Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  filnetlem3 Structured version   Visualization version   GIF version

Theorem filnetlem3 36361
Description: Lemma for filnet 36363. (Contributed by Jeff Hankins, 13-Dec-2009.) (Revised by Mario Carneiro, 8-Aug-2015.)
Hypotheses
Ref Expression
filnet.h 𝐻 = 𝑛𝐹 ({𝑛} × 𝑛)
filnet.d 𝐷 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐻𝑦𝐻) ∧ (1st𝑦) ⊆ (1st𝑥))}
Assertion
Ref Expression
filnetlem3 (𝐻 = 𝐷 ∧ (𝐹 ∈ (Fil‘𝑋) → (𝐻 ⊆ (𝐹 × 𝑋) ∧ 𝐷 ∈ DirRel)))
Distinct variable groups:   𝑥,𝑦,𝑛,𝐹   𝑥,𝐻,𝑦   𝑛,𝑋
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑛)   𝐻(𝑛)   𝑋(𝑥,𝑦)

Proof of Theorem filnetlem3
Dummy variables 𝑢 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmresi 6012 . . . . . 6 dom ( I ↾ 𝐻) = 𝐻
2 filnet.h . . . . . . . . 9 𝐻 = 𝑛𝐹 ({𝑛} × 𝑛)
3 filnet.d . . . . . . . . 9 𝐷 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐻𝑦𝐻) ∧ (1st𝑦) ⊆ (1st𝑥))}
42, 3filnetlem2 36360 . . . . . . . 8 (( I ↾ 𝐻) ⊆ 𝐷𝐷 ⊆ (𝐻 × 𝐻))
54simpli 483 . . . . . . 7 ( I ↾ 𝐻) ⊆ 𝐷
6 dmss 5856 . . . . . . 7 (( I ↾ 𝐻) ⊆ 𝐷 → dom ( I ↾ 𝐻) ⊆ dom 𝐷)
75, 6ax-mp 5 . . . . . 6 dom ( I ↾ 𝐻) ⊆ dom 𝐷
81, 7eqsstrri 3991 . . . . 5 𝐻 ⊆ dom 𝐷
9 ssun1 4137 . . . . 5 dom 𝐷 ⊆ (dom 𝐷 ∪ ran 𝐷)
108, 9sstri 3953 . . . 4 𝐻 ⊆ (dom 𝐷 ∪ ran 𝐷)
11 dmrnssfld 5926 . . . 4 (dom 𝐷 ∪ ran 𝐷) ⊆ 𝐷
1210, 11sstri 3953 . . 3 𝐻 𝐷
134simpri 485 . . . . 5 𝐷 ⊆ (𝐻 × 𝐻)
14 uniss 4875 . . . . 5 (𝐷 ⊆ (𝐻 × 𝐻) → 𝐷 (𝐻 × 𝐻))
15 uniss 4875 . . . . 5 ( 𝐷 (𝐻 × 𝐻) → 𝐷 (𝐻 × 𝐻))
1613, 14, 15mp2b 10 . . . 4 𝐷 (𝐻 × 𝐻)
17 unixpss 5764 . . . . 5 (𝐻 × 𝐻) ⊆ (𝐻𝐻)
18 unidm 4116 . . . . 5 (𝐻𝐻) = 𝐻
1917, 18sseqtri 3992 . . . 4 (𝐻 × 𝐻) ⊆ 𝐻
2016, 19sstri 3953 . . 3 𝐷𝐻
2112, 20eqssi 3960 . 2 𝐻 = 𝐷
22 filelss 23772 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑛𝐹) → 𝑛𝑋)
23 xpss2 5651 . . . . . . . 8 (𝑛𝑋 → ({𝑛} × 𝑛) ⊆ ({𝑛} × 𝑋))
2422, 23syl 17 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑛𝐹) → ({𝑛} × 𝑛) ⊆ ({𝑛} × 𝑋))
2524ralrimiva 3125 . . . . . 6 (𝐹 ∈ (Fil‘𝑋) → ∀𝑛𝐹 ({𝑛} × 𝑛) ⊆ ({𝑛} × 𝑋))
26 ss2iun 4970 . . . . . 6 (∀𝑛𝐹 ({𝑛} × 𝑛) ⊆ ({𝑛} × 𝑋) → 𝑛𝐹 ({𝑛} × 𝑛) ⊆ 𝑛𝐹 ({𝑛} × 𝑋))
2725, 26syl 17 . . . . 5 (𝐹 ∈ (Fil‘𝑋) → 𝑛𝐹 ({𝑛} × 𝑛) ⊆ 𝑛𝐹 ({𝑛} × 𝑋))
28 iunxpconst 5704 . . . . 5 𝑛𝐹 ({𝑛} × 𝑋) = (𝐹 × 𝑋)
