![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relfld | Structured version Visualization version GIF version |
Description: The double union of a relation is its field. (Contributed by NM, 17-Sep-2006.) |
Ref | Expression |
---|---|
relfld | ⊢ (Rel 𝑅 → ∪ ∪ 𝑅 = (dom 𝑅 ∪ ran 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relssdmrn 6290 | . . . 4 ⊢ (Rel 𝑅 → 𝑅 ⊆ (dom 𝑅 × ran 𝑅)) | |
2 | uniss 4920 | . . . 4 ⊢ (𝑅 ⊆ (dom 𝑅 × ran 𝑅) → ∪ 𝑅 ⊆ ∪ (dom 𝑅 × ran 𝑅)) | |
3 | uniss 4920 | . . . 4 ⊢ (∪ 𝑅 ⊆ ∪ (dom 𝑅 × ran 𝑅) → ∪ ∪ 𝑅 ⊆ ∪ ∪ (dom 𝑅 × ran 𝑅)) | |
4 | 1, 2, 3 | 3syl 18 | . . 3 ⊢ (Rel 𝑅 → ∪ ∪ 𝑅 ⊆ ∪ ∪ (dom 𝑅 × ran 𝑅)) |
5 | unixpss 5823 | . . 3 ⊢ ∪ ∪ (dom 𝑅 × ran 𝑅) ⊆ (dom 𝑅 ∪ ran 𝑅) | |
6 | 4, 5 | sstrdi 4008 | . 2 ⊢ (Rel 𝑅 → ∪ ∪ 𝑅 ⊆ (dom 𝑅 ∪ ran 𝑅)) |
7 | dmrnssfld 5987 | . . 3 ⊢ (dom 𝑅 ∪ ran 𝑅) ⊆ ∪ ∪ 𝑅 | |
8 | 7 | a1i 11 | . 2 ⊢ (Rel 𝑅 → (dom 𝑅 ∪ ran 𝑅) ⊆ ∪ ∪ 𝑅) |
9 | 6, 8 | eqssd 4013 | 1 ⊢ (Rel 𝑅 → ∪ ∪ 𝑅 = (dom 𝑅 ∪ ran 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∪ cun 3961 ⊆ wss 3963 ∪ cuni 4912 × cxp 5687 dom cdm 5689 ran crn 5690 Rel wrel 5694 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-xp 5695 df-rel 5696 df-cnv 5697 df-dm 5699 df-rn 5700 |
This theorem is referenced by: relresfld 6298 unidmrn 6301 relcnvfld 6302 unixp 6304 relexp0 15059 relexpfld 15085 rtrclreclem4 15097 dfrtrcl2 15098 lefld 18650 fvmptiunrelexplb0da 43675 |
Copyright terms: Public domain | W3C validator |