Step | Hyp | Ref
| Expression |
1 | | dmresi 5961 |
. . . . . 6
⊢ dom ( I
↾ 𝐻) = 𝐻 |
2 | | filnet.h |
. . . . . . . . 9
⊢ 𝐻 = ∪ 𝑛 ∈ 𝐹 ({𝑛} × 𝑛) |
3 | | filnet.d |
. . . . . . . . 9
⊢ 𝐷 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻) ∧ (1st ‘𝑦) ⊆ (1st
‘𝑥))} |
4 | 2, 3 | filnetlem2 34568 |
. . . . . . . 8
⊢ (( I
↾ 𝐻) ⊆ 𝐷 ∧ 𝐷 ⊆ (𝐻 × 𝐻)) |
5 | 4 | simpli 484 |
. . . . . . 7
⊢ ( I
↾ 𝐻) ⊆ 𝐷 |
6 | | dmss 5811 |
. . . . . . 7
⊢ (( I
↾ 𝐻) ⊆ 𝐷 → dom ( I ↾ 𝐻) ⊆ dom 𝐷) |
7 | 5, 6 | ax-mp 5 |
. . . . . 6
⊢ dom ( I
↾ 𝐻) ⊆ dom
𝐷 |
8 | 1, 7 | eqsstrri 3956 |
. . . . 5
⊢ 𝐻 ⊆ dom 𝐷 |
9 | | ssun1 4106 |
. . . . 5
⊢ dom 𝐷 ⊆ (dom 𝐷 ∪ ran 𝐷) |
10 | 8, 9 | sstri 3930 |
. . . 4
⊢ 𝐻 ⊆ (dom 𝐷 ∪ ran 𝐷) |
11 | | dmrnssfld 5879 |
. . . 4
⊢ (dom
𝐷 ∪ ran 𝐷) ⊆ ∪ ∪ 𝐷 |
12 | 10, 11 | sstri 3930 |
. . 3
⊢ 𝐻 ⊆ ∪ ∪ 𝐷 |
13 | 4 | simpri 486 |
. . . . 5
⊢ 𝐷 ⊆ (𝐻 × 𝐻) |
14 | | uniss 4847 |
. . . . 5
⊢ (𝐷 ⊆ (𝐻 × 𝐻) → ∪ 𝐷 ⊆ ∪ (𝐻
× 𝐻)) |
15 | | uniss 4847 |
. . . . 5
⊢ (∪ 𝐷
⊆ ∪ (𝐻 × 𝐻) → ∪ ∪ 𝐷
⊆ ∪ ∪ (𝐻 × 𝐻)) |
16 | 13, 14, 15 | mp2b 10 |
. . . 4
⊢ ∪ ∪ 𝐷 ⊆ ∪ ∪ (𝐻
× 𝐻) |
17 | | unixpss 5720 |
. . . . 5
⊢ ∪ ∪ (𝐻 × 𝐻) ⊆ (𝐻 ∪ 𝐻) |
18 | | unidm 4086 |
. . . . 5
⊢ (𝐻 ∪ 𝐻) = 𝐻 |
19 | 17, 18 | sseqtri 3957 |
. . . 4
⊢ ∪ ∪ (𝐻 × 𝐻) ⊆ 𝐻 |
20 | 16, 19 | sstri 3930 |
. . 3
⊢ ∪ ∪ 𝐷 ⊆ 𝐻 |
21 | 12, 20 | eqssi 3937 |
. 2
⊢ 𝐻 = ∪
∪ 𝐷 |
22 | | filelss 23003 |
. . . . . . . 8
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑛 ∈ 𝐹) → 𝑛 ⊆ 𝑋) |
23 | | xpss2 5609 |
. . . . . . . 8
⊢ (𝑛 ⊆ 𝑋 → ({𝑛} × 𝑛) ⊆ ({𝑛} × 𝑋)) |
24 | 22, 23 | syl 17 |
. . . . . . 7
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑛 ∈ 𝐹) → ({𝑛} × 𝑛) ⊆ ({𝑛} × 𝑋)) |
25 | 24 | ralrimiva 3103 |
. . . . . 6
⊢ (𝐹 ∈ (Fil‘𝑋) → ∀𝑛 ∈ 𝐹 ({𝑛} × 𝑛) ⊆ ({𝑛} × 𝑋)) |
26 | | ss2iun 4942 |
. . . . . 6
⊢
(∀𝑛 ∈
𝐹 ({𝑛} × 𝑛) ⊆ ({𝑛} × 𝑋) → ∪
𝑛 ∈ 𝐹 ({𝑛} × 𝑛) ⊆ ∪