2927, 28sseqtrdi 3984 . . . 4 (𝐹 ∈ (Fil‘𝑋) → 𝑛𝐹 ({𝑛} × 𝑛) ⊆ (𝐹 × 𝑋))
302, 29eqsstrid 3982 . . 3 (𝐹 ∈ (Fil‘𝑋) → 𝐻 ⊆ (𝐹 × 𝑋))
315a1i 11 . . . . 5 (𝐹 ∈ (Fil‘𝑋) → ( I ↾ 𝐻) ⊆ 𝐷)
323relopabiv 5774 . . . . 5 Rel 𝐷
3331, 32jctil 519 . . . 4 (𝐹 ∈ (Fil‘𝑋) → (Rel 𝐷 ∧ ( I ↾ 𝐻) ⊆ 𝐷))
34 simpl 482 . . . . . . . . . 10 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) → 𝐹 ∈ (Fil‘𝑋))
3530adantr 480 . . . . . . . . . . . 12 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) → 𝐻 ⊆ (𝐹 × 𝑋))
36 simprl 770 . . . . . . . . . . . 12 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) → 𝑣𝐻)
3735, 36sseldd 3944 . . . . . . . . . . 11 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) → 𝑣 ∈ (𝐹 × 𝑋))
38 xp1st 7979 . . . . . . . . . . 11 (𝑣 ∈ (𝐹 × 𝑋) → (1st𝑣) ∈ 𝐹)
3937, 38syl 17 . . . . . . . . . 10 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) → (1st𝑣) ∈ 𝐹)
40 simprr 772 . . . . . . . . . . . 12 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) → 𝑧𝐻)
4135, 40sseldd 3944 . . . . . . . . . . 11 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) → 𝑧 ∈ (𝐹 × 𝑋))
42 xp1st 7979 . . . . . . . . . . 11 (𝑧 ∈ (𝐹 × 𝑋) → (1st𝑧) ∈ 𝐹)
4341, 42syl 17 . . . . . . . . . 10 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) → (1st𝑧) ∈ 𝐹)
44 filinn0 23780 . . . . . . . . . 10 ((𝐹 ∈ (Fil‘𝑋) ∧ (1st𝑣) ∈ 𝐹 ∧ (1st𝑧) ∈ 𝐹) → ((1st𝑣) ∩ (1st𝑧)) ≠ ∅)
4534, 39, 43, 44syl3anc 1373 . . . . . . . . 9 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) → ((1st𝑣) ∩ (1st𝑧)) ≠ ∅)
46 n0 4312 . . . . . . . . 9 (((1st𝑣) ∩ (1st𝑧)) ≠ ∅ ↔ ∃𝑢 𝑢 ∈ ((1st𝑣) ∩ (1st𝑧)))
4745, 46sylib 218 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) → ∃𝑢 𝑢 ∈ ((1st𝑣) ∩ (1st𝑧)))
4836adantr 480 . . . . . . . . . 10 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) ∧ 𝑢 ∈ ((1st𝑣) ∩ (1st𝑧))) → 𝑣𝐻)
49 filin 23774 . . . . . . . . . . . . . 14 ((𝐹 ∈ (Fil‘𝑋) ∧ (1st𝑣) ∈ 𝐹 ∧ (1st𝑧) ∈ 𝐹) → ((1st𝑣) ∩ (1st𝑧)) ∈ 𝐹)
5034, 39, 43, 49syl3anc 1373 . . . . . . . . . . . . 13 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) → ((1st𝑣) ∩ (1st𝑧)) ∈ 𝐹)
5150adantr 480 . . . . . . . . . . . 12 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) ∧ 𝑢 ∈ ((1st𝑣) ∩ (1st𝑧))) → ((1st𝑣) ∩ (1st𝑧)) ∈ 𝐹)
