MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unss2 Structured version   Visualization version   GIF version

Theorem unss2 4210
Description: Subclass law for union of classes. Exercise 7 of [TakeutiZaring] p. 18. (Contributed by NM, 14-Oct-1999.)
Assertion
Ref Expression
unss2 (𝐴𝐵 → (𝐶𝐴) ⊆ (𝐶𝐵))

Proof of Theorem unss2
StepHypRef Expression
1 unss1 4208 . 2 (𝐴𝐵 → (𝐴𝐶) ⊆ (𝐵𝐶))
2 uncom 4181 . 2 (𝐶𝐴) = (𝐴𝐶)
3 uncom 4181 . 2 (𝐶𝐵) = (𝐵𝐶)
41, 2, 33sstr4g 4054 1 (𝐴𝐵 → (𝐶𝐴) ⊆ (𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  cun 3974  wss 3976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-un 3981  df-ss 3993
This theorem is referenced by:  unss12  4211  ord3ex  5405  xpider  8846  fin1a2lem13  10481  canthp1lem2  10722  seqexw  14068  uniioombllem3  25639  volcn  25660  dvres2lem  25965  mulsproplem13  28172  mulsproplem14  28173  bnj1413  35011  bnj1408  35012
  Copyright terms: Public domain W3C validator