𝑛 ∈ 𝐹 ({𝑛} × 𝑋)) |
27 | 25, 26 | syl 17 |
. . . . 5
⊢ (𝐹 ∈ (Fil‘𝑋) → ∪ 𝑛 ∈ 𝐹 ({𝑛} × 𝑛) ⊆ ∪
𝑛 ∈ 𝐹 ({𝑛} × 𝑋)) |
28 | | iunxpconst 5659 |
. . . . 5
⊢ ∪ 𝑛 ∈ 𝐹 ({𝑛} × 𝑋) = (𝐹 × 𝑋) |
29 | 27, 28 | sseqtrdi 3971 |
. . . 4
⊢ (𝐹 ∈ (Fil‘𝑋) → ∪ 𝑛 ∈ 𝐹 ({𝑛} × 𝑛) ⊆ (𝐹 × 𝑋)) |
30 | 2, 29 | eqsstrid 3969 |
. . 3
⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐻 ⊆ (𝐹 × 𝑋)) |
31 | 5 | a1i 11 |
. . . . 5
⊢ (𝐹 ∈ (Fil‘𝑋) → ( I ↾ 𝐻) ⊆ 𝐷) |
32 | 3 | relopabiv 5730 |
. . . . 5
⊢ Rel 𝐷 |
33 | 31, 32 | jctil 520 |
. . . 4
⊢ (𝐹 ∈ (Fil‘𝑋) → (Rel 𝐷 ∧ ( I ↾ 𝐻) ⊆ 𝐷)) |
34 | | simpl 483 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻)) → 𝐹 ∈ (Fil‘𝑋)) |
35 | 30 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻)) → 𝐻 ⊆ (𝐹 × 𝑋)) |
36 | | simprl 768 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻)) → 𝑣 ∈ 𝐻) |
37 | 35, 36 | sseldd 3922 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻)) → 𝑣 ∈ (𝐹 × 𝑋)) |
38 | | xp1st 7863 |
. . . . . . . . . . 11
⊢ (𝑣 ∈ (𝐹 × 𝑋) → (1st ‘𝑣) ∈ 𝐹) |
39 | 37, 38 | syl 17 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻)) → (1st ‘𝑣) ∈ 𝐹) |
40 | | simprr 770 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻)) → 𝑧 ∈ 𝐻) |
41 | 35, 40 | sseldd 3922 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻)) → 𝑧 ∈ (𝐹 × 𝑋)) |
42 | | xp1st 7863 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ (𝐹 × 𝑋) → (1st ‘𝑧) ∈ 𝐹) |
43 | 41, 42 | syl 17 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻)) → (1st ‘𝑧) ∈ 𝐹) |
44 | | filinn0 23011 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (1st
‘𝑣) ∈ 𝐹 ∧ (1st
‘𝑧) ∈ 𝐹) → ((1st
‘𝑣) ∩
(1st ‘𝑧))
≠ ∅) |
45 | 34, 39, 43, 44 | syl3anc 1370 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻)) → ((1st ‘𝑣) ∩ (1st
‘𝑧)) ≠
∅) |
46 | | n0 4280 |
. . . . . . . . 9
⊢
(((1st ‘𝑣) ∩ (1st ‘𝑧)) ≠ ∅ ↔
