MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relfld Structured version   Visualization version   GIF version

Theorem relfld 6297
Description: The double union of a relation is its field. (Contributed by NM, 17-Sep-2006.)
Assertion
Ref Expression
relfld (Rel 𝑅 𝑅 = (dom 𝑅 ∪ ran 𝑅))

Proof of Theorem relfld
StepHypRef Expression
1 relssdmrn 6290 . . . 4 (Rel 𝑅𝑅 ⊆ (dom 𝑅 × ran 𝑅))
2 uniss 4920 . . . 4 (𝑅 ⊆ (dom 𝑅 × ran 𝑅) → 𝑅 (dom 𝑅 × ran 𝑅))
3 uniss 4920 . . . 4 ( 𝑅 (dom 𝑅 × ran 𝑅) → 𝑅 (dom 𝑅 × ran 𝑅))
41, 2, 33syl 18 . . 3 (Rel 𝑅 𝑅 (dom 𝑅 × ran 𝑅))
5 unixpss 5823 . . 3 (dom 𝑅 × ran 𝑅) ⊆ (dom 𝑅 ∪ ran 𝑅)
64, 5sstrdi 4008 . 2 (Rel 𝑅 𝑅 ⊆ (dom 𝑅 ∪ ran 𝑅))
7 dmrnssfld 5987 . . 3 (dom 𝑅 ∪ ran 𝑅) ⊆ 𝑅
87a1i 11 . 2 (Rel 𝑅 → (dom 𝑅 ∪ ran 𝑅) ⊆ 𝑅)
96, 8eqssd 4013 1 (Rel 𝑅 𝑅 = (dom 𝑅 ∪ ran 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  cun 3961  wss 3963   cuni 4912   × cxp 5687  dom cdm 5689  ran crn 5690  Rel wrel 5694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-xp 5695  df-rel 5696  df-cnv 5697  df-dm 5699  df-rn 5700
This theorem is referenced by:  relresfld  6298  unidmrn  6301  relcnvfld  6302  unixp  6304  relexp0  15059  relexpfld  15085  rtrclreclem4  15097  dfrtrcl2  15098  lefld  18650  fvmptiunrelexplb0da  43675
  Copyright terms: Public domain W3C validator