MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ufldom Structured version   Visualization version   GIF version

Theorem ufldom 23847
Description: The ultrafilter lemma property is a cardinal invariant, so since it transfers to subsets it also transfers over set dominance. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
ufldom ((𝑋 ∈ UFL ∧ 𝑌𝑋) → 𝑌 ∈ UFL)

Proof of Theorem ufldom
Dummy variables 𝑢 𝑥 𝑓 𝑔 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 domeng 8888 . . 3 (𝑋 ∈ UFL → (𝑌𝑋 ↔ ∃𝑥(𝑌𝑥𝑥𝑋)))
2 bren 8882 . . . . . . . 8 (𝑌𝑥 ↔ ∃𝑓 𝑓:𝑌1-1-onto𝑥)
32biimpi 216 . . . . . . 7 (𝑌𝑥 → ∃𝑓 𝑓:𝑌1-1-onto𝑥)
4 ssufl 23803 . . . . . . 7 ((𝑋 ∈ UFL ∧ 𝑥𝑋) → 𝑥 ∈ UFL)
5 simplr 768 . . . . . . . . . . . . . 14 (((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) → 𝑥 ∈ UFL)
6 filfbas 23733 . . . . . . . . . . . . . . . 16 (𝑔 ∈ (Fil‘𝑌) → 𝑔 ∈ (fBas‘𝑌))
76adantl 481 . . . . . . . . . . . . . . 15 (((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) → 𝑔 ∈ (fBas‘𝑌))
8 f1of 6764 . . . . . . . . . . . . . . . 16 (𝑓:𝑌1-1-onto𝑥𝑓:𝑌𝑥)
98ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) → 𝑓:𝑌𝑥)
10 fmfil 23829 . . . . . . . . . . . . . . 15 ((𝑥 ∈ UFL ∧ 𝑔 ∈ (fBas‘𝑌) ∧ 𝑓:𝑌𝑥) → ((𝑥 FilMap 𝑓)‘𝑔) ∈ (Fil‘𝑥))
115, 7, 9, 10syl3anc 1373 . . . . . . . . . . . . . 14 (((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) → ((𝑥 FilMap 𝑓)‘𝑔) ∈ (Fil‘𝑥))
12 ufli 23799 . . . . . . . . . . . . . 14 ((𝑥 ∈ UFL ∧ ((𝑥 FilMap 𝑓)‘𝑔) ∈ (Fil‘𝑥)) → ∃𝑦 ∈ (UFil‘𝑥)((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)
135, 11, 12syl2anc 584 . . . . . . . . . . . . 13 (((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) → ∃𝑦 ∈ (UFil‘𝑥)((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)
14 f1odm 6768 . . . . . . . . . . . . . . . . . 18 (𝑓:𝑌1-1-onto𝑥 → dom 𝑓 = 𝑌)
1514adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) → dom 𝑓 = 𝑌)
16 vex 3440 . . . . . . . . . . . . . . . . . 18 𝑓 ∈ V
1716dmex 7842 . . . . . . . . . . . . . . . . 17 dom 𝑓 ∈ V
1815, 17eqeltrrdi 2837 . . . . . . . . . . . . . . . 16 ((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) → 𝑌 ∈ V)
1918ad2antrr 726 . . . . . . . . . . . . . . 15 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → 𝑌 ∈ V)
20 simprl 770 . . . . . . . . . . . . . . 15 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → 𝑦 ∈ (UFil‘𝑥))
21 f1ocnv 6776 . . . . . . . . . . . . . . . . 17 (𝑓:𝑌1-1-onto𝑥𝑓:𝑥1-1-onto𝑌)
2221ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → 𝑓:𝑥1-1-onto𝑌)
23 f1of 6764 . . . . . . . . . . . . . . . 16 (𝑓:𝑥1-1-onto𝑌𝑓:𝑥𝑌)
2422, 23syl 17 . . . . . . . . . . . . . . 15 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → 𝑓:𝑥𝑌)