52 simpr 484 . . . . . . . . . . . 12 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) ∧ 𝑢 ∈ ((1st𝑣) ∩ (1st𝑧))) → 𝑢 ∈ ((1st𝑣) ∩ (1st𝑧)))
53 id 22 . . . . . . . . . . . . 13 (𝑛 = ((1st𝑣) ∩ (1st𝑧)) → 𝑛 = ((1st𝑣) ∩ (1st𝑧)))
5453opeliunxp2 5792 . . . . . . . . . . . 12 (⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ ∈ 𝑛𝐹 ({𝑛} × 𝑛) ↔ (((1st𝑣) ∩ (1st𝑧)) ∈ 𝐹𝑢 ∈ ((1st𝑣) ∩ (1st𝑧))))
5551, 52, 54sylanbrc 583 . . . . . . . . . . 11 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) ∧ 𝑢 ∈ ((1st𝑣) ∩ (1st𝑧))) → ⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ ∈ 𝑛𝐹 ({𝑛} × 𝑛))
5655, 2eleqtrrdi 2839 . . . . . . . . . 10 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) ∧ 𝑢 ∈ ((1st𝑣) ∩ (1st𝑧))) → ⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ ∈ 𝐻)
57 fvex 6853 . . . . . . . . . . . . . 14 (1st𝑣) ∈ V
5857inex1 5267 . . . . . . . . . . . . 13 ((1st𝑣) ∩ (1st𝑧)) ∈ V
59 vex 3448 . . . . . . . . . . . . 13 𝑢 ∈ V
6058, 59op1st 7955 . . . . . . . . . . . 12 (1st ‘⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩) = ((1st𝑣) ∩ (1st𝑧))
61 inss1 4196 . . . . . . . . . . . 12 ((1st𝑣) ∩ (1st𝑧)) ⊆ (1st𝑣)
6260, 61eqsstri 3990 . . . . . . . . . . 11 (1st ‘⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩) ⊆ (1st𝑣)
63 vex 3448 . . . . . . . . . . . 12 𝑣 ∈ V
64 opex 5419 . . . . . . . . . . . 12 ⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ ∈ V
652, 3, 63, 64filnetlem1 36359 . . . . . . . . . . 11 (𝑣𝐷⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ ↔ ((𝑣𝐻 ∧ ⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ ∈ 𝐻) ∧ (1st ‘⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩) ⊆ (1st𝑣)))
6662, 65mpbiran2 710 . . . . . . . . . 10 (𝑣𝐷⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ ↔ (𝑣𝐻 ∧ ⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ ∈ 𝐻))
6748, 56, 66sylanbrc 583 . . . . . . . . 9 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) ∧ 𝑢 ∈ ((1st𝑣) ∩ (1st𝑧))) → 𝑣𝐷⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩)
6840adantr 480 . . . . . . . . . 10 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) ∧ 𝑢 ∈ ((1st𝑣) ∩ (1st𝑧))) → 𝑧𝐻)
69 inss2 4197 . . . . . . . . . . . 12 ((1st𝑣) ∩ (1st𝑧)) ⊆ (1st𝑧)
