . . . . 15 ((𝑌 ∈ V ∧ 𝑦 ∈ (UFil‘𝑥) ∧ 𝑓:𝑥𝑌) → ((𝑌 FilMap 𝑓)‘𝑦) ∈ (UFil‘𝑌))
2619, 20, 24, 25syl3anc 1373 . . . . . . . . . . . . . 14 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → ((𝑌 FilMap 𝑓)‘𝑦) ∈ (UFil‘𝑌))
27 f1ococnv1 6847 . . . . . . . . . . . . . . . . . . 19 (𝑓:𝑌1-1-onto𝑥 → (𝑓𝑓) = ( I ↾ 𝑌))
2827ad3antrrr 730 . . . . . . . . . . . . . . . . . 18 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → (𝑓𝑓) = ( I ↾ 𝑌))
2928oveq2d 7421 . . . . . . . . . . . . . . . . 17 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → (𝑌 FilMap (𝑓𝑓)) = (𝑌 FilMap ( I ↾ 𝑌)))
3029fveq1d 6878 . . . . . . . . . . . . . . . 16 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → ((𝑌 FilMap (𝑓𝑓))‘𝑔) = ((𝑌 FilMap ( I ↾ 𝑌))‘𝑔))
315adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → 𝑥 ∈ UFL)
327adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → 𝑔 ∈ (fBas‘𝑌))
338ad3antrrr 730 . . . . . . . . . . . . . . . . 17 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → 𝑓:𝑌𝑥)
34 fmco 23899 . . . . . . . . . . . . . . . . 17 (((𝑌 ∈ V ∧ 𝑥 ∈ UFL ∧ 𝑔 ∈ (fBas‘𝑌)) ∧ (𝑓:𝑥𝑌𝑓:𝑌𝑥)) → ((𝑌 FilMap (𝑓𝑓))‘𝑔) = ((𝑌 FilMap 𝑓)‘((𝑥 FilMap 𝑓)‘𝑔)))
3519, 31, 32, 24, 33, 34syl32anc 1380 . . . . . . . . . . . . . . . 16 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → ((𝑌 FilMap (𝑓𝑓))‘𝑔) = ((𝑌 FilMap 𝑓)‘((𝑥 FilMap 𝑓)‘𝑔)))
36 simplr 768 . . . . . . . . . . . . . . . . 17 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → 𝑔 ∈ (Fil‘𝑌))
37 fmid 23898 . . . . . . . . . . . . . . . . 17 (𝑔 ∈ (Fil‘𝑌) → ((𝑌 FilMap ( I ↾ 𝑌))‘𝑔) = 𝑔)
3836, 37syl 17 . . . . . . . . . . . . . . . 16 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → ((𝑌 FilMap ( I ↾ 𝑌))‘𝑔) = 𝑔)
3930, 35, 383eqtr3d 2778 . . . . . . . . . . . . . . 15 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → ((𝑌 FilMap 𝑓)‘((𝑥 FilMap 𝑓)‘𝑔)) = 𝑔)
4011adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → ((𝑥 FilMap 𝑓)‘𝑔) ∈ (Fil‘𝑥))
41 filfbas 23786 . . . . . . . . . . . . . . . . 17 (((𝑥 FilMap 𝑓)‘𝑔) ∈ (Fil‘𝑥) → ((𝑥 FilMap 𝑓)‘𝑔) ∈ (fBas‘𝑥))
4240, 41syl 17 . . . . . . . . . . . . . . . 16 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → ((𝑥 FilMap 𝑓)‘𝑔) ∈ (fBas‘𝑥))
43 ufilfil 23842 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (UFil‘𝑥) → 𝑦 ∈ (Fil‘𝑥))
44 filfbas 23786 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (Fil‘𝑥) → 𝑦 ∈ (fBas‘𝑥))
4520, 43, 443syl 18 . . . . . . . . . . . . . . . 16 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → 𝑦 ∈ (fBas‘𝑥))
46 simprr 772 . . . . . . . . . . . . . . . 16 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)
47 fmss 23884 . . . . . . . . . . . . . . . 16 (((𝑌 ∈ V ∧ ((𝑥 FilMap 𝑓)‘𝑔) ∈ (fBas‘𝑥) ∧ 𝑦 ∈ (fBas‘𝑥)) ∧ (𝑓:𝑥𝑌 ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → ((𝑌 FilMap 𝑓)‘((𝑥 FilMap 𝑓)‘𝑔)) ⊆ ((𝑌 FilMap 𝑓)‘𝑦))
4819, 42, 45, 24, 46, 47syl32anc 1380 . . . . . . . . . . . . . . 15 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → ((𝑌 FilMap 𝑓)‘((𝑥 FilMap 𝑓)‘𝑔)) ⊆ ((𝑌 FilMap 𝑓)‘𝑦))
4939, 48eqsstrrd 3994 . . . . . . . . . . . . . 14 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → 𝑔 ⊆ ((𝑌 FilMap 𝑓)‘𝑦))
50 sseq2 3985 . . . . . . . . . . . . . . 15 (𝑢 = ((𝑌 FilMap 𝑓)‘𝑦) → (𝑔𝑢𝑔 ⊆ ((𝑌 FilMap 𝑓)‘𝑦)))
5150rspcev 3601 . . . . . . . . . . . . . 14 ((((𝑌 FilMap 𝑓)‘𝑦) ∈ (UFil‘𝑌) ∧ 𝑔 ⊆ ((𝑌 FilMap 𝑓)‘𝑦)) → ∃𝑢 ∈ (UFil‘𝑌)𝑔𝑢)
5226, 49, 51syl2anc 584 . . . . . . . . . . . . 13 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → ∃𝑢 ∈ (UFil‘𝑌)𝑔𝑢)
5313, 52rexlimddv 3147 . . . . . . . . . . . 12 (((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) → ∃𝑢 ∈ (UFil‘𝑌)𝑔𝑢)
5453ralrimiva 3132 . . . . . . . . . . 11 ((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) → ∀𝑔 ∈ (Fil‘𝑌)∃𝑢 ∈ (UFil‘𝑌)𝑔𝑢)
55 isufl 23851 . . . . . . . . . . . 12 (𝑌 ∈ V → (𝑌 ∈ UFL ↔ ∀𝑔 ∈ (Fil‘𝑌)∃𝑢 ∈ (UFil‘𝑌)𝑔𝑢))
5618, 55syl 17 . . . . . . . . . . 11 ((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) → (𝑌 ∈ UFL ↔ ∀𝑔 ∈ (Fil‘𝑌)∃𝑢 ∈ (UFil‘𝑌)𝑔𝑢))
5754, 56mpbird 257 . . . . . . . . . 10 ((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) → 𝑌 ∈ UFL)
5857ex 412 . . . . . . . . 9 (𝑓:𝑌1-1-onto𝑥 → (𝑥 ∈ UFL → 𝑌 ∈ UFL))
5958exlimiv 1930 . . . . . . . 8 (∃𝑓 𝑓:𝑌1-1-onto𝑥 → (𝑥 ∈ UFL → 𝑌 ∈ UFL))
6059imp 406 . . . . . . 7 ((∃𝑓 𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) → 𝑌 ∈ UFL)
613, 4, 60syl2an 596 . . . . . 6 ((𝑌𝑥 ∧ (𝑋 ∈ UFL ∧ 𝑥𝑋)) → 𝑌 ∈ UFL)
6261an12s 649 . . . . 5 ((𝑋 ∈ UFL ∧ (𝑌𝑥𝑥𝑋)) → 𝑌 ∈ UFL)
6362ex 412 . . . 4 (𝑋 ∈ UFL → ((𝑌𝑥𝑥𝑋) → 𝑌 ∈ UFL))
6463exlimdv 1933 . . 3 (𝑋 ∈ UFL → (∃𝑥(𝑌𝑥𝑥𝑋) → 𝑌 ∈ UFL))
651, 64sylbid 240 . 2 (𝑋 ∈ UFL → (𝑌𝑋𝑌 ∈ UFL))
6665imp 406 1 ((𝑋 ∈ UFL ∧ 𝑌𝑋) → 𝑌 ∈ UFL)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2108  wral 3051  wrex 3060  Vcvv 3459  wss 3926   class class class wbr 5119   I cid 5547  ccnv 5653  dom cdm 5654  cres 5656  ccom 5658  wf 6527  1-1-ontowf1o 6530  cfv 6531  (class class class)co 7405  cen 8956  cdom 8957  fBascfbas 21303  Filcfil 23783  UFilcufil 23837  UFLcufl 23838   FilMap cfm 23871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-1o 8480  df-2o 8481  df-en 8960  df-dom 8961  df-fin 8963  df-fi 9423  df-rest 17436  df-fbas 21312  df-fg 21313  df-fil 23784  df-ufil 23839  df-ufl 23840  df-fm 23876
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator