Mathbox for Jeff Hankins < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  filnetlem3 Structured version   Visualization version   GIF version

Theorem filnetlem3 34103
 Description: Lemma for filnet 34105. (Contributed by Jeff Hankins, 13-Dec-2009.) (Revised by Mario Carneiro, 8-Aug-2015.)
Hypotheses
Ref Expression
filnet.h 𝐻 = 𝑛𝐹 ({𝑛} × 𝑛)
filnet.d 𝐷 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐻𝑦𝐻) ∧ (1st𝑦) ⊆ (1st𝑥))}
Assertion
Ref Expression
filnetlem3 (𝐻 = 𝐷 ∧ (𝐹 ∈ (Fil‘𝑋) → (𝐻 ⊆ (𝐹 × 𝑋) ∧ 𝐷 ∈ DirRel)))
Distinct variable groups:   𝑥,𝑦,𝑛,𝐹   𝑥,𝐻,𝑦   𝑛,𝑋
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑛)   𝐻(𝑛)   𝑋(𝑥,𝑦)

Proof of Theorem filnetlem3
Dummy variables 𝑢 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmresi 5886 . . . . . 6 dom ( I ↾ 𝐻) = 𝐻
2 filnet.h . . . . . . . . 9 𝐻 = 𝑛𝐹 ({𝑛} × 𝑛)
3 filnet.d . . . . . . . . 9 𝐷 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐻𝑦𝐻) ∧ (1st𝑦) ⊆ (1st𝑥))}
42, 3filnetlem2 34102 . . . . . . . 8 (( I ↾ 𝐻) ⊆ 𝐷𝐷 ⊆ (𝐻 × 𝐻))
54simpli 488 . . . . . . 7 ( I ↾ 𝐻) ⊆ 𝐷
6 dmss 5735 . . . . . . 7 (( I ↾ 𝐻) ⊆ 𝐷 → dom ( I ↾ 𝐻) ⊆ dom 𝐷)
75, 6ax-mp 5 . . . . . 6 dom ( I ↾ 𝐻) ⊆ dom 𝐷
81, 7eqsstrri 3923 . . . . 5 𝐻 ⊆ dom 𝐷
9 ssun1 4073 . . . . 5 dom 𝐷 ⊆ (dom 𝐷 ∪ ran 𝐷)
108, 9sstri 3897 . . . 4 𝐻 ⊆ (dom 𝐷 ∪ ran 𝐷)
11 dmrnssfld 5804 . . . 4 (dom 𝐷 ∪ ran 𝐷) ⊆ 𝐷
1210, 11sstri 3897 . . 3 𝐻 𝐷
134simpri 490 . . . . 5 𝐷 ⊆ (𝐻 × 𝐻)
14 uniss 4799 . . . . 5 (𝐷 ⊆ (𝐻 × 𝐻) → 𝐷 (𝐻 × 𝐻))
15 uniss 4799 . . . . 5 ( 𝐷 (𝐻 × 𝐻) → 𝐷 (𝐻 × 𝐻))
1613, 14, 15mp2b 10 . . . 4 𝐷 (𝐻 × 𝐻)
17 unixpss 5645 . . . . 5 (𝐻 × 𝐻) ⊆ (𝐻𝐻)
18 unidm 4053 . . . . 5 (𝐻𝐻) = 𝐻
1917, 18sseqtri 3924 . . . 4 (𝐻 × 𝐻) ⊆ 𝐻
2016, 19sstri 3897 . . 3 𝐷𝐻
2112, 20eqssi 3904 . 2 𝐻 = 𝐷
22 filelss 22537 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑛𝐹) → 𝑛𝑋)
23 xpss2 5537 . . . . . . . 8 (𝑛𝑋 → ({𝑛} × 𝑛) ⊆ ({𝑛} × 𝑋))
2422, 23syl 17 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑛𝐹) → ({𝑛} × 𝑛) ⊆ ({𝑛} × 𝑋))
2524ralrimiva 3111 . . . . . 6 (𝐹 ∈ (Fil‘𝑋) → ∀𝑛𝐹 ({𝑛} × 𝑛) ⊆ ({𝑛} × 𝑋))
26 ss2iun 4894 . . . . . 6 (∀𝑛𝐹 ({𝑛} × 𝑛) ⊆ ({𝑛} × 𝑋) → 𝑛𝐹 ({𝑛} × 𝑛) ⊆ 𝑛𝐹 ({𝑛} × 𝑋))
2725, 26syl 17 . . . . 5 (𝐹 ∈ (Fil‘𝑋) → 𝑛𝐹 ({𝑛} × 𝑛) ⊆ 𝑛𝐹 ({𝑛} × 𝑋))
28 iunxpconst 5586 . . . . 5 𝑛𝐹 ({𝑛} × 𝑋) = (𝐹 × 𝑋)
2927, 28sseqtrdi 3938 . . . 4 (𝐹 ∈ (Fil‘𝑋) → 𝑛𝐹 ({𝑛} × 𝑛) ⊆ (𝐹 × 𝑋))
302, 29eqsstrid 3936 . . 3 (𝐹 ∈ (Fil‘𝑋) → 𝐻 ⊆ (𝐹 × 𝑋))
