MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unss2 Structured version   Visualization version   GIF version

Theorem unss2 4111
Description: Subclass law for union of classes. Exercise 7 of [TakeutiZaring] p. 18. (Contributed by NM, 14-Oct-1999.)
Assertion
Ref Expression
unss2 (𝐴𝐵 → (𝐶𝐴) ⊆ (𝐶𝐵))

Proof of Theorem unss2
StepHypRef Expression
1 unss1 4109 . 2 (𝐴𝐵 → (𝐴𝐶) ⊆ (𝐵𝐶))
2 uncom 4083 . 2 (𝐶𝐴) = (𝐴𝐶)
3 uncom 4083 . 2 (𝐶𝐵) = (𝐵𝐶)
41, 2, 33sstr4g 3962 1 (𝐴𝐵 → (𝐶𝐴) ⊆ (𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  cun 3881  wss 3883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-un 3888  df-in 3890  df-ss 3900
This theorem is referenced by:  unss12  4112  ord3ex  5305  xpider  8535  fin1a2lem13  10099  canthp1lem2  10340  seqexw  13665  uniioombllem3  24654  volcn  24675  dvres2lem  24979  bnj1413  32915  bnj1408  32916
  Copyright terms: Public domain W3C validator