![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unss2 | Structured version Visualization version GIF version |
Description: Subclass law for union of classes. Exercise 7 of [TakeutiZaring] p. 18. (Contributed by NM, 14-Oct-1999.) |
Ref | Expression |
---|---|
unss2 | ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∪ 𝐴) ⊆ (𝐶 ∪ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unss1 4208 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐶)) | |
2 | uncom 4181 | . 2 ⊢ (𝐶 ∪ 𝐴) = (𝐴 ∪ 𝐶) | |
3 | uncom 4181 | . 2 ⊢ (𝐶 ∪ 𝐵) = (𝐵 ∪ 𝐶) | |
4 | 1, 2, 3 | 3sstr4g 4054 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∪ 𝐴) ⊆ (𝐶 ∪ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∪ cun 3974 ⊆ wss 3976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-un 3981 df-ss 3993 |
This theorem is referenced by: unss12 4211 ord3ex 5405 xpider 8846 fin1a2lem13 10481 canthp1lem2 10722 seqexw 14068 uniioombllem3 25639 volcn 25660 dvres2lem 25965 mulsproplem13 28172 mulsproplem14 28173 bnj1413 35011 bnj1408 35012 |
Copyright terms: Public domain | W3C validator |