Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  filnetlem3 Structured version   Visualization version   GIF version

Theorem filnetlem3 36368
Description: Lemma for filnet 36370. (Contributed by Jeff Hankins, 13-Dec-2009.) (Revised by Mario Carneiro, 8-Aug-2015.)
Hypotheses
Ref Expression
filnet.h 𝐻 = 𝑛𝐹 ({𝑛} × 𝑛)
filnet.d 𝐷 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐻𝑦𝐻) ∧ (1st𝑦) ⊆ (1st𝑥))}
Assertion
Ref Expression
filnetlem3 (𝐻 = 𝐷 ∧ (𝐹 ∈ (Fil‘𝑋) → (𝐻 ⊆ (𝐹 × 𝑋) ∧ 𝐷 ∈ DirRel)))
Distinct variable groups:   𝑥,𝑦,𝑛,𝐹   𝑥,𝐻,𝑦   𝑛,𝑋
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑛)   𝐻(𝑛)   𝑋(𝑥,𝑦)

Proof of Theorem filnetlem3
Dummy variables 𝑢 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmresi 6023 . . . . . 6 dom ( I ↾ 𝐻) = 𝐻
2 filnet.h . . . . . . . . 9 𝐻 = 𝑛𝐹 ({𝑛} × 𝑛)
3 filnet.d . . . . . . . . 9 𝐷 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐻𝑦𝐻) ∧ (1st𝑦) ⊆ (1st𝑥))}
42, 3filnetlem2 36367 . . . . . . . 8 (( I ↾ 𝐻) ⊆ 𝐷𝐷 ⊆ (𝐻 × 𝐻))
54simpli 483 . . . . . . 7 ( I ↾ 𝐻) ⊆ 𝐷
6 dmss 5866 . . . . . . 7 (( I ↾ 𝐻) ⊆ 𝐷 → dom ( I ↾ 𝐻) ⊆ dom 𝐷)
75, 6ax-mp 5 . . . . . 6 dom ( I ↾ 𝐻) ⊆ dom 𝐷
81, 7eqsstrri 3994 . . . . 5 𝐻 ⊆ dom 𝐷
9 ssun1 4141 . . . . 5 dom 𝐷 ⊆ (dom 𝐷 ∪ ran 𝐷)
108, 9sstri 3956 . . . 4 𝐻 ⊆ (dom 𝐷 ∪ ran 𝐷)
11 dmrnssfld 5937 . . . 4 (dom 𝐷 ∪ ran 𝐷) ⊆ 𝐷
1210, 11sstri 3956 . . 3 𝐻 𝐷
134simpri 485 . . . . 5 𝐷 ⊆ (𝐻 × 𝐻)
14 uniss 4879 . . . . 5 (𝐷 ⊆ (𝐻 × 𝐻) → 𝐷 (𝐻 × 𝐻))
15 uniss 4879 . . . . 5 ( 𝐷 (𝐻 × 𝐻) → 𝐷 (𝐻 × 𝐻))
1613, 14, 15mp2b 10 . . . 4 𝐷 (𝐻 × 𝐻)
17 unixpss 5773 . . . . 5 (𝐻 × 𝐻) ⊆ (𝐻𝐻)
18 unidm 4120 . . . . 5 (𝐻𝐻) = 𝐻
1917, 18sseqtri 3995 . . . 4 (𝐻 × 𝐻) ⊆ 𝐻
2016, 19sstri 3956 . . 3 𝐷𝐻
2112, 20eqssi 3963 . 2 𝐻 = 𝐷
22 filelss 23739 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑛𝐹) → 𝑛𝑋)
23 xpss2 5658 . . . . . . . 8 (𝑛𝑋 → ({𝑛} × 𝑛) ⊆ ({𝑛} × 𝑋))
2422, 23syl 17 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑛𝐹) → ({𝑛} × 𝑛) ⊆ ({𝑛} × 𝑋))
2524ralrimiva 3125 . . . . . 6 (𝐹 ∈ (Fil‘𝑋) → ∀𝑛𝐹 ({𝑛} × 𝑛) ⊆ ({𝑛} × 𝑋))
26 ss2iun 4974 . . . . . 6 (∀𝑛𝐹 ({𝑛} × 𝑛) ⊆ ({𝑛} × 𝑋) → 𝑛𝐹 ({𝑛} × 𝑛) ⊆ 𝑛𝐹 ({𝑛} × 𝑋))
2725, 26syl 17 . . . . 5 (𝐹 ∈ (Fil‘𝑋) → 𝑛𝐹 ({𝑛} × 𝑛) ⊆ 𝑛𝐹 ({𝑛} × 𝑋))
28 iunxpconst 5711 . . . . 5 𝑛𝐹 ({𝑛} × 𝑋) = (𝐹 × 𝑋)