7060, 69eqsstri 3990 . . . . . . . . . . 11 (1st ‘⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩) ⊆ (1st𝑧)
71 vex 3448 . . . . . . . . . . . 12 𝑧 ∈ V
722, 3, 71, 64filnetlem1 36359 . . . . . . . . . . 11 (𝑧𝐷⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ ↔ ((𝑧𝐻 ∧ ⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ ∈ 𝐻) ∧ (1st ‘⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩) ⊆ (1st𝑧)))
7370, 72mpbiran2 710 . . . . . . . . . 10 (𝑧𝐷⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ ↔ (𝑧𝐻 ∧ ⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ ∈ 𝐻))
7468, 56, 73sylanbrc 583 . . . . . . . . 9 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) ∧ 𝑢 ∈ ((1st𝑣) ∩ (1st𝑧))) → 𝑧𝐷⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩)
75 breq2 5106 . . . . . . . . . . 11 (𝑤 = ⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ → (𝑣𝐷𝑤𝑣𝐷⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩))
76 breq2 5106 . . . . . . . . . . 11 (𝑤 = ⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ → (𝑧𝐷𝑤𝑧𝐷⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩))
7775, 76anbi12d 632 . . . . . . . . . 10 (𝑤 = ⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ → ((𝑣𝐷𝑤𝑧𝐷𝑤) ↔ (𝑣𝐷⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ ∧ 𝑧𝐷⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩)))
7864, 77spcev 3569 . . . . . . . . 9 ((𝑣𝐷⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ ∧ 𝑧𝐷⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩) → ∃𝑤(𝑣𝐷𝑤𝑧𝐷𝑤))
7967, 74, 78syl2anc 584 . . . . . . . 8 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) ∧ 𝑢 ∈ ((1st𝑣) ∩ (1st𝑧))) → ∃𝑤(𝑣𝐷𝑤𝑧𝐷𝑤))
8047, 79exlimddv 1935 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) → ∃𝑤(𝑣𝐷𝑤𝑧𝐷𝑤))
8180ralrimivva 3178 . . . . . 6 (𝐹 ∈ (Fil‘𝑋) → ∀𝑣𝐻𝑧𝐻𝑤(𝑣𝐷𝑤𝑧𝐷𝑤))
82 codir 6081 . . . . . 6 ((𝐻 × 𝐻) ⊆ (𝐷𝐷) ↔ ∀𝑣𝐻𝑧𝐻𝑤(𝑣𝐷𝑤𝑧𝐷𝑤))
8381, 82sylibr 234 . . . . 5 (𝐹 ∈ (Fil‘𝑋) → (𝐻 × 𝐻) ⊆ (𝐷𝐷))
84 vex 3448 . . . . . . . . . . . . 13 𝑤 ∈ V
852, 3, 63, 84filnetlem1 36359 . . . . . . . . . . . 12 (𝑣𝐷𝑤 ↔ ((𝑣𝐻𝑤𝐻) ∧ (1st𝑤) ⊆ (1st𝑣)))
8685simplbi 497 . . . . . . . . . . 11 (𝑣𝐷𝑤 → (𝑣𝐻𝑤𝐻))
8786simpld 494 . . . . . . . . . 10 (𝑣𝐷𝑤𝑣𝐻)
882, 3, 84, 71filnetlem1 36359 . . . . . . . . . . . 12 (𝑤𝐷𝑧 ↔ ((𝑤𝐻𝑧𝐻) ∧ (1st𝑧) ⊆ (1st𝑤)))
