MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvres2lem Structured version   Visualization version   GIF version

Theorem dvres2lem 25759
Description: Lemma for dvres2 25761. (Contributed by Mario Carneiro, 9-Feb-2015.) (Revised by Mario Carneiro, 28-Dec-2016.)
Hypotheses
Ref Expression
dvres.k 𝐾 = (TopOpen‘ℂfld)
dvres.t 𝑇 = (𝐾t 𝑆)
dvres.g 𝐺 = (𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
dvres.s (𝜑𝑆 ⊆ ℂ)
dvres.f (𝜑𝐹:𝐴⟶ℂ)
dvres.a (𝜑𝐴𝑆)
dvres.b (𝜑𝐵𝑆)
dvres.y (𝜑𝑦 ∈ ℂ)
dvres2lem.d (𝜑𝑥(𝑆 D 𝐹)𝑦)
dvres2lem.x (𝜑𝑥𝐵)
Assertion
Ref Expression
dvres2lem (𝜑𝑥(𝐵 D (𝐹𝐵))𝑦)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝑇,𝑦,𝑧   𝑧,𝐾   𝜑,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐺(𝑥,𝑦,𝑧)   𝐾(𝑥,𝑦)

Proof of Theorem dvres2lem
StepHypRef Expression
1 dvres.t . . . . . . 7 𝑇 = (𝐾t 𝑆)
2 dvres.k . . . . . . . . 9 𝐾 = (TopOpen‘ℂfld)
32cnfldtop 24620 . . . . . . . 8 𝐾 ∈ Top
4 dvres.s . . . . . . . . 9 (𝜑𝑆 ⊆ ℂ)
5 cnex 11197 . . . . . . . . 9 ℂ ∈ V
6 ssexg 5323 . . . . . . . . 9 ((𝑆 ⊆ ℂ ∧ ℂ ∈ V) → 𝑆 ∈ V)
74, 5, 6sylancl 585 . . . . . . . 8 (𝜑𝑆 ∈ V)
8 resttop 22984 . . . . . . . 8 ((𝐾 ∈ Top ∧ 𝑆 ∈ V) → (𝐾t 𝑆) ∈ Top)
93, 7, 8sylancr 586 . . . . . . 7 (𝜑 → (𝐾t 𝑆) ∈ Top)
101, 9eqeltrid 2836 . . . . . 6 (𝜑𝑇 ∈ Top)
11 inss1 4228 . . . . . . . . 9 (𝐴𝐵) ⊆ 𝐴
12 dvres.a . . . . . . . . 9 (𝜑𝐴𝑆)
1311, 12sstrid 3993 . . . . . . . 8 (𝜑 → (𝐴𝐵) ⊆ 𝑆)
142cnfldtopon 24619 . . . . . . . . . . 11 𝐾 ∈ (TopOn‘ℂ)
15 resttopon 22985 . . . . . . . . . . 11 ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → (𝐾t 𝑆) ∈ (TopOn‘𝑆))
1614, 4, 15sylancr 586 . . . . . . . . . 10 (𝜑 → (𝐾t 𝑆) ∈ (TopOn‘𝑆))
171, 16eqeltrid 2836 . . . . . . . . 9 (𝜑𝑇 ∈ (TopOn‘𝑆))
18 toponuni 22736 . . . . . . . . 9 (𝑇 ∈ (TopOn‘𝑆) → 𝑆 = 𝑇)
1917, 18syl 17 . . . . . . . 8 (𝜑𝑆 = 𝑇)
2013, 19sseqtrd 4022 . . . . . . 7 (𝜑 → (𝐴𝐵) ⊆ 𝑇)
21 difssd 4132 . . . . . . 7 (𝜑 → ( 𝑇𝐵) ⊆ 𝑇)
2220, 21unssd 4186 . . . . . 6 (𝜑 → ((𝐴𝐵) ∪ ( 𝑇𝐵)) ⊆ 𝑇)
23 inundif 4478 . . . . . . 7 ((𝐴𝐵) ∪ (𝐴𝐵)) = 𝐴
2412, 19sseqtrd 4022 . . . . . . . 8 (𝜑𝐴 𝑇)
25 ssdif 4139 . . . . . . . 8 (𝐴 𝑇 → (𝐴𝐵) ⊆ ( 𝑇𝐵))