315a1i 11 . . . . 5 (𝐹 ∈ (Fil‘𝑋) → ( I ↾ 𝐻) ⊆ 𝐷)
323relopabi 5656 . . . . 5 Rel 𝐷
3331, 32jctil 524 . . . 4 (𝐹 ∈ (Fil‘𝑋) → (Rel 𝐷 ∧ ( I ↾ 𝐻) ⊆ 𝐷))
34 simpl 487 . . . . . . . . . 10 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) → 𝐹 ∈ (Fil‘𝑋))
3530adantr 485 . . . . . . . . . . . 12 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) → 𝐻 ⊆ (𝐹 × 𝑋))
36 simprl 771 . . . . . . . . . . . 12 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) → 𝑣𝐻)
3735, 36sseldd 3889 . . . . . . . . . . 11 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) → 𝑣 ∈ (𝐹 × 𝑋))
38 xp1st 7718 . . . . . . . . . . 11 (𝑣 ∈ (𝐹 × 𝑋) → (1st𝑣) ∈ 𝐹)
3937, 38syl 17 . . . . . . . . . 10 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) → (1st𝑣) ∈ 𝐹)
40 simprr 773 . . . . . . . . . . . 12 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) → 𝑧𝐻)
4135, 40sseldd 3889 . . . . . . . . . . 11 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) → 𝑧 ∈ (𝐹 × 𝑋))
42 xp1st 7718 . . . . . . . . . . 11 (𝑧 ∈ (𝐹 × 𝑋) → (1st𝑧) ∈ 𝐹)
4341, 42syl 17 . . . . . . . . . 10 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) → (1st𝑧) ∈ 𝐹)
44 filinn0 22545 . . . . . . . . . 10 ((𝐹 ∈ (Fil‘𝑋) ∧ (1st𝑣) ∈ 𝐹 ∧ (1st𝑧) ∈ 𝐹) → ((1st𝑣) ∩ (1st𝑧)) ≠ ∅)
4534, 39, 43, 44syl3anc 1369 . . . . . . . . 9 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) → ((1st𝑣) ∩ (1st𝑧)) ≠ ∅)
46 n0 4239 . . . . . . . . 9 (((1st𝑣) ∩ (1st𝑧)) ≠ ∅ ↔ ∃𝑢 𝑢 ∈ ((1st𝑣) ∩ (1st𝑧)))
4745, 46sylib 221 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) → ∃𝑢 𝑢 ∈ ((1st𝑣) ∩ (1st𝑧)))
4836adantr 485 . . . . . . . . . 10 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) ∧ 𝑢 ∈ ((1st𝑣) ∩ (1st𝑧))) → 𝑣𝐻)
49 filin 22539 . . . . . . . . . . . . . 14 ((𝐹 ∈ (Fil‘𝑋) ∧ (1st𝑣) ∈ 𝐹 ∧ (1st𝑧) ∈ 𝐹) → ((1st𝑣) ∩ (1st𝑧)) ∈ 𝐹)
5034, 39, 43, 49syl3anc 1369 . . . . . . . . . . . . 13 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) → ((1st𝑣) ∩ (1st𝑧)) ∈ 𝐹)
5150adantr 485 . . . . . . . . . . . 12 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) ∧ 𝑢 ∈ ((1st𝑣) ∩ (1st𝑧))) → ((1st𝑣) ∩ (1st𝑧)) ∈ 𝐹)
52 simpr 489 . . . . . . . . . . . 12 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) ∧ 𝑢 ∈ ((1st𝑣) ∩ (1st𝑧))) → 𝑢 ∈ ((1st𝑣) ∩ (1st𝑧)))
53 id 22 . . . . . . . . . . . . 13 (𝑛 = ((1st𝑣) ∩ (1st𝑧)) → 𝑛 = ((1st𝑣) ∩ (1st𝑧)))