8988simplbi 497 . . . . . . . . . . 11 (𝑤𝐷𝑧 → (𝑤𝐻𝑧𝐻))
9089simprd 495 . . . . . . . . . 10 (𝑤𝐷𝑧𝑧𝐻)
9187, 90anim12i 613 . . . . . . . . 9 ((𝑣𝐷𝑤𝑤𝐷𝑧) → (𝑣𝐻𝑧𝐻))
9288simprbi 496 . . . . . . . . . 10 (𝑤𝐷𝑧 → (1st𝑧) ⊆ (1st𝑤))
9385simprbi 496 . . . . . . . . . 10 (𝑣𝐷𝑤 → (1st𝑤) ⊆ (1st𝑣))
9492, 93sylan9ssr 3958 . . . . . . . . 9 ((𝑣𝐷𝑤𝑤𝐷𝑧) → (1st𝑧) ⊆ (1st𝑣))
952, 3, 63, 71filnetlem1 36359 . . . . . . . . 9 (𝑣𝐷𝑧 ↔ ((𝑣𝐻𝑧𝐻) ∧ (1st𝑧) ⊆ (1st𝑣)))
9691, 94, 95sylanbrc 583 . . . . . . . 8 ((𝑣𝐷𝑤𝑤𝐷𝑧) → 𝑣𝐷𝑧)
9796ax-gen 1795 . . . . . . 7 𝑧((𝑣𝐷𝑤𝑤𝐷𝑧) → 𝑣𝐷𝑧)
9897gen2 1796 . . . . . 6 𝑣𝑤𝑧((𝑣𝐷𝑤𝑤𝐷𝑧) → 𝑣𝐷𝑧)
99 cotr 6071 . . . . . 6 ((𝐷𝐷) ⊆ 𝐷 ↔ ∀𝑣𝑤𝑧((𝑣𝐷𝑤𝑤𝐷𝑧) → 𝑣𝐷𝑧))
10098, 99mpbir 231 . . . . 5 (𝐷𝐷) ⊆ 𝐷
10183, 100jctil 519 . . . 4 (𝐹 ∈ (Fil‘𝑋) → ((𝐷𝐷) ⊆ 𝐷 ∧ (𝐻 × 𝐻) ⊆ (𝐷𝐷)))
102 filtop 23775 . . . . . . . . 9 (𝐹 ∈ (Fil‘𝑋) → 𝑋𝐹)
103 xpexg 7706 . . . . . . . . 9 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑋𝐹) → (𝐹 × 𝑋) ∈ V)
104102, 103mpdan 687 . . . . . . . 8 (𝐹 ∈ (Fil‘𝑋) → (𝐹 × 𝑋) ∈ V)
105104, 30ssexd 5274 . . . . . . 7 (𝐹 ∈ (Fil‘𝑋) → 𝐻 ∈ V)
106105, 105xpexd 7707 . . . . . 6 (𝐹 ∈ (Fil‘𝑋) → (𝐻 × 𝐻) ∈ V)
107 ssexg 5273 . . . . . 6 ((𝐷 ⊆ (𝐻 × 𝐻) ∧ (𝐻 × 𝐻) ∈ V) → 𝐷 ∈ V)
10813, 106, 107sylancr 587 . . . . 5 (𝐹 ∈ (Fil‘𝑋) → 𝐷 ∈ V)
10921isdir 18539 . . . . 5 (𝐷 ∈ V → (𝐷 ∈ DirRel ↔ ((Rel 𝐷 ∧ ( I ↾ 𝐻) ⊆ 𝐷) ∧ ((𝐷𝐷) ⊆ 𝐷 ∧ (𝐻 × 𝐻) ⊆ (𝐷𝐷)))))
110108, 109syl 17 . . . 4 (𝐹 ∈ (Fil‘𝑋) → (𝐷 ∈ DirRel ↔ ((Rel 𝐷 ∧ ( I ↾ 𝐻) ⊆ 𝐷) ∧ ((𝐷𝐷) ⊆ 𝐷 ∧ (𝐻 × 𝐻) ⊆ (𝐷𝐷)))))
11133, 101, 110mpbir2and 713 . . 3 (𝐹 ∈ (Fil‘𝑋) → 𝐷 ∈ DirRel)
11230, 111jca 511 . 2 (𝐹 ∈ (Fil‘𝑋) → (𝐻 ⊆ (𝐹 × 𝑋) ∧ 𝐷 ∈ DirRel))
11321, 112pm3.2i 470 1 (𝐻 = 𝐷 ∧ (𝐹 ∈ (Fil‘𝑋) → (𝐻 ⊆ (𝐹 × 𝑋) ∧ 𝐷 ∈ DirRel)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wex 1779  wcel 2109  wne 2925  wral 3044  Vcvv 3444  cun 3909  cin 3910  wss 3911  c0 4292  {csn 4585  cop 4591   cuni 4867   ciun 4951   class class class wbr 5102  {copab 5164   I cid 5525   × cxp 5629  ccnv 5630  dom cdm 5631  ran crn 5632  cres 5633  ccom 5635  Rel wrel 5636  cfv 6499  1st c1st 7945  DirRelcdir 18535  Filcfil 23765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-1st 7947  df-dir 18537  df-fbas 21293  df-fil 23766
This theorem is referenced by:  filnetlem4  36362
  Copyright terms: Public domain W3C validator