MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvres2lem Structured version   Visualization version   GIF version

Theorem dvres2lem 24979
Description: Lemma for dvres2 24981. (Contributed by Mario Carneiro, 9-Feb-2015.) (Revised by Mario Carneiro, 28-Dec-2016.)
Hypotheses
Ref Expression
dvres.k 𝐾 = (TopOpen‘ℂfld)
dvres.t 𝑇 = (𝐾t 𝑆)
dvres.g 𝐺 = (𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
dvres.s (𝜑𝑆 ⊆ ℂ)
dvres.f (𝜑𝐹:𝐴⟶ℂ)
dvres.a (𝜑𝐴𝑆)
dvres.b (𝜑𝐵𝑆)
dvres.y (𝜑𝑦 ∈ ℂ)
dvres2lem.d (𝜑𝑥(𝑆 D 𝐹)𝑦)
dvres2lem.x (𝜑𝑥𝐵)
Assertion
Ref Expression
dvres2lem (𝜑𝑥(𝐵 D (𝐹𝐵))𝑦)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝑇,𝑦,𝑧   𝑧,𝐾   𝜑,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐺(𝑥,𝑦,𝑧)   𝐾(𝑥,𝑦)

Proof of Theorem dvres2lem
StepHypRef Expression
1 dvres.t . . . . . . 7 𝑇 = (𝐾t 𝑆)
2 dvres.k . . . . . . . . 9 𝐾 = (TopOpen‘ℂfld)
32cnfldtop 23853 . . . . . . . 8 𝐾 ∈ Top
4 dvres.s . . . . . . . . 9 (𝜑𝑆 ⊆ ℂ)
5 cnex 10883 . . . . . . . . 9 ℂ ∈ V
6 ssexg 5242 . . . . . . . . 9 ((𝑆 ⊆ ℂ ∧ ℂ ∈ V) → 𝑆 ∈ V)
74, 5, 6sylancl 585 . . . . . . . 8 (𝜑𝑆 ∈ V)
8 resttop 22219 . . . . . . . 8 ((𝐾 ∈ Top ∧ 𝑆 ∈ V) → (𝐾t 𝑆) ∈ Top)
93, 7, 8sylancr 586 . . . . . . 7 (𝜑 → (𝐾t 𝑆) ∈ Top)
101, 9eqeltrid 2843 . . . . . 6 (𝜑𝑇 ∈ Top)
11 inss1 4159 . . . . . . . . 9 (𝐴𝐵) ⊆ 𝐴
12 dvres.a . . . . . . . . 9 (𝜑𝐴𝑆)
1311, 12sstrid 3928 . . . . . . . 8 (𝜑 → (𝐴𝐵) ⊆ 𝑆)
142cnfldtopon 23852 . . . . . . . . . . 11 𝐾 ∈ (TopOn‘ℂ)
15 resttopon 22220 . . . . . . . . . . 11 ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → (𝐾t 𝑆) ∈ (TopOn‘𝑆))
1614, 4, 15sylancr 586 . . . . . . . . . 10 (𝜑 → (𝐾t 𝑆) ∈ (TopOn‘𝑆))
171, 16eqeltrid 2843 . . . . . . . . 9 (𝜑𝑇 ∈ (TopOn‘𝑆))
18 toponuni 21971 . . . . . . . . 9 (𝑇 ∈ (TopOn‘𝑆) → 𝑆 = 𝑇)
1917, 18syl 17 . . . . . . . 8 (𝜑𝑆 = 𝑇)
2013, 19sseqtrd 3957 . . . . . . 7 (𝜑 → (𝐴𝐵) ⊆ 𝑇)
21 difssd 4063 . . . . . . 7 (𝜑 → ( 𝑇𝐵) ⊆ 𝑇)
2220, 21unssd 4116 . . . . . 6 (𝜑 → ((𝐴𝐵) ∪ ( 𝑇𝐵)) ⊆ 𝑇)
23 inundif 4409 . . . . . . 7 ((𝐴𝐵) ∪ (𝐴𝐵)) = 𝐴
2412, 19sseqtrd 3957 . . . . . . . 8 (𝜑𝐴 𝑇)
25 ssdif 4070 . . . . . . . 8 (𝐴 𝑇 → (𝐴𝐵) ⊆ ( 𝑇𝐵))
26 unss2 4111 . . . . . . . 8 ((𝐴𝐵) ⊆ ( 𝑇𝐵) → ((𝐴𝐵) ∪ (𝐴𝐵)) ⊆ ((𝐴𝐵) ∪ ( 𝑇𝐵)))
2724, 25, 263syl 18 . . . . . . 7 (𝜑 → ((𝐴𝐵) ∪ (𝐴𝐵)) ⊆ ((𝐴𝐵) ∪ ( 𝑇𝐵)))
2823, 27eqsstrrid 3966 . . . . . 6 (𝜑𝐴 ⊆ ((𝐴𝐵) ∪ ( 𝑇𝐵)))
29 eqid 2738 . . . . . . 7 𝑇 = 𝑇
3029ntrss 22114 . . . . . 6 ((𝑇 ∈ Top ∧ ((𝐴𝐵) ∪ ( 𝑇𝐵)) ⊆ 𝑇𝐴 ⊆ ((𝐴𝐵) ∪ ( 𝑇𝐵))) → ((int‘𝑇)‘𝐴) ⊆ ((int‘𝑇)‘((𝐴𝐵) ∪ ( 𝑇𝐵))))
3110, 22, 28, 30syl3anc 1369 . . . . 5 (𝜑 → ((int‘𝑇)‘𝐴) ⊆ ((int‘𝑇)‘((𝐴𝐵) ∪ ( 𝑇𝐵))))