25 fmufil 23844 . . . . . . . . . . . . . . 15 ((𝑌 ∈ V ∧ 𝑦 ∈ (UFil‘𝑥) ∧ 𝑓:𝑥𝑌) → ((𝑌 FilMap 𝑓)‘𝑦) ∈ (UFil‘𝑌))
2619, 20, 24, 25syl3anc 1373 . . . . . . . . . . . . . 14 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → ((𝑌 FilMap 𝑓)‘𝑦) ∈ (UFil‘𝑌))
27 f1ococnv1 6793 . . . . . . . . . . . . . . . . . . 19 (𝑓:𝑌1-1-onto𝑥 → (𝑓𝑓) = ( I ↾ 𝑌))
2827ad3antrrr 730 . . . . . . . . . . . . . . . . . 18 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → (𝑓𝑓) = ( I ↾ 𝑌))
2928oveq2d 7365 . . . . . . . . . . . . . . . . 17 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → (𝑌 FilMap (𝑓𝑓)) = (𝑌 FilMap ( I ↾ 𝑌)))
3029fveq1d 6824 . . . . . . . . . . . . . . . 16 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → ((𝑌 FilMap (𝑓𝑓))‘𝑔) = ((𝑌 FilMap ( I ↾ 𝑌))‘𝑔))
315adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → 𝑥 ∈ UFL)
327adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → 𝑔 ∈ (fBas‘𝑌))
338ad3antrrr 730 . . . . . . . . . . . . . . . . 17 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → 𝑓:𝑌𝑥)
34 fmco 23846 . . . . . . . . . . . . . . . . 17 (((𝑌 ∈ V ∧ 𝑥 ∈ UFL ∧ 𝑔 ∈ (fBas‘𝑌)) ∧ (𝑓:𝑥𝑌𝑓:𝑌𝑥)) → ((𝑌 FilMap (𝑓𝑓))‘𝑔) = ((𝑌 FilMap 𝑓)‘((𝑥 FilMap 𝑓)‘𝑔)))
3519, 31, 32, 24, 33, 34syl32anc 1380 . . . . . . . . . . . . . . . 16 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → ((𝑌 FilMap (𝑓𝑓))‘𝑔) = ((𝑌 FilMap 𝑓)‘((𝑥 FilMap 𝑓)‘𝑔)))
36 simplr 768 . . . . . . . . . . . . . . . . 17 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → 𝑔 ∈ (Fil‘𝑌))
37 fmid 23845 . . . . . . . . . . . . . . . . 17 (𝑔 ∈ (Fil‘𝑌) → ((𝑌 FilMap ( I ↾ 𝑌))‘𝑔) = 𝑔)
3836, 37syl 17 . . . . . . . . . . . . . . . 16 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → ((𝑌 FilMap ( I ↾ 𝑌))‘𝑔) = 𝑔)
3930, 35, 383eqtr3d 2772 . . . . . . . . . . . . . . 15 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → ((𝑌 FilMap 𝑓)‘((𝑥 FilMap 𝑓)‘𝑔)) = 𝑔)
4011adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → ((𝑥 FilMap 𝑓)‘𝑔) ∈ (Fil‘𝑥))
41 filfbas 23733 . . . . . . . . . . . . . . . . 17 (((𝑥 FilMap 𝑓)‘𝑔) ∈ (Fil‘𝑥) → ((𝑥 FilMap 𝑓)‘𝑔) ∈ (fBas‘𝑥))
4240, 41syl 17 . . . . . . . . . . . . . . . 16 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → ((𝑥 FilMap 𝑓)‘𝑔) ∈ (fBas‘𝑥))
43 ufilfil 23789 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (UFil‘𝑥) → 𝑦 ∈ (Fil‘𝑥))
44 filfbas 23733 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (Fil‘𝑥) → 𝑦 ∈ (fBas‘𝑥))
4520, 43, 443syl 18 . . . . . . . . . . . . . . . 16 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → 𝑦 ∈ (fBas‘𝑥))
46 simprr 772 . . . . . . . . . . . . . . . 16 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)
