MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unss2 Structured version   Visualization version   GIF version

Theorem unss2 4136
Description: Subclass law for union of classes. Exercise 7 of [TakeutiZaring] p. 18. (Contributed by NM, 14-Oct-1999.)
Assertion
Ref Expression
unss2 (𝐴𝐵 → (𝐶𝐴) ⊆ (𝐶𝐵))

Proof of Theorem unss2
StepHypRef Expression
1 unss1 4134 . 2 (𝐴𝐵 → (𝐴𝐶) ⊆ (𝐵𝐶))
2 uncom 4107 . 2 (𝐶𝐴) = (𝐴𝐶)
3 uncom 4107 . 2 (𝐶𝐵) = (𝐵𝐶)
41, 2, 33sstr4g 3984 1 (𝐴𝐵 → (𝐶𝐴) ⊆ (𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  cun 3896  wss 3898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-v 3439  df-un 3903  df-ss 3915
This theorem is referenced by:  unss12  4137  ord3ex  5329  xpider  8720  fin1a2lem13  10312  canthp1lem2  10553  seqexw  13928  uniioombllem3  25516  volcn  25537  dvres2lem  25841  mulsproplem13  28070  mulsproplem14  28071  bnj1413  35070  bnj1408  35071
  Copyright terms: Public domain W3C validator