26 unss2 4181 . . . . . . . 8 ((𝐴𝐵) ⊆ ( 𝑇𝐵) → ((𝐴𝐵) ∪ (𝐴𝐵)) ⊆ ((𝐴𝐵) ∪ ( 𝑇𝐵)))
2724, 25, 263syl 18 . . . . . . 7 (𝜑 → ((𝐴𝐵) ∪ (𝐴𝐵)) ⊆ ((𝐴𝐵) ∪ ( 𝑇𝐵)))
2823, 27eqsstrrid 4031 . . . . . 6 (𝜑𝐴 ⊆ ((𝐴𝐵) ∪ ( 𝑇𝐵)))
29 eqid 2731 . . . . . . 7 𝑇 = 𝑇
3029ntrss 22879 . . . . . 6 ((𝑇 ∈ Top ∧ ((𝐴𝐵) ∪ ( 𝑇𝐵)) ⊆ 𝑇𝐴 ⊆ ((𝐴𝐵) ∪ ( 𝑇𝐵))) → ((int‘𝑇)‘𝐴) ⊆ ((int‘𝑇)‘((𝐴𝐵) ∪ ( 𝑇𝐵))))
3110, 22, 28, 30syl3anc 1370 . . . . 5 (𝜑 → ((int‘𝑇)‘𝐴) ⊆ ((int‘𝑇)‘((𝐴𝐵) ∪ ( 𝑇𝐵))))
32 dvres2lem.d . . . . . . 7 (𝜑𝑥(𝑆 D 𝐹)𝑦)
33 dvres.g . . . . . . . 8 𝐺 = (𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
34 dvres.f . . . . . . . 8 (𝜑𝐹:𝐴⟶ℂ)
351, 2, 33, 4, 34, 12eldv 25747 . . . . . . 7 (𝜑 → (𝑥(𝑆 D 𝐹)𝑦 ↔ (𝑥 ∈ ((int‘𝑇)‘𝐴) ∧ 𝑦 ∈ (𝐺 lim 𝑥))))
3632, 35mpbid 231 . . . . . 6 (𝜑 → (𝑥 ∈ ((int‘𝑇)‘𝐴) ∧ 𝑦 ∈ (𝐺 lim 𝑥)))
3736simpld 494 . . . . 5 (𝜑𝑥 ∈ ((int‘𝑇)‘𝐴))
3831, 37sseldd 3983 . . . 4 (𝜑𝑥 ∈ ((int‘𝑇)‘((𝐴𝐵) ∪ ( 𝑇𝐵))))
39 dvres2lem.x . . . 4 (𝜑𝑥𝐵)
4038, 39elind 4194 . . 3 (𝜑𝑥 ∈ (((int‘𝑇)‘((𝐴𝐵) ∪ ( 𝑇𝐵))) ∩ 𝐵))
41 dvres.b . . . . . 6 (𝜑𝐵𝑆)
4241, 19sseqtrd 4022 . . . . 5 (𝜑𝐵 𝑇)
43 inss2 4229 . . . . . 6 (𝐴𝐵) ⊆ 𝐵
4443a1i 11 . . . . 5 (𝜑 → (𝐴𝐵) ⊆ 𝐵)
45 eqid 2731 . . . . . 6 (𝑇t 𝐵) = (𝑇t 𝐵)
4629, 45restntr 23006 . . . . 5 ((𝑇 ∈ Top ∧ 𝐵 𝑇 ∧ (𝐴𝐵) ⊆ 𝐵) → ((int‘(𝑇t 𝐵))‘(𝐴𝐵)) = (((int‘𝑇)‘((𝐴𝐵) ∪ ( 𝑇𝐵))) ∩ 𝐵))
4710, 42, 44, 46syl3anc 1370 . . . 4 (𝜑 → ((int‘(𝑇t 𝐵))‘(𝐴𝐵)) = (((int‘𝑇)‘((𝐴𝐵) ∪ ( 𝑇𝐵))) ∩ 𝐵))
481oveq1i 7422 . . . . . . 7 (𝑇t 𝐵) = ((𝐾t 𝑆) ↾t 𝐵)
493a1i 11 . . . . . . . 8 (𝜑𝐾 ∈ Top)
50 restabs 22989 . . . . . . . 8 ((𝐾 ∈ Top ∧ 𝐵𝑆𝑆 ∈ V) → ((𝐾t 𝑆) ↾t 𝐵) = (𝐾t 𝐵))
5149, 41, 7, 50syl3anc 1370 . . . . . . 7 (𝜑 → ((𝐾t 𝑆) ↾t 𝐵) = (𝐾t 𝐵))
5248, 51eqtrid 2783 . . . . . 6 (𝜑 → (𝑇t 𝐵) = (𝐾t 𝐵))
5352fveq2d 6895 . . . . 5 (𝜑 → (int‘(𝑇t 𝐵)) = (int‘(𝐾t 𝐵)))
5453fveq1d 6893 . . . 4 (𝜑 → ((int‘(𝑇t 𝐵))‘(𝐴𝐵)) = ((int‘(𝐾t 𝐵))‘(𝐴𝐵)))
5547, 54eqtr3d 2773 . . 3 (𝜑 → (((int‘𝑇)‘((𝐴𝐵) ∪ ( 𝑇𝐵))) ∩ 𝐵) = ((int‘(𝐾t 𝐵))‘(𝐴𝐵)))
5640, 55eleqtrd 2834 . 2 (𝜑𝑥 ∈ ((int‘(𝐾t 𝐵))‘(𝐴𝐵)))
57 limcresi 25734 . . . 4 (𝐺 lim 𝑥) ⊆ ((𝐺 ↾ ((𝐴𝐵) ∖ {𝑥})) lim 𝑥)
5836simprd 495 . . . 4 (𝜑𝑦 ∈ (𝐺 lim 𝑥))