47 fmss 23831 . . . . . . . . . . . . . . . 16 (((𝑌 ∈ V ∧ ((𝑥 FilMap 𝑓)‘𝑔) ∈ (fBas‘𝑥) ∧ 𝑦 ∈ (fBas‘𝑥)) ∧ (𝑓:𝑥𝑌 ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → ((𝑌 FilMap 𝑓)‘((𝑥 FilMap 𝑓)‘𝑔)) ⊆ ((𝑌 FilMap 𝑓)‘𝑦))
4819, 42, 45, 24, 46, 47syl32anc 1380 . . . . . . . . . . . . . . 15 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → ((𝑌 FilMap 𝑓)‘((𝑥 FilMap 𝑓)‘𝑔)) ⊆ ((𝑌 FilMap 𝑓)‘𝑦))
4939, 48eqsstrrd 3971 . . . . . . . . . . . . . 14 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → 𝑔 ⊆ ((𝑌 FilMap 𝑓)‘𝑦))
50 sseq2 3962 . . . . . . . . . . . . . . 15 (𝑢 = ((𝑌 FilMap 𝑓)‘𝑦) → (𝑔𝑢𝑔 ⊆ ((𝑌 FilMap 𝑓)‘𝑦)))
5150rspcev 3577 . . . . . . . . . . . . . 14 ((((𝑌 FilMap 𝑓)‘𝑦) ∈ (UFil‘𝑌) ∧ 𝑔 ⊆ ((𝑌 FilMap 𝑓)‘𝑦)) → ∃𝑢 ∈ (UFil‘𝑌)𝑔𝑢)
5226, 49, 51syl2anc 584 . . . . . . . . . . . . 13 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → ∃𝑢 ∈ (UFil‘𝑌)𝑔𝑢)
5313, 52rexlimddv 3136 . . . . . . . . . . . 12 (((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) → ∃𝑢 ∈ (UFil‘𝑌)𝑔𝑢)
5453ralrimiva 3121 . . . . . . . . . . 11 ((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) → ∀𝑔 ∈ (Fil‘𝑌)∃𝑢 ∈ (UFil‘𝑌)𝑔𝑢)
55 isufl 23798 . . . . . . . . . . . 12 (𝑌 ∈ V → (𝑌 ∈ UFL ↔ ∀𝑔 ∈ (Fil‘𝑌)∃𝑢 ∈ (UFil‘𝑌)𝑔𝑢))
5618, 55syl 17 . . . . . . . . . . 11 ((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) → (𝑌 ∈ UFL ↔ ∀𝑔 ∈ (Fil‘𝑌)∃𝑢 ∈ (UFil‘𝑌)𝑔𝑢))
5754, 56mpbird 257 . . . . . . . . . 10 ((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) → 𝑌 ∈ UFL)
5857ex 412 . . . . . . . . 9 (𝑓:𝑌1-1-onto𝑥 → (𝑥 ∈ UFL → 𝑌 ∈ UFL))
5958exlimiv 1930 . . . . . . . 8 (∃𝑓 𝑓:𝑌1-1-onto𝑥 → (𝑥 ∈ UFL → 𝑌 ∈ UFL))
6059imp 406 . . . . . . 7 ((∃𝑓 𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) → 𝑌 ∈ UFL)
613, 4, 60syl2an 596 . . . . . 6 ((𝑌𝑥 ∧ (𝑋 ∈ UFL ∧ 𝑥𝑋)) → 𝑌 ∈ UFL)
6261an12s 649 . . . . 5 ((𝑋 ∈ UFL ∧ (𝑌𝑥𝑥𝑋)) → 𝑌 ∈ UFL)
6362ex 412 . . . 4 (𝑋 ∈ UFL → ((𝑌𝑥𝑥𝑋) → 𝑌 ∈ UFL))
6463exlimdv 1933 . . 3 (𝑋 ∈ UFL → (∃𝑥(𝑌𝑥𝑥𝑋) → 𝑌 ∈ UFL))
651, 64sylbid 240 . 2 (𝑋 ∈ UFL → (𝑌𝑋𝑌 ∈ UFL))
6665imp 406 1 ((𝑋 ∈ UFL ∧ 𝑌𝑋) → 𝑌 ∈ UFL)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wral 3044  wrex 3053  Vcvv 3436  wss 3903   class class class wbr 5092   I cid 5513  ccnv 5618  dom cdm 5619  cres 5621  ccom 5623  wf 6478  1-1-ontowf1o 6481  cfv 6482  (class class class)co 7349  cen 8869  cdom 8870  fBascfbas 21249  Filcfil 23730  UFilcufil 23784  UFLcufl 23785   FilMap cfm 23818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-1o 8388  df-2o 8389  df-en 8873  df-dom 8874  df-fin 8876  df-fi 9301  df-rest 17326  df-fbas 21258  df-fg 21259  df-fil 23731  df-ufil 23786  df-ufl 23787  df-fm 23823
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator