MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ufldom Structured version   Visualization version   GIF version

Theorem ufldom 23686
Description: The ultrafilter lemma property is a cardinal invariant, so since it transfers to subsets it also transfers over set dominance. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
ufldom ((𝑋 ∈ UFL ∧ 𝑌𝑋) → 𝑌 ∈ UFL)

Proof of Theorem ufldom
Dummy variables 𝑢 𝑥 𝑓 𝑔 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 domeng 8960 . . 3 (𝑋 ∈ UFL → (𝑌𝑋 ↔ ∃𝑥(𝑌𝑥𝑥𝑋)))
2 bren 8951 . . . . . . . 8 (𝑌𝑥 ↔ ∃𝑓 𝑓:𝑌1-1-onto𝑥)
32biimpi 215 . . . . . . 7 (𝑌𝑥 → ∃𝑓 𝑓:𝑌1-1-onto𝑥)
4 ssufl 23642 . . . . . . 7 ((𝑋 ∈ UFL ∧ 𝑥𝑋) → 𝑥 ∈ UFL)
5 simplr 767 . . . . . . . . . . . . . 14 (((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) → 𝑥 ∈ UFL)
6 filfbas 23572 . . . . . . . . . . . . . . . 16 (𝑔 ∈ (Fil‘𝑌) → 𝑔 ∈ (fBas‘𝑌))
76adantl 482 . . . . . . . . . . . . . . 15 (((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) → 𝑔 ∈ (fBas‘𝑌))
8 f1of 6833 . . . . . . . . . . . . . . . 16 (𝑓:𝑌1-1-onto𝑥𝑓:𝑌𝑥)
98ad2antrr 724 . . . . . . . . . . . . . . 15 (((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) → 𝑓:𝑌𝑥)
10 fmfil 23668 . . . . . . . . . . . . . . 15 ((𝑥 ∈ UFL ∧ 𝑔 ∈ (fBas‘𝑌) ∧ 𝑓:𝑌𝑥) → ((𝑥 FilMap 𝑓)‘𝑔) ∈ (Fil‘𝑥))
115, 7, 9, 10syl3anc 1371 . . . . . . . . . . . . . 14 (((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) → ((𝑥 FilMap 𝑓)‘𝑔) ∈ (Fil‘𝑥))
12 ufli 23638 . . . . . . . . . . . . . 14 ((𝑥 ∈ UFL ∧ ((𝑥 FilMap 𝑓)‘𝑔) ∈ (Fil‘𝑥)) → ∃𝑦 ∈ (UFil‘𝑥)((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)
135, 11, 12syl2anc 584 . . . . . . . . . . . . 13 (((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) → ∃𝑦 ∈ (UFil‘𝑥)((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)
14 f1odm 6837 . . . . . . . . . . . . . . . . . 18 (𝑓:𝑌1-1-onto𝑥 → dom 𝑓 = 𝑌)
1514adantr 481 . . . . . . . . . . . . . . . . 17 ((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) → dom 𝑓 = 𝑌)
16 vex 3478 . . . . . . . . . . . . . . . . . 18 𝑓 ∈ V
1716dmex 7904 . . . . . . . . . . . . . . . . 17 dom 𝑓 ∈ V
1815, 17eqeltrrdi 2842 . . . . . . . . . . . . . . . 16 ((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) → 𝑌 ∈ V)
1918ad2antrr 724 . . . . . . . . . . . . . . 15 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → 𝑌 ∈ V)
20 simprl 769 . . . . . . . . . . . . . . 15 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → 𝑦 ∈ (UFil‘𝑥))
21 f1ocnv 6845 . . . . . . . . . . . . . . . . 17 (𝑓:𝑌1-1-onto𝑥𝑓:𝑥1-1-onto𝑌)
2221ad3antrrr 728 . . . . . . . . . . . . . . . 16 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → 𝑓:𝑥1-1-onto𝑌)
23 f1of 6833 . . . . . . . . . . . . . . . 16 (𝑓:𝑥1-1-onto𝑌𝑓:𝑥𝑌)
2422, 23syl 17 . . . . . . . . . . . . . . 15 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → 𝑓:𝑥𝑌)
25 fmufil 23683 . . . . . . . . . . . . . . 15 ((𝑌 ∈ V ∧ 𝑦 ∈ (UFil‘𝑥) ∧ 𝑓:𝑥𝑌) → ((𝑌 FilMap 𝑓)‘𝑦) ∈ (UFil‘𝑌))
2619, 20, 24, 25syl3anc 1371 . . . . . . . . . . . . . 14 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → ((𝑌 FilMap 𝑓)‘𝑦) ∈ (UFil‘𝑌))
27 f1ococnv1 6862 . . . . . . . . . . . . . . . . . . 19 (𝑓:𝑌1-1-onto𝑥 → (𝑓𝑓) = ( I ↾ 𝑌))
2827ad3antrrr 728 . . . . . . . . . . . . . . . . . 18 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → (𝑓𝑓) = ( I ↾ 𝑌))
2928oveq2d 7427 . . . . . . . . . . . . . . . . 17 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → (𝑌 FilMap (𝑓𝑓)) = (𝑌 FilMap ( I ↾ 𝑌)))
3029fveq1d 6893 . . . . . . . . . . . . . . . 16 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → ((𝑌 FilMap (𝑓𝑓))‘𝑔) = ((𝑌 FilMap ( I ↾ 𝑌))‘𝑔))
315adantr 481 . . . . . . . . . . . . . . . . 17 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → 𝑥 ∈ UFL)
327adantr 481 . . . . . . . . . . . . . . . . 17 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → 𝑔 ∈ (fBas‘𝑌))
338ad3antrrr 728 . . . . . . . . . . . . . . . . 17 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → 𝑓:𝑌𝑥)
34 fmco 23685 . . . . . . . . . . . . . . . . 17 (((𝑌 ∈ V ∧ 𝑥 ∈ UFL ∧ 𝑔 ∈ (fBas‘𝑌)) ∧ (𝑓:𝑥𝑌𝑓:𝑌𝑥)) → ((𝑌 FilMap (𝑓𝑓))‘𝑔) = ((𝑌 FilMap 𝑓)‘((𝑥 FilMap 𝑓)‘𝑔)))
3519, 31, 32, 24, 33, 34syl32anc 1378 . . . . . . . . . . . . . . . 16 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → ((𝑌 FilMap (𝑓𝑓))‘𝑔) = ((𝑌 FilMap 𝑓)‘((𝑥 FilMap 𝑓)‘𝑔)))
36 simplr 767 . . . . . . . . . . . . . . . . 17 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → 𝑔 ∈ (Fil‘𝑌))
37 fmid 23684 . . . . . . . . . . . . . . . . 17 (𝑔 ∈ (Fil‘𝑌) → ((𝑌 FilMap ( I ↾ 𝑌))‘𝑔) = 𝑔)
3836, 37syl 17 . . . . . . . . . . . . . . . 16 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → ((𝑌 FilMap ( I ↾ 𝑌))‘𝑔) = 𝑔)
3930, 35, 383eqtr3d 2780 . . . . . . . . . . . . . . 15 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → ((𝑌 FilMap 𝑓)‘((𝑥 FilMap 𝑓)‘𝑔)) = 𝑔)
4011adantr 481 . . . . . . . . . . . . . . . . 17 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → ((𝑥 FilMap 𝑓)‘𝑔) ∈ (Fil‘𝑥))
41 filfbas 23572 . . . . . . . . . . . . . . . . 17 (((𝑥 FilMap 𝑓)‘𝑔) ∈ (Fil‘𝑥) → ((𝑥 FilMap 𝑓)‘𝑔) ∈ (fBas‘𝑥))
4240, 41syl 17 . . . . . . . . . . . . . . . 16 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → ((𝑥 FilMap 𝑓)‘𝑔) ∈ (fBas‘𝑥))
43 ufilfil 23628 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (UFil‘𝑥) → 𝑦 ∈ (Fil‘𝑥))
44 filfbas 23572 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (Fil‘𝑥) → 𝑦 ∈ (fBas‘𝑥))
4520, 43, 443syl 18 . . . . . . . . . . . . . . . 16 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → 𝑦 ∈ (fBas‘𝑥))
46 simprr 771 . . . . . . . . . . . . . . . 16 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)