5453opeliunxp2 5671 . . . . . . . . . . . 12 (⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ ∈ 𝑛𝐹 ({𝑛} × 𝑛) ↔ (((1st𝑣) ∩ (1st𝑧)) ∈ 𝐹𝑢 ∈ ((1st𝑣) ∩ (1st𝑧))))
5551, 52, 54sylanbrc 587 . . . . . . . . . . 11 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) ∧ 𝑢 ∈ ((1st𝑣) ∩ (1st𝑧))) → ⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ ∈ 𝑛𝐹 ({𝑛} × 𝑛))
5655, 2eleqtrrdi 2862 . . . . . . . . . 10 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) ∧ 𝑢 ∈ ((1st𝑣) ∩ (1st𝑧))) → ⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ ∈ 𝐻)
57 fvex 6664 . . . . . . . . . . . . . 14 (1st𝑣) ∈ V
5857inex1 5180 . . . . . . . . . . . . 13 ((1st𝑣) ∩ (1st𝑧)) ∈ V
59 vex 3411 . . . . . . . . . . . . 13 𝑢 ∈ V
6058, 59op1st 7694 . . . . . . . . . . . 12 (1st ‘⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩) = ((1st𝑣) ∩ (1st𝑧))
61 inss1 4129 . . . . . . . . . . . 12 ((1st𝑣) ∩ (1st𝑧)) ⊆ (1st𝑣)
6260, 61eqsstri 3922 . . . . . . . . . . 11 (1st ‘⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩) ⊆ (1st𝑣)
63 vex 3411 . . . . . . . . . . . 12 𝑣 ∈ V
64 opex 5317 . . . . . . . . . . . 12 ⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ ∈ V
652, 3, 63, 64filnetlem1 34101 . . . . . . . . . . 11 (𝑣𝐷⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ ↔ ((𝑣𝐻 ∧ ⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ ∈ 𝐻) ∧ (1st ‘⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩) ⊆ (1st𝑣)))
6662, 65mpbiran2 710 . . . . . . . . . 10 (𝑣𝐷⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ ↔ (𝑣𝐻 ∧ ⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ ∈ 𝐻))
6748, 56, 66sylanbrc 587 . . . . . . . . 9 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) ∧ 𝑢 ∈ ((1st𝑣) ∩ (1st𝑧))) → 𝑣𝐷⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩)
6840adantr 485 . . . . . . . . . 10 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) ∧ 𝑢 ∈ ((1st𝑣) ∩ (1st𝑧))) → 𝑧𝐻)
69 inss2 4130 . . . . . . . . . . . 12 ((1st𝑣) ∩ (1st𝑧)) ⊆ (1st𝑧)
7060, 69eqsstri 3922 . . . . . . . . . . 11 (1st ‘⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩) ⊆ (1st𝑧)
71 vex 3411 . . . . . . . . . . . 12 𝑧 ∈ V
722, 3, 71, 64filnetlem1 34101 . . . . . . . . . . 11 (𝑧𝐷⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ ↔ ((𝑧𝐻 ∧ ⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ ∈ 𝐻) ∧ (1st ‘⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩) ⊆ (1st𝑧)))
