MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unss2 Structured version   Visualization version   GIF version

Theorem unss2 4115
Description: Subclass law for union of classes. Exercise 7 of [TakeutiZaring] p. 18. (Contributed by NM, 14-Oct-1999.)
Assertion
Ref Expression
unss2 (𝐴𝐵 → (𝐶𝐴) ⊆ (𝐶𝐵))

Proof of Theorem unss2
StepHypRef Expression
1 unss1 4113 . 2 (𝐴𝐵 → (𝐴𝐶) ⊆ (𝐵𝐶))
2 uncom 4087 . 2 (𝐶𝐴) = (𝐴𝐶)
3 uncom 4087 . 2 (𝐶𝐵) = (𝐵𝐶)
41, 2, 33sstr4g 3966 1 (𝐴𝐵 → (𝐶𝐴) ⊆ (𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  cun 3885  wss 3887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-un 3892  df-in 3894  df-ss 3904
This theorem is referenced by:  unss12  4116  ord3ex  5310  xpider  8577  fin1a2lem13  10168  canthp1lem2  10409  seqexw  13737  uniioombllem3  24749  volcn  24770  dvres2lem  25074  bnj1413  33015  bnj1408  33016
  Copyright terms: Public domain W3C validator