5957, 58sselid 3980 . . 3 (𝜑𝑦 ∈ ((𝐺 ↾ ((𝐴𝐵) ∖ {𝑥})) lim 𝑥))
60 difss 4131 . . . . . . . . 9 ((𝐴𝐵) ∖ {𝑥}) ⊆ (𝐴𝐵)
6160, 43sstri 3991 . . . . . . . 8 ((𝐴𝐵) ∖ {𝑥}) ⊆ 𝐵
6261sseli 3978 . . . . . . 7 (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) → 𝑧𝐵)
63 fvres 6910 . . . . . . . . 9 (𝑧𝐵 → ((𝐹𝐵)‘𝑧) = (𝐹𝑧))
6439fvresd 6911 . . . . . . . . 9 (𝜑 → ((𝐹𝐵)‘𝑥) = (𝐹𝑥))
6563, 64oveqan12rd 7432 . . . . . . . 8 ((𝜑𝑧𝐵) → (((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) = ((𝐹𝑧) − (𝐹𝑥)))
6665oveq1d 7427 . . . . . . 7 ((𝜑𝑧𝐵) → ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥)) = (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
6762, 66sylan2 592 . . . . . 6 ((𝜑𝑧 ∈ ((𝐴𝐵) ∖ {𝑥})) → ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥)) = (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
6867mpteq2dva 5248 . . . . 5 (𝜑 → (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥))) = (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))))
6933reseq1i 5977 . . . . . 6 (𝐺 ↾ ((𝐴𝐵) ∖ {𝑥})) = ((𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) ↾ ((𝐴𝐵) ∖ {𝑥}))
70 ssdif 4139 . . . . . . 7 ((𝐴𝐵) ⊆ 𝐴 → ((𝐴𝐵) ∖ {𝑥}) ⊆ (𝐴 ∖ {𝑥}))
71 resmpt 6037 . . . . . . 7 (((𝐴𝐵) ∖ {𝑥}) ⊆ (𝐴 ∖ {𝑥}) → ((𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) ↾ ((𝐴𝐵) ∖ {𝑥})) = (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))))
7211, 70, 71mp2b 10 . . . . . 6 ((𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) ↾ ((𝐴𝐵) ∖ {𝑥})) = (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
7369, 72eqtri 2759 . . . . 5 (𝐺 ↾ ((𝐴𝐵) ∖ {𝑥})) = (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
7468, 73eqtr4di 2789 . . . 4 (𝜑 → (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥))) = (𝐺 ↾ ((𝐴𝐵) ∖ {𝑥})))
7574oveq1d 7427 . . 3 (𝜑 → ((𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥))) lim 𝑥) = ((𝐺 ↾ ((𝐴𝐵) ∖ {𝑥})) lim 𝑥))
7659, 75eleqtrrd 2835 . 2 (𝜑𝑦 ∈ ((𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥))) lim 𝑥))
77 eqid 2731 . . 3 (𝐾t 𝐵) = (𝐾t 𝐵)
78 eqid 2731 . . 3 (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥))) = (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥)))
7941, 4sstrd 3992 . . 3 (𝜑𝐵 ⊆ ℂ)
80 fresin 6760 . . . 4 (𝐹:𝐴⟶ℂ → (𝐹𝐵):(𝐴𝐵)⟶ℂ)
8134, 80syl 17 . . 3 (𝜑 → (𝐹𝐵):(𝐴𝐵)⟶ℂ)
8277, 2, 78, 79, 81, 44eldv 25747 . 2 (𝜑 → (𝑥(𝐵 D (𝐹𝐵))𝑦 ↔ (𝑥 ∈ ((int‘(𝐾t 𝐵))‘(𝐴𝐵)) ∧ 𝑦 ∈ ((𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥))) lim 𝑥))))
8356, 76, 82mpbir2and 710 1 (𝜑𝑥(𝐵 D (𝐹𝐵))𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2105  Vcvv 3473  cdif 3945  cun 3946  cin 3947  wss 3948  {csn 4628   cuni 4908   class class class wbr 5148  cmpt 5231  cres 5678  wf 6539  cfv 6543  (class class class)co 7412  cc 11114  cmin 11451   / cdiv 11878  t crest 17373  TopOpenctopn 17374  fldccnfld 21233  Topctop 22715  TopOnctopon 22732  intcnt 22841   lim climc 25711   D cdv 25712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193  ax-pre-sup 11194
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-er 8709  df-map 8828  df-pm 8829  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-fi 9412  df-sup 9443  df-inf 9444  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-div 11879  df-nn 12220  df-2 12282  df-3 12283  df-4 12284  df-5 12285  df-6 12286  df-7 12287  df-8 12288  df-9 12289  df-n0 12480  df-z 12566  df-dec 12685  df-uz 12830  df-q 12940  df-rp 12982  df-xneg 13099  df-xadd 13100  df-xmul 13101  df-fz 13492  df-seq 13974  df-exp 14035  df-cj 15053  df-re 15054  df-im 15055  df-sqrt 15189  df-abs 15190  df-struct 17087  df-slot 17122  df-ndx 17134  df-base 17152  df-plusg 17217  df-mulr 17218  df-starv 17219  df-tset 17223  df-ple 17224  df-ds 17226  df-unif 17227  df-rest 17375  df-topn 17376  df-topgen 17396  df-psmet 21225  df-xmet 21226  df-met 21227  df-bl 21228  df-mopn 21229  df-cnfld 21234  df-top 22716  df-topon 22733  df-topsp 22755  df-bases 22769  df-cld 22843  df-ntr 22844  df-cls 22845  df-cnp 23052  df-xms 24146  df-ms 24147  df-limc 25715  df-dv 25716
This theorem is referenced by:  dvres2  25761
  Copyright terms: Public domain W3C validator