7370, 72mpbiran2 710 . . . . . . . . . 10 (𝑧𝐷⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ ↔ (𝑧𝐻 ∧ ⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ ∈ 𝐻))
7468, 56, 73sylanbrc 587 . . . . . . . . 9 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) ∧ 𝑢 ∈ ((1st𝑣) ∩ (1st𝑧))) → 𝑧𝐷⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩)
75 breq2 5029 . . . . . . . . . . 11 (𝑤 = ⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ → (𝑣𝐷𝑤𝑣𝐷⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩))
76 breq2 5029 . . . . . . . . . . 11 (𝑤 = ⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ → (𝑧𝐷𝑤𝑧𝐷⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩))
7775, 76anbi12d 634 . . . . . . . . . 10 (𝑤 = ⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ → ((𝑣𝐷𝑤𝑧𝐷𝑤) ↔ (𝑣𝐷⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ ∧ 𝑧𝐷⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩)))
7864, 77spcev 3523 . . . . . . . . 9 ((𝑣𝐷⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ ∧ 𝑧𝐷⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩) → ∃𝑤(𝑣𝐷𝑤𝑧𝐷𝑤))
7967, 74, 78syl2anc 588 . . . . . . . 8 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) ∧ 𝑢 ∈ ((1st𝑣) ∩ (1st𝑧))) → ∃𝑤(𝑣𝐷𝑤𝑧𝐷𝑤))
8047, 79exlimddv 1937 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) → ∃𝑤(𝑣𝐷𝑤𝑧𝐷𝑤))
8180ralrimivva 3118 . . . . . 6 (𝐹 ∈ (Fil‘𝑋) → ∀𝑣𝐻𝑧𝐻𝑤(𝑣𝐷𝑤𝑧𝐷𝑤))
82 codir 5945 . . . . . 6 ((𝐻 × 𝐻) ⊆ (𝐷𝐷) ↔ ∀𝑣𝐻𝑧𝐻𝑤(𝑣𝐷𝑤𝑧𝐷𝑤))
8381, 82sylibr 237 . . . . 5 (𝐹 ∈ (Fil‘𝑋) → (𝐻 × 𝐻) ⊆ (𝐷𝐷))
84 vex 3411 . . . . . . . . . . . . 13 𝑤 ∈ V
852, 3, 63, 84filnetlem1 34101 . . . . . . . . . . . 12 (𝑣𝐷𝑤 ↔ ((𝑣𝐻𝑤𝐻) ∧ (1st𝑤) ⊆ (1st𝑣)))
8685simplbi 502 . . . . . . . . . . 11 (𝑣𝐷𝑤 → (𝑣𝐻𝑤𝐻))
8786simpld 499 . . . . . . . . . 10 (𝑣𝐷𝑤𝑣𝐻)
882, 3, 84, 71filnetlem1 34101 . . . . . . . . . . . 12 (𝑤𝐷𝑧 ↔ ((𝑤𝐻𝑧𝐻) ∧ (1st𝑧) ⊆ (1st𝑤)))
8988simplbi 502 . . . . . . . . . . 11 (𝑤𝐷𝑧 → (𝑤𝐻𝑧𝐻))
9089simprd 500 . . . . . . . . . 10 (𝑤𝐷𝑧𝑧𝐻)
9187, 90anim12i 616 . . . . . . . . 9 ((𝑣𝐷𝑤𝑤𝐷𝑧) → (𝑣𝐻𝑧𝐻))
9288simprbi 501 . . . . . . . . . 10 (𝑤𝐷𝑧 → (1st𝑧) ⊆ (1st𝑤))
9385simprbi 501 . . . . . . . . . 10 (𝑣𝐷𝑤 → (1st𝑤) ⊆ (1st𝑣))
9492, 93sylan9ssr 3902 . . . . . . . . 9 ((𝑣𝐷𝑤𝑤𝐷𝑧) → (1st𝑧) ⊆ (1st𝑣))
952, 3, 63, 71filnetlem1 34101 . . . . . . . . 9 (𝑣𝐷𝑧 ↔ ((𝑣𝐻𝑧𝐻) ∧ (1st𝑧) ⊆ (1st𝑣)))
9691, 94, 95sylanbrc 587 . . . . . . . 8 ((𝑣𝐷𝑤𝑤𝐷𝑧) → 𝑣𝐷𝑧)
9796ax-gen 1798 . . . . . . 7 𝑧((𝑣𝐷𝑤𝑤𝐷𝑧) → 𝑣𝐷𝑧)
9897gen2 1799 . . . . . 6 𝑣𝑤𝑧((𝑣𝐷𝑤𝑤𝐷𝑧) → 𝑣𝐷𝑧)
99 cotr 5937 . . . . . 6 ((𝐷𝐷) ⊆ 𝐷 ↔ ∀𝑣𝑤𝑧((𝑣𝐷𝑤𝑤𝐷𝑧) → 𝑣𝐷𝑧))
10098, 99mpbir 234 . . . . 5 (𝐷𝐷) ⊆ 𝐷
10183, 100jctil 524 . . . 4 (𝐹 ∈ (Fil‘𝑋) → ((𝐷𝐷) ⊆ 𝐷 ∧ (𝐻 × 𝐻) ⊆ (𝐷𝐷)))
102 filtop 22540 . . . . . . . . 9 (𝐹 ∈ (Fil‘𝑋) → 𝑋𝐹)
103 xpexg 7464 . . . . . . . . 9 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑋𝐹) → (𝐹 × 𝑋) ∈ V)
104102, 103mpdan 687 . . . . . . . 8 (𝐹 ∈ (Fil‘𝑋) → (𝐹 × 𝑋) ∈ V)
105104, 30ssexd 5187 . . . . . . 7 (𝐹 ∈ (Fil‘𝑋) → 𝐻 ∈ V)
106105, 105xpexd 7465 . . . . . 6 (𝐹 ∈ (Fil‘𝑋) → (𝐻 × 𝐻) ∈ V)
107 ssexg 5186 . . . . . 6 ((𝐷 ⊆ (𝐻 × 𝐻) ∧ (𝐻 × 𝐻) ∈ V) → 𝐷 ∈ V)
10813, 106, 107sylancr 591 . . . . 5 (𝐹 ∈ (Fil‘𝑋) → 𝐷 ∈ V)
10921isdir 17893 . . . . 5 (𝐷 ∈ V → (𝐷 ∈ DirRel ↔ ((Rel 𝐷 ∧ ( I ↾ 𝐻) ⊆ 𝐷) ∧ ((𝐷𝐷) ⊆ 𝐷 ∧ (𝐻 × 𝐻) ⊆ (𝐷𝐷)))))
110108, 109syl 17 . . . 4 (𝐹 ∈ (Fil‘𝑋) → (𝐷 ∈ DirRel ↔ ((Rel 𝐷 ∧ ( I ↾ 𝐻) ⊆ 𝐷) ∧ ((𝐷𝐷) ⊆ 𝐷 ∧ (𝐻 × 𝐻) ⊆ (𝐷𝐷)))))
11133, 101, 110mpbir2and 713 . . 3 (𝐹 ∈ (Fil‘𝑋) → 𝐷 ∈ DirRel)
11230, 111jca 516 . 2 (𝐹 ∈ (Fil‘𝑋) → (𝐻 ⊆ (𝐹 × 𝑋) ∧ 𝐷 ∈ DirRel))
11321, 112pm3.2i 475 1 (𝐻 = 𝐷 ∧ (𝐹 ∈ (Fil‘𝑋) → (𝐻 ⊆ (𝐹 × 𝑋) ∧ 𝐷 ∈ DirRel)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 400  ∀wal 1537   = wceq 1539  ∃wex 1782   ∈ wcel 2112   ≠ wne 2949  ∀wral 3068  Vcvv 3407   ∪ cun 3852   ∩ cin 3853   ⊆ wss 3854  ∅c0 4221  {csn 4515  ⟨cop 4521  ∪ cuni 4791  ∪ ciun 4876   class class class wbr 5025  {copab 5087   I cid 5422   × cxp 5515  ◡ccnv 5516  dom cdm 5517  ran crn 5518   ↾ cres 5519   ∘ ccom 5521  Rel wrel 5522  ‘cfv 6328  1st c1st 7684  DirRelcdir 17889  Filcfil 22530 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5162  ax-nul 5169  ax-pow 5227  ax-pr 5291  ax-un 7452 This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3an 1087  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2899  df-ne 2950  df-nel 3054  df-ral 3073  df-rex 3074  df-reu 3075  df-rab 3077  df-v 3409  df-sbc 3694  df-csb 3802  df-dif 3857  df-un 3859  df-in 3861  df-ss 3871  df-nul 4222  df-if 4414  df-pw 4489  df-sn 4516  df-pr 4518  df-op 4522  df-uni 4792  df-iun 4878  df-br 5026  df-opab 5088  df-mpt 5106  df-id 5423  df-xp 5523  df-rel 5524  df-cnv 5525  df-co 5526  df-dm 5527  df-rn 5528  df-res 5529  df-ima 5530  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-1st 7686  df-dir 17891  df-fbas 20148  df-fil 22531 This theorem is referenced by:  filnetlem4  34104
 Copyright terms: Public domain W3C validator