2927, 28sseqtrdi 3987 . . . 4 (𝐹 ∈ (Fil‘𝑋) → 𝑛𝐹 ({𝑛} × 𝑛) ⊆ (𝐹 × 𝑋))
302, 29eqsstrid 3985 . . 3 (𝐹 ∈ (Fil‘𝑋) → 𝐻 ⊆ (𝐹 × 𝑋))
315a1i 11 . . . . 5 (𝐹 ∈ (Fil‘𝑋) → ( I ↾ 𝐻) ⊆ 𝐷)
323relopabiv 5783 . . . . 5 Rel 𝐷
3331, 32jctil 519 . . . 4 (𝐹 ∈ (Fil‘𝑋) → (Rel 𝐷 ∧ ( I ↾ 𝐻) ⊆ 𝐷))
34 simpl 482 . . . . . . . . . 10 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) → 𝐹 ∈ (Fil‘𝑋))
3530adantr 480 . . . . . . . . . . . 12 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) → 𝐻 ⊆ (𝐹 × 𝑋))
36 simprl 770 . . . . . . . . . . . 12 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) → 𝑣𝐻)
3735, 36sseldd 3947 . . . . . . . . . . 11 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) → 𝑣 ∈ (𝐹 × 𝑋))
38 xp1st 8000 . . . . . . . . . . 11 (𝑣 ∈ (𝐹 × 𝑋) → (1st𝑣) ∈ 𝐹)
3937, 38syl 17 . . . . . . . . . 10 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) → (1st𝑣) ∈ 𝐹)
40 simprr 772 . . . . . . . . . . . 12 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) → 𝑧𝐻)
4135, 40sseldd 3947 . . . . . . . . . . 11 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) → 𝑧 ∈ (𝐹 × 𝑋))
42 xp1st 8000 . . . . . . . . . . 11 (𝑧 ∈ (𝐹 × 𝑋) → (1st𝑧) ∈ 𝐹)
4341, 42syl 17 . . . . . . . . . 10 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) → (1st𝑧) ∈ 𝐹)
44 filinn0 23747 . . . . . . . . . 10 ((𝐹 ∈ (Fil‘𝑋) ∧ (1st𝑣) ∈ 𝐹 ∧ (1st𝑧) ∈ 𝐹) → ((1st𝑣) ∩ (1st𝑧)) ≠ ∅)
4534, 39, 43, 44syl3anc 1373 . . . . . . . . 9 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) → ((1st𝑣) ∩ (1st𝑧)) ≠ ∅)
46 n0 4316 . . . . . . . . 9 (((1st𝑣) ∩ (1st𝑧)) ≠ ∅ ↔ ∃𝑢 𝑢 ∈ ((1st𝑣) ∩ (1st𝑧)))
4745, 46sylib 218 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) → ∃𝑢 𝑢 ∈ ((1st𝑣) ∩ (1st𝑧)))
4836adantr 480 . . . . . . . . . 10 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) ∧ 𝑢 ∈ ((1st𝑣) ∩ (1st𝑧))) → 𝑣𝐻)
49 filin 23741 . . . . . . . . . . . . . 14 ((𝐹 ∈ (Fil‘𝑋) ∧ (1st𝑣) ∈ 𝐹 ∧ (1st𝑧) ∈ 𝐹) → ((1st𝑣) ∩ (1st𝑧)) ∈ 𝐹)
5034, 39, 43, 49syl3anc 1373 . . . . . . . . . . . . 13 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) → ((1st𝑣) ∩ (1st𝑧)) ∈ 𝐹)
5150adantr 480 . . . . . . . . . . . 12 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) ∧ 𝑢 ∈ ((1st𝑣) ∩ (1st𝑧))) → ((1st𝑣) ∩ (1st𝑧)) ∈ 𝐹)
