| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relfld | Structured version Visualization version GIF version | ||
| Description: The double union of a relation is its field. (Contributed by NM, 17-Sep-2006.) |
| Ref | Expression |
|---|---|
| relfld | ⊢ (Rel 𝑅 → ∪ ∪ 𝑅 = (dom 𝑅 ∪ ran 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relssdmrn 6216 | . . . 4 ⊢ (Rel 𝑅 → 𝑅 ⊆ (dom 𝑅 × ran 𝑅)) | |
| 2 | uniss 4867 | . . . 4 ⊢ (𝑅 ⊆ (dom 𝑅 × ran 𝑅) → ∪ 𝑅 ⊆ ∪ (dom 𝑅 × ran 𝑅)) | |
| 3 | uniss 4867 | . . . 4 ⊢ (∪ 𝑅 ⊆ ∪ (dom 𝑅 × ran 𝑅) → ∪ ∪ 𝑅 ⊆ ∪ ∪ (dom 𝑅 × ran 𝑅)) | |
| 4 | 1, 2, 3 | 3syl 18 | . . 3 ⊢ (Rel 𝑅 → ∪ ∪ 𝑅 ⊆ ∪ ∪ (dom 𝑅 × ran 𝑅)) |
| 5 | unixpss 5750 | . . 3 ⊢ ∪ ∪ (dom 𝑅 × ran 𝑅) ⊆ (dom 𝑅 ∪ ran 𝑅) | |
| 6 | 4, 5 | sstrdi 3947 | . 2 ⊢ (Rel 𝑅 → ∪ ∪ 𝑅 ⊆ (dom 𝑅 ∪ ran 𝑅)) |
| 7 | dmrnssfld 5913 | . . 3 ⊢ (dom 𝑅 ∪ ran 𝑅) ⊆ ∪ ∪ 𝑅 | |
| 8 | 7 | a1i 11 | . 2 ⊢ (Rel 𝑅 → (dom 𝑅 ∪ ran 𝑅) ⊆ ∪ ∪ 𝑅) |
| 9 | 6, 8 | eqssd 3952 | 1 ⊢ (Rel 𝑅 → ∪ ∪ 𝑅 = (dom 𝑅 ∪ ran 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∪ cun 3900 ⊆ wss 3902 ∪ cuni 4859 × cxp 5614 dom cdm 5616 ran crn 5617 Rel wrel 5621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-xp 5622 df-rel 5623 df-cnv 5624 df-dm 5626 df-rn 5627 |
| This theorem is referenced by: relresfld 6223 unidmrn 6226 relcnvfld 6227 unixp 6229 relexp0 14930 relexpfld 14956 rtrclreclem4 14968 dfrtrcl2 14969 lefld 18498 fvmptiunrelexplb0da 43724 |
| Copyright terms: Public domain | W3C validator |