Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > unss2 | Structured version Visualization version GIF version |
Description: Subclass law for union of classes. Exercise 7 of [TakeutiZaring] p. 18. (Contributed by NM, 14-Oct-1999.) |
Ref | Expression |
---|---|
unss2 | ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∪ 𝐴) ⊆ (𝐶 ∪ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unss1 4109 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐶)) | |
2 | uncom 4083 | . 2 ⊢ (𝐶 ∪ 𝐴) = (𝐴 ∪ 𝐶) | |
3 | uncom 4083 | . 2 ⊢ (𝐶 ∪ 𝐵) = (𝐵 ∪ 𝐶) | |
4 | 1, 2, 3 | 3sstr4g 3962 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∪ 𝐴) ⊆ (𝐶 ∪ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∪ cun 3881 ⊆ wss 3883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-un 3888 df-in 3890 df-ss 3900 |
This theorem is referenced by: unss12 4112 ord3ex 5305 xpider 8535 fin1a2lem13 10099 canthp1lem2 10340 seqexw 13665 uniioombllem3 24654 volcn 24675 dvres2lem 24979 bnj1413 32915 bnj1408 32916 |
Copyright terms: Public domain | W3C validator |