52 simpr 484 . . . . . . . . . . . 12 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) ∧ 𝑢 ∈ ((1st𝑣) ∩ (1st𝑧))) → 𝑢 ∈ ((1st𝑣) ∩ (1st𝑧)))
53 id 22 . . . . . . . . . . . . 13 (𝑛 = ((1st𝑣) ∩ (1st𝑧)) → 𝑛 = ((1st𝑣) ∩ (1st𝑧)))
5453opeliunxp2 5802 . . . . . . . . . . . 12 (⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ ∈ 𝑛𝐹 ({𝑛} × 𝑛) ↔ (((1st𝑣) ∩ (1st𝑧)) ∈ 𝐹𝑢 ∈ ((1st𝑣) ∩ (1st𝑧))))
5551, 52, 54sylanbrc 583 . . . . . . . . . . 11 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) ∧ 𝑢 ∈ ((1st𝑣) ∩ (1st𝑧))) → ⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ ∈ 𝑛𝐹 ({𝑛} × 𝑛))
5655, 2eleqtrrdi 2839 . . . . . . . . . 10 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) ∧ 𝑢 ∈ ((1st𝑣) ∩ (1st𝑧))) → ⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ ∈ 𝐻)
57 fvex 6871 . . . . . . . . . . . . . 14 (1st𝑣) ∈ V
5857inex1 5272 . . . . . . . . . . . . 13 ((1st𝑣) ∩ (1st𝑧)) ∈ V
59 vex 3451 . . . . . . . . . . . . 13 𝑢 ∈ V
6058, 59op1st 7976 . . . . . . . . . . . 12 (1st ‘⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩) = ((1st𝑣) ∩ (1st𝑧))
61 inss1 4200 . . . . . . . . . . . 12 ((1st𝑣) ∩ (1st𝑧)) ⊆ (1st𝑣)
6260, 61eqsstri 3993 . . . . . . . . . . 11 (1st ‘⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩) ⊆ (1st𝑣)
63 vex 3451 . . . . . . . . . . . 12 𝑣 ∈ V
64 opex 5424 . . . . . . . . . . . 12 ⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ ∈ V
652, 3, 63, 64filnetlem1 36366 . . . . . . . . . . 11 (𝑣𝐷⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ ↔ ((𝑣𝐻 ∧ ⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ ∈ 𝐻) ∧ (1st ‘⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩) ⊆ (1st𝑣)))
6662, 65mpbiran2 710 . . . . . . . . . 10 (𝑣𝐷⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ ↔ (𝑣𝐻 ∧ ⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ ∈ 𝐻))
6748, 56, 66sylanbrc 583 . . . . . . . . 9 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) ∧ 𝑢 ∈ ((1st𝑣) ∩ (1st𝑧))) → 𝑣𝐷⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩)
6840adantr 480 . . . . . . . . . 10 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) ∧ 𝑢 ∈ ((1st𝑣) ∩ (1st𝑧))) → 𝑧𝐻)
69 inss2 4201 . . . . . . . . . . . 12 ((1st𝑣) ∩ (1st𝑧)) ⊆ (1st𝑧)