∃𝑢 𝑢 ∈ ((1st ‘𝑣) ∩ (1st
‘𝑧))) |
47 | 45, 46 | sylib 217 |
. . . . . . . 8
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻)) → ∃𝑢 𝑢 ∈ ((1st ‘𝑣) ∩ (1st
‘𝑧))) |
48 | 36 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻)) ∧ 𝑢 ∈ ((1st ‘𝑣) ∩ (1st
‘𝑧))) → 𝑣 ∈ 𝐻) |
49 | | filin 23005 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (1st
‘𝑣) ∈ 𝐹 ∧ (1st
‘𝑧) ∈ 𝐹) → ((1st
‘𝑣) ∩
(1st ‘𝑧))
∈ 𝐹) |
50 | 34, 39, 43, 49 | syl3anc 1370 |
. . . . . . . . . . . . 13
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻)) → ((1st ‘𝑣) ∩ (1st
‘𝑧)) ∈ 𝐹) |
51 | 50 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻)) ∧ 𝑢 ∈ ((1st ‘𝑣) ∩ (1st
‘𝑧))) →
((1st ‘𝑣)
∩ (1st ‘𝑧)) ∈ 𝐹) |
52 | | simpr 485 |
. . . . . . . . . . . 12
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻)) ∧ 𝑢 ∈ ((1st ‘𝑣) ∩ (1st
‘𝑧))) → 𝑢 ∈ ((1st
‘𝑣) ∩
(1st ‘𝑧))) |
53 | | id 22 |
. . . . . . . . . . . . 13
⊢ (𝑛 = ((1st ‘𝑣) ∩ (1st
‘𝑧)) → 𝑛 = ((1st ‘𝑣) ∩ (1st
‘𝑧))) |
54 | 53 | opeliunxp2 5747 |
. . . . . . . . . . . 12
⊢
(〈((1st ‘𝑣) ∩ (1st ‘𝑧)), 𝑢〉 ∈ ∪ 𝑛 ∈ 𝐹 ({𝑛} × 𝑛) ↔ (((1st ‘𝑣) ∩ (1st
‘𝑧)) ∈ 𝐹 ∧ 𝑢 ∈ ((1st ‘𝑣) ∩ (1st
‘𝑧)))) |
55 | 51, 52, 54 | sylanbrc 583 |
. . . . . . . . . . 11
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻)) ∧ 𝑢 ∈ ((1st ‘𝑣) ∩ (1st
‘𝑧))) →
〈((1st ‘𝑣) ∩ (1st ‘𝑧)), 𝑢〉 ∈ ∪ 𝑛 ∈ 𝐹 ({𝑛} × 𝑛)) |
56 | 55, 2 | eleqtrrdi 2850 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻)) ∧ 𝑢 ∈ ((1st ‘𝑣) ∩ (1st
‘𝑧))) →
〈((1st ‘𝑣) ∩ (1st ‘𝑧)), 𝑢〉 ∈ 𝐻) |
57 | | fvex 6787 |
. . . . . . . . . . . . . 14
⊢
(1st ‘𝑣) ∈ V |
58 | 57 | inex1 5241 |
. . . . . . . . . . . . 13
⊢
((1st ‘𝑣) ∩ (1st ‘𝑧)) ∈ V |
59 | | vex 3436 |
. . . . . . . . . . . . 13
⊢ 𝑢 ∈ V |
60 | 58, 59 | op1st 7839 |
. . . . . . . . . . . 12
⊢
(1st ‘〈((1st ‘𝑣) ∩ (1st ‘𝑧)), 𝑢〉) = ((1st ‘𝑣) ∩ (1st
‘𝑧)) |
61 | | inss1 4162 |
. . . . . . . . . . . 12
⊢
((1st ‘𝑣) ∩ (1st ‘𝑧)) ⊆ (1st
‘𝑣) |
62 | 60, 61 | eqsstri 3955 |
. . . . . . . . . . 11
⊢
(1st ‘〈((1st ‘𝑣) ∩ (1st ‘𝑧)), 𝑢〉) ⊆ (1st ‘𝑣) |
63 | | vex 3436 |
. . . . . . . . . . . 12
⊢ 𝑣 ∈ V |
64 | | opex 5379 |
. . . . . . . . . . . 12
⊢
〈((1st ‘𝑣) ∩ (1st ‘𝑧)), 𝑢〉 ∈ V |
65 | 2, 3, 63, 64 | filnetlem1 34567 |
. . . . . . . . . . 11
⊢ (𝑣𝐷〈((1st ‘𝑣) ∩ (1st
‘𝑧)), 𝑢〉 ↔ ((𝑣 ∈ 𝐻 ∧ 〈((1st ‘𝑣) ∩ (1st
‘𝑧)), 𝑢〉 ∈ 𝐻) ∧ (1st
‘〈((1st ‘𝑣) ∩ (1st ‘𝑧)), 𝑢〉) ⊆ (1st ‘𝑣))) |
66 | 62, 65 | mpbiran2 707 |
. . . . . . . . . 10
⊢ (𝑣𝐷〈((1st ‘𝑣) ∩ (1st
‘𝑧)), 𝑢〉 ↔ (𝑣 ∈ 𝐻 ∧ 〈((1st ‘𝑣) ∩ (1st
‘𝑧)), 𝑢〉 ∈ 𝐻)) |
67 | 48, 56, 66 | sylanbrc 583 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻)) ∧ 𝑢 ∈ ((1st ‘𝑣) ∩ (1st
‘𝑧))) → 𝑣𝐷〈((1st ‘𝑣) ∩ (1st
‘𝑧)), 𝑢〉) |
68 | 40 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻)) ∧ 𝑢 ∈ ((1st ‘𝑣) ∩ (1st
‘𝑧))) → 𝑧 ∈ 𝐻) |
69 | | inss2 4163 |
. . . . . . . . . . . 12
⊢
((1st ‘𝑣) ∩ (1st ‘𝑧)) ⊆ (1st
‘𝑧) |
70 | 60, 69 | eqsstri 3955 |
. . . . . . . . . . 11
⊢
(1st ‘〈((1st ‘𝑣) ∩ (1st ‘𝑧)), 𝑢〉) ⊆ (1st ‘𝑧) |
71 | | vex 3436 |
. . . . . . . . . . . 12
⊢ 𝑧 ∈ V |
72 | 2, 3, 71, 64 | filnetlem1 34567 |
. . . . . . . . . . 11
⊢ (𝑧𝐷〈((1st ‘𝑣) ∩ (1st
‘𝑧)), 𝑢〉 ↔ ((𝑧 ∈ 𝐻 ∧ 〈((1st ‘𝑣) ∩ (1st
‘𝑧)), 𝑢〉 ∈ 𝐻) ∧ (1st
‘〈((1st ‘𝑣) ∩ (1st ‘𝑧)), 𝑢〉) ⊆ (1st ‘𝑧))) |
73 | 70, 72 | mpbiran2 707 |
. . . . . . . . . 10
⊢ (𝑧𝐷〈((1st ‘𝑣) ∩ (1st
‘𝑧)), 𝑢〉 ↔ (𝑧 ∈ 𝐻 ∧ 〈((1st ‘𝑣) ∩ (1st
‘𝑧)), 𝑢〉 ∈ 𝐻)) |
74 | 68, 56, 73 | sylanbrc 583 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻)) ∧ 𝑢 ∈ ((1st ‘𝑣) ∩ (1st
‘𝑧))) → 𝑧𝐷〈((1st ‘𝑣) ∩ (1st
‘𝑧)), 𝑢〉) |
75 | | breq2 5078 |
. . . . . . . . . . 11
⊢ (𝑤 = 〈((1st
‘𝑣) ∩
(1st ‘𝑧)),
𝑢〉 → (𝑣𝐷𝑤 ↔ 𝑣𝐷〈((1st ‘𝑣) ∩ (1st
‘𝑧)), 𝑢〉)) |
76 | | breq2 5078 |
. . . . . . . . . . 11
⊢ (𝑤 = 〈((1st
‘𝑣) ∩
(1st ‘𝑧)),
𝑢〉 → (𝑧𝐷𝑤 ↔ 𝑧𝐷〈((1st ‘𝑣) ∩ (1st
‘𝑧)), 𝑢〉)) |
77 | 75, 76 | anbi12d 631 |
. . . . . . . . . 10
⊢ (𝑤 = 〈((1st
‘𝑣) ∩
(1st ‘𝑧)),
𝑢〉 → ((𝑣𝐷𝑤 ∧ 𝑧𝐷𝑤) ↔ (𝑣𝐷〈((1st ‘𝑣) ∩ (1st
‘𝑧)), 𝑢〉 ∧ 𝑧𝐷〈((1st ‘𝑣) ∩ (1st
‘𝑧)), 𝑢〉))) |
78 | 64, 77 | spcev 3545 |
. . . . . . . . 9
⊢ ((𝑣𝐷〈((1st ‘𝑣) ∩ (1st
‘𝑧)), 𝑢〉 ∧ 𝑧𝐷〈((1st ‘𝑣) ∩ (1st
‘𝑧)), 𝑢〉) → ∃𝑤(𝑣𝐷𝑤 ∧ 𝑧𝐷𝑤)) |
79 | 67, 74, 78 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻)) ∧ 𝑢 ∈ ((1st ‘𝑣) ∩ (1st
‘𝑧))) →
∃𝑤(𝑣𝐷𝑤 ∧ 𝑧𝐷𝑤)) |
80 | 47, 79 | exlimddv 1938 |
. . . . . . 7
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻)) → ∃𝑤(𝑣𝐷𝑤 ∧ 𝑧𝐷𝑤)) |
81 | 80 | ralrimivva 3123 |
. . . . . 6
⊢ (𝐹 ∈ (Fil‘𝑋) → ∀𝑣 ∈ 𝐻 ∀𝑧 ∈ 𝐻 ∃𝑤(𝑣𝐷𝑤 ∧ 𝑧𝐷𝑤)) |
82 | | codir 6025 |
. . . . . 6
⊢ ((𝐻 × 𝐻) ⊆ (◡𝐷 ∘ 𝐷) ↔ ∀𝑣 ∈ 𝐻 ∀𝑧 ∈ 𝐻 ∃𝑤(𝑣𝐷𝑤 ∧ 𝑧𝐷𝑤)) |
83 | 81, 82 | sylibr 233 |
. . . . 5
⊢ (𝐹 ∈ (Fil‘𝑋) → (𝐻 × 𝐻) ⊆ (◡𝐷 ∘ 𝐷)) |
84 | | vex 3436 |
. . . . . . . . . . . . 13
⊢ 𝑤 ∈ V |
85 | 2, 3, 63, 84 | filnetlem1 34567 |
. . . . . . . . . . . 12
⊢ (𝑣𝐷𝑤 ↔ ((𝑣 ∈ 𝐻 ∧ 𝑤 ∈ 𝐻) ∧ (1st ‘𝑤) ⊆ (1st
‘𝑣))) |
86 | 85 | simplbi 498 |
. . . . . . . . . . 11
⊢ (𝑣𝐷𝑤 → (𝑣 ∈ 𝐻 ∧ 𝑤 ∈ 𝐻)) |
87 | 86 | simpld 495 |
. . . . . . . . . 10
⊢ (𝑣𝐷𝑤 → 𝑣 ∈ 𝐻) |
88 | 2, 3, 84, 71 | filnetlem1 34567 |
. . . . . . . . . . . 12
⊢ (𝑤𝐷𝑧 ↔ ((𝑤 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻) ∧ (1st ‘𝑧) ⊆ (1st
‘𝑤))) |
89 | 88 | simplbi 498 |
. . . . . . . . . . 11
⊢ (𝑤𝐷𝑧 → (𝑤 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻)) |
90 | 89 | simprd 496 |
. . . . . . . . . 10
⊢ (𝑤𝐷𝑧 → 𝑧 ∈ 𝐻) |
91 | 87, 90 | anim12i 613 |
. . . . . . . . 9
⊢ ((𝑣𝐷𝑤 ∧ 𝑤𝐷𝑧) → (𝑣 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻)) |
92 | 88 | simprbi 497 |
. . . . . . . . . 10
⊢ (𝑤𝐷𝑧 → (1st ‘𝑧) ⊆ (1st
‘𝑤)) |
93 | 85 | simprbi 497 |
. . . . . . . . . 10
⊢ (𝑣𝐷𝑤 → (1st ‘𝑤) ⊆ (1st
‘𝑣)) |
94 | 92, 93 | sylan9ssr 3935 |
. . . . . . . . 9
⊢ ((𝑣𝐷𝑤 ∧ 𝑤𝐷𝑧) → (1st ‘𝑧) ⊆ (1st
‘𝑣)) |
95 | 2, 3, 63, 71 | filnetlem1 34567 |
. . . . . . . . 9
⊢ (𝑣𝐷𝑧 ↔ ((𝑣 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻) ∧ (1st ‘𝑧) ⊆ (1st
‘𝑣))) |
96 | 91, 94, 95 | sylanbrc 583 |
. . . . . . . 8
⊢ ((𝑣𝐷𝑤 ∧ 𝑤𝐷𝑧) → 𝑣𝐷𝑧) |
97 | 96 | ax-gen 1798 |
. . . . . . 7
⊢
∀𝑧((𝑣𝐷𝑤 ∧ 𝑤𝐷𝑧) → 𝑣𝐷𝑧) |
98 | 97 | gen2 1799 |
. . . . . 6
⊢
∀𝑣∀𝑤∀𝑧((𝑣𝐷𝑤 ∧ 𝑤𝐷𝑧) → 𝑣𝐷𝑧) |
99 | | cotr 6017 |
. . . . . 6
⊢ ((𝐷 ∘ 𝐷) ⊆ 𝐷 ↔ ∀𝑣∀𝑤∀𝑧((𝑣𝐷𝑤 ∧ 𝑤𝐷𝑧) → 𝑣𝐷𝑧)) |
100 | 98, 99 | mpbir 230 |
. . . . 5
⊢ (𝐷 ∘ 𝐷) ⊆ 𝐷 |
101 | 83, 100 | jctil 520 |
. . . 4
⊢ (𝐹 ∈ (Fil‘𝑋) → ((𝐷 ∘ 𝐷) ⊆ 𝐷 ∧ (𝐻 × 𝐻) ⊆ (◡𝐷 ∘ 𝐷))) |
102 | | filtop 23006 |
. . . . . . . . 9
⊢ (𝐹 ∈ (Fil‘𝑋) → 𝑋 ∈ 𝐹) |
103 | | xpexg 7600 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑋 ∈ 𝐹) → (𝐹 × 𝑋) ∈ V) |
104 | 102, 103 | mpdan 684 |
. . . . . . . 8
⊢ (𝐹 ∈ (Fil‘𝑋) → (𝐹 × 𝑋) ∈ V) |
105 | 104, 30 | ssexd 5248 |
. . . . . . 7
⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐻 ∈ V) |
106 | 105, 105 | xpexd 7601 |
. . . . . 6
⊢ (𝐹 ∈ (Fil‘𝑋) → (𝐻 × 𝐻) ∈ V) |
107 | | ssexg 5247 |
. . . . . 6
⊢ ((𝐷 ⊆ (𝐻 × 𝐻) ∧ (𝐻 × 𝐻) ∈ V) → 𝐷 ∈ V) |
108 | 13, 106, 107 | sylancr 587 |
. . . . 5
⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐷 ∈ V) |
109 | 21 | isdir 18316 |
. . . . 5
⊢ (𝐷 ∈ V → (𝐷 ∈ DirRel ↔ ((Rel
𝐷 ∧ ( I ↾ 𝐻) ⊆ 𝐷) ∧ ((𝐷 ∘ 𝐷) ⊆ 𝐷 ∧ (𝐻 × 𝐻) ⊆ (◡𝐷 ∘ 𝐷))))) |
110 | 108, 109 | syl 17 |
. . . 4
⊢ (𝐹 ∈ (Fil‘𝑋) → (𝐷 ∈ DirRel ↔ ((Rel 𝐷 ∧ ( I ↾ 𝐻) ⊆ 𝐷) ∧ ((𝐷 ∘ 𝐷) ⊆ 𝐷 ∧ (𝐻 × 𝐻) ⊆ (◡𝐷 ∘ 𝐷))))) |
111 | 33, 101, 110 | mpbir2and 710 |
. . 3
⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐷 ∈ DirRel) |
112 | 30, 111 | jca 512 |
. 2
⊢ (𝐹 ∈ (Fil‘𝑋) → (𝐻 ⊆ (𝐹 × 𝑋) ∧ 𝐷 ∈ DirRel)) |
113 | 21, 112 | pm3.2i 471 |
1
⊢ (𝐻 = ∪
∪ 𝐷 ∧ (𝐹 ∈ (Fil‘𝑋) → (𝐻 ⊆ (𝐹 × 𝑋) ∧ 𝐷 ∈ DirRel))) |