32 dvres2lem.d . . . . . . 7 (𝜑𝑥(𝑆 D 𝐹)𝑦)
33 dvres.g . . . . . . . 8 𝐺 = (𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
34 dvres.f . . . . . . . 8 (𝜑𝐹:𝐴⟶ℂ)
351, 2, 33, 4, 34, 12eldv 24967 . . . . . . 7 (𝜑 → (𝑥(𝑆 D 𝐹)𝑦 ↔ (𝑥 ∈ ((int‘𝑇)‘𝐴) ∧ 𝑦 ∈ (𝐺 lim 𝑥))))
3632, 35mpbid 231 . . . . . 6 (𝜑 → (𝑥 ∈ ((int‘𝑇)‘𝐴) ∧ 𝑦 ∈ (𝐺 lim 𝑥)))
3736simpld 494 . . . . 5 (𝜑𝑥 ∈ ((int‘𝑇)‘𝐴))
3831, 37sseldd 3918 . . . 4 (𝜑𝑥 ∈ ((int‘𝑇)‘((𝐴𝐵) ∪ ( 𝑇𝐵))))
39 dvres2lem.x . . . 4 (𝜑𝑥𝐵)
4038, 39elind 4124 . . 3 (𝜑𝑥 ∈ (((int‘𝑇)‘((𝐴𝐵) ∪ ( 𝑇𝐵))) ∩ 𝐵))
41 dvres.b . . . . . 6 (𝜑𝐵𝑆)
4241, 19sseqtrd 3957 . . . . 5 (𝜑𝐵 𝑇)
43 inss2 4160 . . . . . 6 (𝐴𝐵) ⊆ 𝐵
4443a1i 11 . . . . 5 (𝜑 → (𝐴𝐵) ⊆ 𝐵)
45 eqid 2738 . . . . . 6 (𝑇t 𝐵) = (𝑇t 𝐵)
4629, 45restntr 22241 . . . . 5 ((𝑇 ∈ Top ∧ 𝐵 𝑇 ∧ (𝐴𝐵) ⊆ 𝐵) → ((int‘(𝑇t 𝐵))‘(𝐴𝐵)) = (((int‘𝑇)‘((𝐴𝐵) ∪ ( 𝑇𝐵))) ∩ 𝐵))
4710, 42, 44, 46syl3anc 1369 . . . 4 (𝜑 → ((int‘(𝑇t 𝐵))‘(𝐴𝐵)) = (((int‘𝑇)‘((𝐴𝐵) ∪ ( 𝑇𝐵))) ∩ 𝐵))
481oveq1i 7265 . . . . . . 7 (𝑇t 𝐵) = ((𝐾t 𝑆) ↾t 𝐵)
493a1i 11 . . . . . . . 8 (𝜑𝐾 ∈ Top)
50 restabs 22224 . . . . . . . 8 ((𝐾 ∈ Top ∧ 𝐵𝑆𝑆 ∈ V) → ((𝐾t 𝑆) ↾t 𝐵) = (𝐾t 𝐵))
5149, 41, 7, 50syl3anc 1369 . . . . . . 7 (𝜑 → ((𝐾t 𝑆) ↾t 𝐵) = (𝐾t 𝐵))
5248, 51syl5eq 2791 . . . . . 6 (𝜑 → (𝑇t 𝐵) = (𝐾t 𝐵))
5352fveq2d 6760 . . . . 5 (𝜑 → (int‘(𝑇t 𝐵)) = (int‘(𝐾t 𝐵)))
5453fveq1d 6758 . . . 4 (𝜑 → ((int‘(𝑇t 𝐵))‘(𝐴𝐵)) = ((int‘(𝐾t 𝐵))‘(𝐴𝐵)))
5547, 54eqtr3d 2780 . . 3 (𝜑 → (((int‘𝑇)‘((𝐴𝐵) ∪ ( 𝑇𝐵))) ∩ 𝐵) = ((int‘(𝐾t 𝐵))‘(𝐴𝐵)))
5640, 55eleqtrd 2841 . 2 (𝜑𝑥 ∈ ((int‘(𝐾t 𝐵))‘(𝐴𝐵)))
57 limcresi 24954 . . . 4 (𝐺 lim 𝑥) ⊆ ((𝐺 ↾ ((𝐴𝐵) ∖ {𝑥})) lim 𝑥)
5836simprd 495 . . . 4 (𝜑𝑦 ∈ (𝐺 lim 𝑥))
5957, 58sselid 3915 . . 3 (𝜑𝑦 ∈ ((𝐺 ↾ ((𝐴𝐵) ∖ {𝑥})) lim 𝑥))
60 difss 4062 . . . . . . . . 9 ((𝐴𝐵) ∖ {𝑥}) ⊆ (𝐴𝐵)
6160, 43sstri 3926 . . . . . . . 8 ((𝐴𝐵) ∖ {𝑥}) ⊆ 𝐵
6261sseli 3913 . . . . . . 7 (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) → 𝑧𝐵)
63 fvres 6775 . . . . . . . . 9 (𝑧𝐵 → ((𝐹𝐵)‘𝑧) = (𝐹𝑧))
6439fvresd 6776 . . . . . . . . 9 (𝜑 → ((𝐹𝐵)‘𝑥) = (𝐹𝑥))
6563, 64oveqan12rd 7275 . . . . . . . 8 ((𝜑𝑧𝐵) → (((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) = ((𝐹𝑧) − (𝐹𝑥)))
6665oveq1d 7270 . . . . . . 7 ((𝜑𝑧𝐵) → ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥)) = (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
6762, 66sylan2 592 . . . . . 6 ((𝜑𝑧 ∈ ((𝐴𝐵) ∖ {𝑥})) → ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥)) = (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
6867mpteq2dva 5170 . . . . 5 (𝜑 → (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥))) = (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))))