7060, 69eqsstri 3993 . . . . . . . . . . 11 (1st ‘⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩) ⊆ (1st𝑧)
71 vex 3451 . . . . . . . . . . . 12 𝑧 ∈ V
722, 3, 71, 64filnetlem1 36366 . . . . . . . . . . 11 (𝑧𝐷⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ ↔ ((𝑧𝐻 ∧ ⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ ∈ 𝐻) ∧ (1st ‘⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩) ⊆ (1st𝑧)))
7370, 72mpbiran2 710 . . . . . . . . . 10 (𝑧𝐷⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ ↔ (𝑧𝐻 ∧ ⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ ∈ 𝐻))
7468, 56, 73sylanbrc 583 . . . . . . . . 9 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) ∧ 𝑢 ∈ ((1st𝑣) ∩ (1st𝑧))) → 𝑧𝐷⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩)
75 breq2 5111 . . . . . . . . . . 11 (𝑤 = ⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ → (𝑣𝐷𝑤𝑣𝐷⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩))
76 breq2 5111 . . . . . . . . . . 11 (𝑤 = ⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ → (𝑧𝐷𝑤𝑧𝐷⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩))
7775, 76anbi12d 632 . . . . . . . . . 10 (𝑤 = ⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ → ((𝑣𝐷𝑤𝑧𝐷𝑤) ↔ (𝑣𝐷⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ ∧ 𝑧𝐷⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩)))
7864, 77spcev 3572 . . . . . . . . 9 ((𝑣𝐷⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ ∧ 𝑧𝐷⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩) → ∃𝑤(𝑣𝐷𝑤𝑧𝐷𝑤))
7967, 74, 78syl2anc 584 . . . . . . . 8 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) ∧ 𝑢 ∈ ((1st𝑣) ∩ (1st𝑧))) → ∃𝑤(𝑣𝐷𝑤𝑧𝐷𝑤))
8047, 79exlimddv 1935 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) → ∃𝑤(𝑣𝐷𝑤𝑧𝐷𝑤))
8180ralrimivva 3180 . . . . . 6 (𝐹 ∈ (Fil‘𝑋) → ∀𝑣𝐻𝑧𝐻𝑤(𝑣𝐷𝑤𝑧𝐷𝑤))
82 codir 6093 . . . . . 6 ((𝐻 × 𝐻) ⊆ (𝐷𝐷) ↔ ∀𝑣𝐻𝑧𝐻𝑤(𝑣𝐷𝑤𝑧𝐷𝑤))
8381, 82sylibr 234 . . . . 5 (𝐹 ∈ (Fil‘𝑋) → (𝐻 × 𝐻) ⊆ (𝐷𝐷))
84 vex 3451 . . . . . . . . . . . . 13 𝑤 ∈ V
852, 3, 63, 84filnetlem1 36366 . . . . . . . . . . . 12 (𝑣𝐷𝑤 ↔ ((𝑣𝐻𝑤𝐻) ∧ (1st𝑤) ⊆ (1st𝑣)))
8685simplbi 497 . . . . . . . . . . 11 (𝑣𝐷𝑤 → (𝑣𝐻𝑤𝐻))
8786simpld 494 . . . . . . . . . 10 (𝑣𝐷𝑤𝑣𝐻)
882, 3, 84, 71filnetlem1 36366 . . . . . . . . . . . 12 (𝑤𝐷𝑧 ↔ ((𝑤𝐻𝑧𝐻) ∧ (1st𝑧) ⊆ (1st𝑤)))