47 fmss 23670 . . . . . . . . . . . . . . . 16 (((𝑌 ∈ V ∧ ((𝑥 FilMap 𝑓)‘𝑔) ∈ (fBas‘𝑥) ∧ 𝑦 ∈ (fBas‘𝑥)) ∧ (𝑓:𝑥𝑌 ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → ((𝑌 FilMap 𝑓)‘((𝑥 FilMap 𝑓)‘𝑔)) ⊆ ((𝑌 FilMap 𝑓)‘𝑦))
4819, 42, 45, 24, 46, 47syl32anc 1378 . . . . . . . . . . . . . . 15 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → ((𝑌 FilMap 𝑓)‘((𝑥 FilMap 𝑓)‘𝑔)) ⊆ ((𝑌 FilMap 𝑓)‘𝑦))
4939, 48eqsstrrd 4021 . . . . . . . . . . . . . 14 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → 𝑔 ⊆ ((𝑌 FilMap 𝑓)‘𝑦))
50 sseq2 4008 . . . . . . . . . . . . . . 15 (𝑢 = ((𝑌 FilMap 𝑓)‘𝑦) → (𝑔𝑢𝑔 ⊆ ((𝑌 FilMap 𝑓)‘𝑦)))
5150rspcev 3612 . . . . . . . . . . . . . 14 ((((𝑌 FilMap 𝑓)‘𝑦) ∈ (UFil‘𝑌) ∧ 𝑔 ⊆ ((𝑌 FilMap 𝑓)‘𝑦)) → ∃𝑢 ∈ (UFil‘𝑌)𝑔𝑢)
5226, 49, 51syl2anc 584 . . . . . . . . . . . . 13 ((((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) ∧ (𝑦 ∈ (UFil‘𝑥) ∧ ((𝑥 FilMap 𝑓)‘𝑔) ⊆ 𝑦)) → ∃𝑢 ∈ (UFil‘𝑌)𝑔𝑢)
5313, 52rexlimddv 3161 . . . . . . . . . . . 12 (((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) ∧ 𝑔 ∈ (Fil‘𝑌)) → ∃𝑢 ∈ (UFil‘𝑌)𝑔𝑢)
5453ralrimiva 3146 . . . . . . . . . . 11 ((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) → ∀𝑔 ∈ (Fil‘𝑌)∃𝑢 ∈ (UFil‘𝑌)𝑔𝑢)
55 isufl 23637 . . . . . . . . . . . 12 (𝑌 ∈ V → (𝑌 ∈ UFL ↔ ∀𝑔 ∈ (Fil‘𝑌)∃𝑢 ∈ (UFil‘𝑌)𝑔𝑢))
5618, 55syl 17 . . . . . . . . . . 11 ((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) → (𝑌 ∈ UFL ↔ ∀𝑔 ∈ (Fil‘𝑌)∃𝑢 ∈ (UFil‘𝑌)𝑔𝑢))
5754, 56mpbird 256 . . . . . . . . . 10 ((𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) → 𝑌 ∈ UFL)
5857ex 413 . . . . . . . . 9 (𝑓:𝑌1-1-onto𝑥 → (𝑥 ∈ UFL → 𝑌 ∈ UFL))
5958exlimiv 1933 . . . . . . . 8 (∃𝑓 𝑓:𝑌1-1-onto𝑥 → (𝑥 ∈ UFL → 𝑌 ∈ UFL))
6059imp 407 . . . . . . 7 ((∃𝑓 𝑓:𝑌1-1-onto𝑥𝑥 ∈ UFL) → 𝑌 ∈ UFL)
613, 4, 60syl2an 596 . . . . . 6 ((𝑌𝑥 ∧ (𝑋 ∈ UFL ∧ 𝑥𝑋)) → 𝑌 ∈ UFL)
6261an12s 647 . . . . 5 ((𝑋 ∈ UFL ∧ (𝑌𝑥𝑥𝑋)) → 𝑌 ∈ UFL)
6362ex 413 . . . 4 (𝑋 ∈ UFL → ((𝑌𝑥𝑥𝑋) → 𝑌 ∈ UFL))
6463exlimdv 1936 . . 3 (𝑋 ∈ UFL → (∃𝑥(𝑌𝑥𝑥𝑋) → 𝑌 ∈ UFL))
651, 64sylbid 239 . 2 (𝑋 ∈ UFL → (𝑌𝑋𝑌 ∈ UFL))
6665imp 407 1 ((𝑋 ∈ UFL ∧ 𝑌𝑋) → 𝑌 ∈ UFL)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wex 1781  wcel 2106  wral 3061  wrex 3070  Vcvv 3474  wss 3948   class class class wbr 5148   I cid 5573  ccnv 5675  dom cdm 5676  cres 5678  ccom 5680  wf 6539  1-1-ontowf1o 6542  cfv 6543  (class class class)co 7411  cen 8938  cdom 8939  fBascfbas 21132  Filcfil 23569  UFilcufil 23623  UFLcufl 23624   FilMap cfm 23657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-1o 8468  df-er 8705  df-en 8942  df-dom 8943  df-fin 8945  df-fi 9408  df-rest 17372  df-fbas 21141  df-fg 21142  df-fil 23570  df-ufil 23625  df-ufl 23626  df-fm 23662
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator