Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > relfld | Structured version Visualization version GIF version |
Description: The double union of a relation is its field. (Contributed by NM, 17-Sep-2006.) |
Ref | Expression |
---|---|
relfld | ⊢ (Rel 𝑅 → ∪ ∪ 𝑅 = (dom 𝑅 ∪ ran 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relssdmrn 6206 | . . . 4 ⊢ (Rel 𝑅 → 𝑅 ⊆ (dom 𝑅 × ran 𝑅)) | |
2 | uniss 4860 | . . . 4 ⊢ (𝑅 ⊆ (dom 𝑅 × ran 𝑅) → ∪ 𝑅 ⊆ ∪ (dom 𝑅 × ran 𝑅)) | |
3 | uniss 4860 | . . . 4 ⊢ (∪ 𝑅 ⊆ ∪ (dom 𝑅 × ran 𝑅) → ∪ ∪ 𝑅 ⊆ ∪ ∪ (dom 𝑅 × ran 𝑅)) | |
4 | 1, 2, 3 | 3syl 18 | . . 3 ⊢ (Rel 𝑅 → ∪ ∪ 𝑅 ⊆ ∪ ∪ (dom 𝑅 × ran 𝑅)) |
5 | unixpss 5752 | . . 3 ⊢ ∪ ∪ (dom 𝑅 × ran 𝑅) ⊆ (dom 𝑅 ∪ ran 𝑅) | |
6 | 4, 5 | sstrdi 3944 | . 2 ⊢ (Rel 𝑅 → ∪ ∪ 𝑅 ⊆ (dom 𝑅 ∪ ran 𝑅)) |
7 | dmrnssfld 5911 | . . 3 ⊢ (dom 𝑅 ∪ ran 𝑅) ⊆ ∪ ∪ 𝑅 | |
8 | 7 | a1i 11 | . 2 ⊢ (Rel 𝑅 → (dom 𝑅 ∪ ran 𝑅) ⊆ ∪ ∪ 𝑅) |
9 | 6, 8 | eqssd 3949 | 1 ⊢ (Rel 𝑅 → ∪ ∪ 𝑅 = (dom 𝑅 ∪ ran 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∪ cun 3896 ⊆ wss 3898 ∪ cuni 4852 × cxp 5618 dom cdm 5620 ran crn 5621 Rel wrel 5625 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pr 5372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-br 5093 df-opab 5155 df-xp 5626 df-rel 5627 df-cnv 5628 df-dm 5630 df-rn 5631 |
This theorem is referenced by: relresfld 6214 unidmrn 6217 relcnvfld 6218 unixp 6220 relexp0 14833 relexpfld 14859 rtrclreclem4 14871 dfrtrcl2 14872 lefld 18407 fvmptiunrelexplb0da 41622 |
Copyright terms: Public domain | W3C validator |