8988simplbi 497 . . . . . . . . . . 11 (𝑤𝐷𝑧 → (𝑤𝐻𝑧𝐻))
9089simprd 495 . . . . . . . . . 10 (𝑤𝐷𝑧𝑧𝐻)
9187, 90anim12i 613 . . . . . . . . 9 ((𝑣𝐷𝑤𝑤𝐷𝑧) → (𝑣𝐻𝑧𝐻))
9288simprbi 496 . . . . . . . . . 10 (𝑤𝐷𝑧 → (1st𝑧) ⊆ (1st𝑤))
9385simprbi 496 . . . . . . . . . 10 (𝑣𝐷𝑤 → (1st𝑤) ⊆ (1st𝑣))
9492, 93sylan9ssr 3961 . . . . . . . . 9 ((𝑣𝐷𝑤𝑤𝐷𝑧) → (1st𝑧) ⊆ (1st𝑣))
952, 3, 63, 71filnetlem1 36366 . . . . . . . . 9 (𝑣𝐷𝑧 ↔ ((𝑣𝐻𝑧𝐻) ∧ (1st𝑧) ⊆ (1st𝑣)))
9691, 94, 95sylanbrc 583 . . . . . . . 8 ((𝑣𝐷𝑤𝑤𝐷𝑧) → 𝑣𝐷𝑧)
9796ax-gen 1795 . . . . . . 7 𝑧((𝑣𝐷𝑤𝑤𝐷𝑧) → 𝑣𝐷𝑧)
9897gen2 1796 . . . . . 6 𝑣𝑤𝑧((𝑣𝐷𝑤𝑤𝐷𝑧) → 𝑣𝐷𝑧)
99 cotr 6083 . . . . . 6 ((𝐷𝐷) ⊆ 𝐷 ↔ ∀𝑣𝑤𝑧((𝑣𝐷𝑤𝑤𝐷𝑧) → 𝑣𝐷𝑧))
10098, 99mpbir 231 . . . . 5 (𝐷𝐷) ⊆ 𝐷
10183, 100jctil 519 . . . 4 (𝐹 ∈ (Fil‘𝑋) → ((𝐷𝐷) ⊆ 𝐷 ∧ (𝐻 × 𝐻) ⊆ (𝐷𝐷)))
102 filtop 23742 . . . . . . . . 9 (𝐹 ∈ (Fil‘𝑋) → 𝑋𝐹)
103 xpexg 7726 . . . . . . . . 9 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑋𝐹) → (𝐹 × 𝑋) ∈ V)
104102, 103mpdan 687 . . . . . . . 8 (𝐹 ∈ (Fil‘𝑋) → (𝐹 × 𝑋) ∈ V)
105104, 30ssexd 5279 . . . . . . 7 (𝐹 ∈ (Fil‘𝑋) → 𝐻 ∈ V)
106105, 105xpexd 7727 . . . . . 6 (𝐹 ∈ (Fil‘𝑋) → (𝐻 × 𝐻) ∈ V)
107 ssexg 5278 . . . . . 6 ((𝐷 ⊆ (𝐻 × 𝐻) ∧ (𝐻 × 𝐻) ∈ V) → 𝐷 ∈ V)
10813, 106, 107sylancr 587 . . . . 5 (𝐹 ∈ (Fil‘𝑋) → 𝐷 ∈ V)
10921isdir 18557 . . . . 5 (𝐷 ∈ V → (𝐷 ∈ DirRel ↔ ((Rel 𝐷 ∧ ( I ↾ 𝐻) ⊆ 𝐷) ∧ ((𝐷𝐷) ⊆ 𝐷 ∧ (𝐻 × 𝐻) ⊆ (𝐷𝐷)))))
110108, 109syl 17 . . . 4 (𝐹 ∈ (Fil‘𝑋) → (𝐷 ∈ DirRel ↔ ((Rel 𝐷 ∧ ( I ↾ 𝐻) ⊆ 𝐷) ∧ ((𝐷𝐷) ⊆ 𝐷 ∧ (𝐻 × 𝐻) ⊆ (𝐷𝐷)))))
11133, 101, 110mpbir2and 713 . . 3 (𝐹 ∈ (Fil‘𝑋) → 𝐷 ∈ DirRel)
11230, 111jca 511 . 2 (𝐹 ∈ (Fil‘𝑋) → (𝐻 ⊆ (𝐹 × 𝑋) ∧ 𝐷 ∈ DirRel))
11321, 112pm3.2i 470 1 (𝐻 = 𝐷 ∧ (𝐹 ∈ (Fil‘𝑋) → (𝐻 ⊆ (𝐹 × 𝑋) ∧ 𝐷 ∈ DirRel)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wex 1779  wcel 2109  wne 2925  wral 3044  Vcvv 3447  cun 3912  cin 3913  wss 3914  c0 4296  {csn 4589  cop 4595   cuni 4871   ciun 4955   class class class wbr 5107  {copab 5169   I cid 5532   × cxp 5636  ccnv 5637  dom cdm 5638  ran crn 5639  cres 5640  ccom 5642  Rel wrel 5643  cfv 6511  1st c1st 7966  DirRelcdir 18553  Filcfil 23732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-1st 7968  df-dir 18555  df-fbas 21261  df-fil 23733
This theorem is referenced by:  filnetlem4  36369
  Copyright terms: Public domain W3C validator