MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqexw Structured version   Visualization version   GIF version

Theorem seqexw 13982
Description: Weak version of seqex 13968 that holds without ax-rep 5286. A sequence builder exists when its binary operation input exists and its starting index is an integer. (Contributed by Rohan Ridenour, 14-Aug-2023.)
Hypotheses
Ref Expression
seqexw.1 + ∈ V
seqexw.2 𝑀 ∈ ℤ
Assertion
Ref Expression
seqexw seq𝑀( + , 𝐹) ∈ V

Proof of Theorem seqexw
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqexw.2 . . . 4 𝑀 ∈ ℤ
2 seqfn 13978 . . . 4 (𝑀 ∈ ℤ → seq𝑀( + , 𝐹) Fn (ℤ𝑀))
31, 2ax-mp 5 . . 3 seq𝑀( + , 𝐹) Fn (ℤ𝑀)
4 fnfun 6650 . . 3 (seq𝑀( + , 𝐹) Fn (ℤ𝑀) → Fun seq𝑀( + , 𝐹))
53, 4ax-mp 5 . 2 Fun seq𝑀( + , 𝐹)
63fndmi 6654 . . 3 dom seq𝑀( + , 𝐹) = (ℤ𝑀)
7 fvex 6905 . . 3 (ℤ𝑀) ∈ V
86, 7eqeltri 2830 . 2 dom seq𝑀( + , 𝐹) ∈ V
9 seqexw.1 . . . . 5 + ∈ V
109rnex 7903 . . . 4 ran + ∈ V
11 prex 5433 . . . 4 {∅, (𝐹𝑀)} ∈ V
1210, 11unex 7733 . . 3 (ran + ∪ {∅, (𝐹𝑀)}) ∈ V
13 fveq2 6892 . . . . . . 7 (𝑦 = 𝑀 → (seq𝑀( + , 𝐹)‘𝑦) = (seq𝑀( + , 𝐹)‘𝑀))
1413eleq1d 2819 . . . . . 6 (𝑦 = 𝑀 → ((seq𝑀( + , 𝐹)‘𝑦) ∈ (ran + ∪ {∅, (𝐹𝑀)}) ↔ (seq𝑀( + , 𝐹)‘𝑀) ∈ (ran + ∪ {∅, (𝐹𝑀)})))
15 fveq2 6892 . . . . . . 7 (𝑦 = 𝑧 → (seq𝑀( + , 𝐹)‘𝑦) = (seq𝑀( + , 𝐹)‘𝑧))
1615eleq1d 2819 . . . . . 6 (𝑦 = 𝑧 → ((seq𝑀( + , 𝐹)‘𝑦) ∈ (ran + ