Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  filnetlem3 Structured version   Visualization version   GIF version

Theorem filnetlem3 36346
Description: Lemma for filnet 36348. (Contributed by Jeff Hankins, 13-Dec-2009.) (Revised by Mario Carneiro, 8-Aug-2015.)
Hypotheses
Ref Expression
filnet.h 𝐻 = 𝑛𝐹 ({𝑛} × 𝑛)
filnet.d 𝐷 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐻𝑦𝐻) ∧ (1st𝑦) ⊆ (1st𝑥))}
Assertion
Ref Expression
filnetlem3 (𝐻 = 𝐷 ∧ (𝐹 ∈ (Fil‘𝑋) → (𝐻 ⊆ (𝐹 × 𝑋) ∧ 𝐷 ∈ DirRel)))
Distinct variable groups:   𝑥,𝑦,𝑛,𝐹   𝑥,𝐻,𝑦   𝑛,𝑋
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑛)   𝐻(𝑛)   𝑋(𝑥,𝑦)

Proof of Theorem filnetlem3
Dummy variables 𝑢 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmresi 6081 . . . . . 6 dom ( I ↾ 𝐻) = 𝐻
2 filnet.h . . . . . . . . 9 𝐻 = 𝑛𝐹 ({𝑛} × 𝑛)
3 filnet.d . . . . . . . . 9 𝐷 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐻𝑦𝐻) ∧ (1st𝑦) ⊆ (1st𝑥))}
42, 3filnetlem2 36345 . . . . . . . 8 (( I ↾ 𝐻) ⊆ 𝐷𝐷 ⊆ (𝐻 × 𝐻))
54simpli 483 . . . . . . 7 ( I ↾ 𝐻) ⊆ 𝐷
6 dmss 5927 . . . . . . 7 (( I ↾ 𝐻) ⊆ 𝐷 → dom ( I ↾ 𝐻) ⊆ dom 𝐷)
75, 6ax-mp 5 . . . . . 6 dom ( I ↾ 𝐻) ⊆ dom 𝐷
81, 7eqsstrri 4044 . . . . 5 𝐻 ⊆ dom 𝐷
9 ssun1 4201 . . . . 5 dom 𝐷 ⊆ (dom 𝐷 ∪ ran 𝐷)
108, 9sstri 4018 . . . 4 𝐻 ⊆ (dom 𝐷 ∪ ran 𝐷)
11 dmrnssfld 5996 . . . 4 (dom 𝐷 ∪ ran 𝐷) ⊆ 𝐷
1210, 11sstri 4018 . . 3 𝐻 𝐷
134simpri 485 . . . . 5 𝐷 ⊆ (𝐻 × 𝐻)
14 uniss 4939 . . . . 5 (𝐷 ⊆ (𝐻 × 𝐻) → 𝐷 (𝐻 × 𝐻))
15 uniss 4939 . . . . 5 ( 𝐷 (𝐻 × 𝐻) → 𝐷 (𝐻 × 𝐻))
1613, 14, 15mp2b 10 . . . 4 𝐷 (𝐻 × 𝐻)
17 unixpss 5834 . . . . 5 (𝐻 × 𝐻) ⊆ (𝐻𝐻)
18 unidm 4180 . . . . 5 (𝐻𝐻) = 𝐻
1917, 18sseqtri 4045 . . . 4 (𝐻 × 𝐻) ⊆ 𝐻
2016, 19sstri 4018 . . 3 𝐷𝐻
2112, 20eqssi 4025 . 2 𝐻 = 𝐷
22 filelss 23881 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑛𝐹) → 𝑛𝑋)
23 xpss2 5720 . . . . . . . 8 (𝑛𝑋 → ({𝑛} × 𝑛) ⊆ ({𝑛} × 𝑋))
2422, 23syl 17 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑛𝐹) → ({𝑛} × 𝑛) ⊆ ({𝑛} × 𝑋))
2524ralrimiva 3152 . . . . . 6 (𝐹 ∈ (Fil‘𝑋) → ∀𝑛𝐹 ({𝑛} × 𝑛) ⊆ ({𝑛} × 𝑋))
26 ss2iun 5033 . . . . . 6 (∀𝑛𝐹 ({𝑛} × 𝑛) ⊆ ({𝑛} × 𝑋) → 𝑛𝐹 ({𝑛} × 𝑛) ⊆ 𝑛𝐹 ({𝑛} × 𝑋))
2725, 26syl 17 . . . . 5 (𝐹 ∈ (Fil‘𝑋) → 𝑛𝐹 ({𝑛} × 𝑛) ⊆ 𝑛𝐹 ({𝑛} × 𝑋))
28 iunxpconst 5772 . . . . 5 𝑛𝐹 ({𝑛} × 𝑋) = (𝐹 × 𝑋)
2927, 28sseqtrdi 4059 . . . 4 (𝐹 ∈ (Fil‘𝑋) → 𝑛𝐹 ({𝑛} × 𝑛) ⊆ (𝐹 × 𝑋))
302, 29eqsstrid 4057 . . 3 (𝐹 ∈ (Fil‘𝑋) → 𝐻 ⊆ (𝐹 × 𝑋))
315a1i 11 . . . . 5 (𝐹 ∈ (Fil‘𝑋) → ( I ↾ 𝐻) ⊆ 𝐷)
323relopabiv 5844 . . . . 5 Rel 𝐷
3331, 32jctil 519 . . . 4 (𝐹 ∈ (Fil‘𝑋) → (Rel 𝐷 ∧ ( I ↾ 𝐻) ⊆ 𝐷))
34 simpl 482 . . . . . . . . . 10 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) → 𝐹 ∈ (Fil‘𝑋))
3530adantr 480 . . . . . . . . . . . 12 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) → 𝐻 ⊆ (𝐹 × 𝑋))
36 simprl 770 . . . . . . . . . . . 12 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) → 𝑣𝐻)
3735, 36sseldd 4009 . . . . . . . . . . 11 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) → 𝑣 ∈ (𝐹 × 𝑋))
38 xp1st 8062 . . . . . . . . . . 11 (𝑣 ∈ (𝐹 × 𝑋) → (1st𝑣) ∈ 𝐹)
3937, 38syl 17 . . . . . . . . . 10 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) → (1st𝑣) ∈ 𝐹)
40 simprr 772 . . . . . . . . . . . 12 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) → 𝑧𝐻)
4135, 40sseldd 4009 . . . . . . . . . . 11 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) → 𝑧 ∈ (𝐹 × 𝑋))
42 xp1st 8062 . . . . . . . . . . 11 (𝑧 ∈ (𝐹 × 𝑋) → (1st𝑧) ∈ 𝐹)
4341, 42syl 17 . . . . . . . . . 10 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) → (1st𝑧) ∈ 𝐹)
44 filinn0 23889 . . . . . . . . . 10 ((𝐹 ∈ (Fil‘𝑋) ∧ (1st𝑣) ∈ 𝐹 ∧ (1st𝑧) ∈ 𝐹) → ((1st𝑣) ∩ (1st𝑧)) ≠ ∅)
4534, 39, 43, 44syl3anc 1371 . . . . . . . . 9 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) → ((1st𝑣) ∩ (1st𝑧)) ≠ ∅)
46 n0 4376 . . . . . . . . 9 (((1st𝑣) ∩ (1st𝑧)) ≠ ∅ ↔ ∃𝑢 𝑢 ∈ ((1st𝑣) ∩ (1st𝑧)))
4745, 46sylib 218 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) → ∃𝑢 𝑢 ∈ ((1st𝑣) ∩ (1st𝑧)))
4836adantr 480 . . . . . . . . . 10 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) ∧ 𝑢 ∈ ((1st𝑣) ∩ (1st𝑧))) → 𝑣𝐻)
49 filin 23883 . . . . . . . . . . . . . 14 ((𝐹 ∈ (Fil‘𝑋) ∧ (1st𝑣) ∈ 𝐹 ∧ (1st𝑧) ∈ 𝐹) → ((1st𝑣) ∩ (1st𝑧)) ∈ 𝐹)
5034, 39, 43, 49syl3anc 1371 . . . . . . . . . . . . 13 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) → ((1st𝑣) ∩ (1st𝑧)) ∈ 𝐹)
5150adantr 480 . . . . . . . . . . . 12 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) ∧ 𝑢 ∈ ((1st𝑣) ∩ (1st𝑧))) → ((1st𝑣) ∩ (1st𝑧)) ∈ 𝐹)
52 simpr 484 . . . . . . . . . . . 12 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) ∧ 𝑢 ∈ ((1st𝑣) ∩ (1st𝑧))) → 𝑢 ∈ ((1st𝑣) ∩ (1st𝑧)))
53 id 22 . . . . . . . . . . . . 13 (𝑛 = ((1st𝑣) ∩ (1st𝑧)) → 𝑛 = ((1st𝑣) ∩ (1st𝑧)))
5453opeliunxp2 5863 . . . . . . . . . . . 12 (⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ ∈ 𝑛𝐹 ({𝑛} × 𝑛) ↔ (((1st𝑣) ∩ (1st𝑧)) ∈ 𝐹𝑢 ∈ ((1st𝑣) ∩ (1st𝑧))))
5551, 52, 54sylanbrc 582 . . . . . . . . . . 11 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) ∧ 𝑢 ∈ ((1st𝑣) ∩ (1st𝑧))) → ⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ ∈ 𝑛𝐹 ({𝑛} × 𝑛))
5655, 2eleqtrrdi 2855 . . . . . . . . . 10 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) ∧ 𝑢 ∈ ((1st𝑣) ∩ (1st𝑧))) → ⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ ∈ 𝐻)
57 fvex 6933 . . . . . . . . . . . . . 14 (1st𝑣) ∈ V
5857inex1 5335 . . . . . . . . . . . . 13 ((1st𝑣) ∩ (1st𝑧)) ∈ V
59 vex 3492 . . . . . . . . . . . . 13 𝑢 ∈ V
6058, 59op1st 8038 . . . . . . . . . . . 12 (1st ‘⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩) = ((1st𝑣) ∩ (1st𝑧))
61 inss1 4258 . . . . . . . . . . . 12 ((1st𝑣) ∩ (1st𝑧)) ⊆ (1st𝑣)
6260, 61eqsstri 4043 . . . . . . . . . . 11 (1st ‘⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩) ⊆ (1st𝑣)
63 vex 3492 . . . . . . . . . . . 12 𝑣 ∈ V
64 opex 5484 . . . . . . . . . . . 12 ⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ ∈ V
652, 3, 63, 64filnetlem1 36344 . . . . . . . . . . 11 (𝑣𝐷⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ ↔ ((𝑣𝐻 ∧ ⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ ∈ 𝐻) ∧ (1st ‘⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩) ⊆ (1st𝑣)))
6662, 65mpbiran2 709 . . . . . . . . . 10 (𝑣𝐷⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ ↔ (𝑣𝐻 ∧ ⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ ∈ 𝐻))
6748, 56, 66sylanbrc 582 . . . . . . . . 9 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) ∧ 𝑢 ∈ ((1st𝑣) ∩ (1st𝑧))) → 𝑣𝐷⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩)
6840adantr 480 . . . . . . . . . 10 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) ∧ 𝑢 ∈ ((1st𝑣) ∩ (1st𝑧))) → 𝑧𝐻)
69 inss2 4259 . . . . . . . . . . . 12 ((1st𝑣) ∩ (1st𝑧)) ⊆ (1st𝑧)
7060, 69eqsstri 4043 . . . . . . . . . . 11 (1st ‘⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩) ⊆ (1st𝑧)
71 vex 3492 . . . . . . . . . . . 12 𝑧 ∈ V
722, 3, 71, 64filnetlem1 36344 . . . . . . . . . . 11 (𝑧𝐷⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ ↔ ((𝑧𝐻 ∧ ⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ ∈ 𝐻) ∧ (1st ‘⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩) ⊆ (1st𝑧)))
7370, 72mpbiran2 709 . . . . . . . . . 10 (𝑧𝐷⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ ↔ (𝑧𝐻 ∧ ⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ ∈ 𝐻))
7468, 56, 73sylanbrc 582 . . . . . . . . 9 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) ∧ 𝑢 ∈ ((1st𝑣) ∩ (1st𝑧))) → 𝑧𝐷⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩)
75 breq2 5170 . . . . . . . . . . 11 (𝑤 = ⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ → (𝑣𝐷𝑤𝑣𝐷⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩))
76 breq2 5170 . . . . . . . . . . 11 (𝑤 = ⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ → (𝑧𝐷𝑤𝑧𝐷⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩))
7775, 76anbi12d 631 . . . . . . . . . 10 (𝑤 = ⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ → ((𝑣𝐷𝑤𝑧𝐷𝑤) ↔ (𝑣𝐷⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ ∧ 𝑧𝐷⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩)))
7864, 77spcev 3619 . . . . . . . . 9 ((𝑣𝐷⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ ∧ 𝑧𝐷⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩) → ∃𝑤(𝑣𝐷𝑤𝑧𝐷𝑤))
7967, 74, 78syl2anc 583 . . . . . . . 8 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) ∧ 𝑢 ∈ ((1st𝑣) ∩ (1st𝑧))) → ∃𝑤(𝑣𝐷𝑤𝑧𝐷𝑤))
8047, 79exlimddv 1934 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) → ∃𝑤(𝑣𝐷𝑤𝑧𝐷𝑤))
8180ralrimivva 3208 . . . . . 6 (𝐹 ∈ (Fil‘𝑋) → ∀𝑣𝐻𝑧𝐻𝑤(𝑣𝐷𝑤𝑧𝐷𝑤))
82 codir 6152 . . . . . 6 ((𝐻 × 𝐻) ⊆ (𝐷𝐷) ↔ ∀𝑣𝐻𝑧𝐻𝑤(𝑣𝐷𝑤𝑧𝐷𝑤))
8381, 82sylibr 234 . . . . 5 (𝐹 ∈ (Fil‘𝑋) → (𝐻 × 𝐻) ⊆ (𝐷𝐷))
84 vex 3492 . . . . . . . . . . . . 13 𝑤 ∈ V
852, 3, 63, 84filnetlem1 36344 . . . . . . . . . . . 12 (𝑣𝐷𝑤 ↔ ((𝑣𝐻𝑤𝐻) ∧ (1st𝑤) ⊆ (1st𝑣)))
8685simplbi 497 . . . . . . . . . . 11 (𝑣𝐷𝑤 → (𝑣𝐻𝑤𝐻))
8786simpld 494 . . . . . . . . . 10 (𝑣𝐷𝑤𝑣𝐻)
882, 3, 84, 71filnetlem1 36344 . . . . . . . . . . . 12 (𝑤𝐷𝑧 ↔ ((𝑤𝐻𝑧𝐻) ∧ (1st𝑧) ⊆ (1st𝑤)))
8988simplbi 497 . . . . . . . . . . 11 (𝑤𝐷𝑧 → (𝑤𝐻𝑧𝐻))
9089simprd 495 . . . . . . . . . 10 (𝑤𝐷𝑧𝑧𝐻)
9187, 90anim12i 612 . . . . . . . . 9 ((𝑣𝐷𝑤𝑤𝐷𝑧) → (𝑣𝐻𝑧𝐻))
9288simprbi 496 . . . . . . . . . 10 (𝑤𝐷𝑧 → (1st𝑧) ⊆ (1st𝑤))
9385simprbi 496 . . . . . . . . . 10 (𝑣𝐷𝑤 → (1st𝑤) ⊆ (1st𝑣))
9492, 93sylan9ssr 4023 . . . . . . . . 9 ((𝑣𝐷𝑤𝑤𝐷𝑧) → (1st𝑧) ⊆ (1st𝑣))
952, 3, 63, 71filnetlem1 36344 . . . . . . . . 9 (𝑣𝐷𝑧 ↔ ((𝑣𝐻𝑧𝐻) ∧ (1st𝑧) ⊆ (1st𝑣)))
9691, 94, 95sylanbrc 582 . . . . . . . 8 ((𝑣𝐷𝑤𝑤𝐷𝑧) → 𝑣𝐷𝑧)
9796ax-gen 1793 . . . . . . 7 𝑧((𝑣𝐷𝑤𝑤𝐷𝑧) → 𝑣𝐷𝑧)
9897gen2 1794 . . . . . 6 𝑣𝑤𝑧((𝑣𝐷𝑤𝑤𝐷𝑧) → 𝑣𝐷𝑧)
99 cotr 6142 . . . . . 6 ((𝐷𝐷) ⊆ 𝐷 ↔ ∀𝑣𝑤𝑧((𝑣𝐷𝑤𝑤𝐷𝑧) → 𝑣𝐷𝑧))
10098, 99mpbir 231 . . . . 5 (𝐷𝐷) ⊆ 𝐷
10183, 100jctil 519 . . . 4 (𝐹 ∈ (Fil‘𝑋) → ((𝐷𝐷) ⊆ 𝐷 ∧ (𝐻 × 𝐻) ⊆ (𝐷𝐷)))
102 filtop 23884 . . . . . . . . 9 (𝐹 ∈ (Fil‘𝑋) → 𝑋𝐹)
103 xpexg 7785 . . . . . . . . 9 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑋𝐹) → (𝐹 × 𝑋) ∈ V)
104102, 103mpdan 686 . . . . . . . 8 (𝐹 ∈ (Fil‘𝑋) → (𝐹 × 𝑋) ∈ V)
105104, 30ssexd 5342 . . . . . . 7 (𝐹 ∈ (Fil‘𝑋) → 𝐻 ∈ V)
106105, 105xpexd 7786 . . . . . 6 (𝐹 ∈ (Fil‘𝑋) → (𝐻 × 𝐻) ∈ V)
107 ssexg 5341 . . . . . 6 ((𝐷 ⊆ (𝐻 × 𝐻) ∧ (𝐻 × 𝐻) ∈ V) → 𝐷 ∈ V)
10813, 106, 107sylancr 586 . . . . 5 (𝐹 ∈ (Fil‘𝑋) → 𝐷 ∈ V)
10921isdir 18668 . . . . 5 (𝐷 ∈ V → (𝐷 ∈ DirRel ↔ ((Rel 𝐷 ∧ ( I ↾ 𝐻) ⊆ 𝐷) ∧ ((𝐷𝐷) ⊆ 𝐷 ∧ (𝐻 × 𝐻) ⊆ (𝐷𝐷)))))
110108, 109syl 17 . . . 4 (𝐹 ∈ (Fil‘𝑋) → (𝐷 ∈ DirRel ↔ ((Rel 𝐷 ∧ ( I ↾ 𝐻) ⊆ 𝐷) ∧ ((𝐷𝐷) ⊆ 𝐷 ∧ (𝐻 × 𝐻) ⊆ (𝐷𝐷)))))
11133, 101, 110mpbir2and 712 . . 3 (𝐹 ∈ (Fil‘𝑋) → 𝐷 ∈ DirRel)
11230, 111jca 511 . 2 (𝐹 ∈ (Fil‘𝑋) → (𝐻 ⊆ (𝐹 × 𝑋) ∧ 𝐷 ∈ DirRel))
11321, 112pm3.2i 470 1 (𝐻 = 𝐷 ∧ (𝐹 ∈ (Fil‘𝑋) → (𝐻 ⊆ (𝐹 × 𝑋) ∧ 𝐷 ∈ DirRel)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1535   = wceq 1537  wex 1777  wcel 2108  wne 2946  wral 3067  Vcvv 3488  cun 3974  cin 3975  wss 3976  c0 4352  {csn 4648  cop 4654   cuni 4931   ciun 5015   class class class wbr 5166  {copab 5228   I cid 5592   × cxp 5698  ccnv 5699  dom cdm 5700  ran crn 5701  cres 5702  ccom 5704  Rel wrel 5705  cfv 6573  1st c1st 8028  DirRelcdir 18664  Filcfil 23874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-1st 8030  df-dir 18666  df-fbas 21384  df-fil 23875
This theorem is referenced by:  filnetlem4  36347
  Copyright terms: Public domain W3C validator