MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unss2 Structured version   Visualization version   GIF version

Theorem unss2 4140
Description: Subclass law for union of classes. Exercise 7 of [TakeutiZaring] p. 18. (Contributed by NM, 14-Oct-1999.)
Assertion
Ref Expression
unss2 (𝐴𝐵 → (𝐶𝐴) ⊆ (𝐶𝐵))

Proof of Theorem unss2
StepHypRef Expression
1 unss1 4138 . 2 (𝐴𝐵 → (𝐴𝐶) ⊆ (𝐵𝐶))
2 uncom 4111 . 2 (𝐶𝐴) = (𝐴𝐶)
3 uncom 4111 . 2 (𝐶𝐵) = (𝐵𝐶)
41, 2, 33sstr4g 3991 1 (𝐴𝐵 → (𝐶𝐴) ⊆ (𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  cun 3903  wss 3905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3440  df-un 3910  df-ss 3922
This theorem is referenced by:  unss12  4141  ord3ex  5329  xpider  8722  fin1a2lem13  10325  canthp1lem2  10566  seqexw  13942  uniioombllem3  25502  volcn  25523  dvres2lem  25827  mulsproplem13  28054  mulsproplem14  28055  bnj1413  35004  bnj1408  35005
  Copyright terms: Public domain W3C validator