6933reseq1i 5876 . . . . . 6 (𝐺 ↾ ((𝐴𝐵) ∖ {𝑥})) = ((𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) ↾ ((𝐴𝐵) ∖ {𝑥}))
70 ssdif 4070 . . . . . . 7 ((𝐴𝐵) ⊆ 𝐴 → ((𝐴𝐵) ∖ {𝑥}) ⊆ (𝐴 ∖ {𝑥}))
71 resmpt 5934 . . . . . . 7 (((𝐴𝐵) ∖ {𝑥}) ⊆ (𝐴 ∖ {𝑥}) → ((𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) ↾ ((𝐴𝐵) ∖ {𝑥})) = (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))))
7211, 70, 71mp2b 10 . . . . . 6 ((𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) ↾ ((𝐴𝐵) ∖ {𝑥})) = (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
7369, 72eqtri 2766 . . . . 5 (𝐺 ↾ ((𝐴𝐵) ∖ {𝑥})) = (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
7468, 73eqtr4di 2797 . . . 4 (𝜑 → (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥))) = (𝐺 ↾ ((𝐴𝐵) ∖ {𝑥})))
7574oveq1d 7270 . . 3 (𝜑 → ((𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥))) lim 𝑥) = ((𝐺 ↾ ((𝐴𝐵) ∖ {𝑥})) lim 𝑥))
7659, 75eleqtrrd 2842 . 2 (𝜑𝑦 ∈ ((𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥))) lim 𝑥))
77 eqid 2738 . . 3 (𝐾t 𝐵) = (𝐾t 𝐵)
78 eqid 2738 . . 3 (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥))) = (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥)))
7941, 4sstrd 3927 . . 3 (𝜑𝐵 ⊆ ℂ)
80 fresin 6627 . . . 4 (𝐹:𝐴⟶ℂ → (𝐹𝐵):(𝐴𝐵)⟶ℂ)
8134, 80syl 17 . . 3 (𝜑 → (𝐹𝐵):(𝐴𝐵)⟶ℂ)
8277, 2, 78, 79, 81, 44eldv 24967 . 2 (𝜑 → (𝑥(𝐵 D (𝐹𝐵))𝑦 ↔ (𝑥 ∈ ((int‘(𝐾t 𝐵))‘(𝐴𝐵)) ∧ 𝑦 ∈ ((𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥))) lim 𝑥))))
8356, 76, 82mpbir2and 709 1 (𝜑𝑥(𝐵 D (𝐹𝐵))𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  cdif 3880  cun 3881  cin 3882  wss 3883  {csn 4558   cuni 4836   class class class wbr 5070  cmpt 5153  cres 5582  wf 6414  cfv 6418  (class class class)co 7255  cc 10800  cmin 11135   / cdiv 11562  t crest 17048  TopOpenctopn 17049  fldccnfld 20510  Topctop 21950  TopOnctopon 21967  intcnt 22076   lim climc 24931   D cdv 24932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fi 9100  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-fz 13169  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-struct 16776  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-mulr 16902  df-starv 16903  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-rest 17050  df-topn 17051  df-topgen 17071  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-cnp 22287  df-xms 23381  df-ms 23382  df-limc 24935  df-dv 24936
This theorem is referenced by:  dvres2  24981
  Copyright terms: Public domain W3C validator