MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relfld Structured version   Visualization version   GIF version

Theorem relfld 6178
Description: The double union of a relation is its field. (Contributed by NM, 17-Sep-2006.)
Assertion
Ref Expression
relfld (Rel 𝑅 𝑅 = (dom 𝑅 ∪ ran 𝑅))

Proof of Theorem relfld
StepHypRef Expression
1 relssdmrn 6172 . . . 4 (Rel 𝑅𝑅 ⊆ (dom 𝑅 × ran 𝑅))
2 uniss 4847 . . . 4 (𝑅 ⊆ (dom 𝑅 × ran 𝑅) → 𝑅 (dom 𝑅 × ran 𝑅))
3 uniss 4847 . . . 4 ( 𝑅 (dom 𝑅 × ran 𝑅) → 𝑅 (dom 𝑅 × ran 𝑅))
41, 2, 33syl 18 . . 3 (Rel 𝑅 𝑅 (dom 𝑅 × ran 𝑅))
5 unixpss 5720 . . 3 (dom 𝑅 × ran 𝑅) ⊆ (dom 𝑅 ∪ ran 𝑅)
64, 5sstrdi 3933 . 2 (Rel 𝑅 𝑅 ⊆ (dom 𝑅 ∪ ran 𝑅))
7 dmrnssfld 5879 . . 3 (dom 𝑅 ∪ ran 𝑅) ⊆ 𝑅
87a1i 11 . 2 (Rel 𝑅 → (dom 𝑅 ∪ ran 𝑅) ⊆ 𝑅)
96, 8eqssd 3938 1 (Rel 𝑅 𝑅 = (dom 𝑅 ∪ ran 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  cun 3885  wss 3887   cuni 4839   × cxp 5587  dom cdm 5589  ran crn 5590  Rel wrel 5594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596  df-cnv 5597  df-dm 5599  df-rn 5600
This theorem is referenced by:  relresfld  6179  unidmrn  6182  relcnvfld  6183  unixp  6185  relexp0  14734  relexpfld  14760  rtrclreclem4  14772  dfrtrcl2  14773  lefld  18310  fvmptiunrelexplb0da  41293
  Copyright terms: Public domain W3C validator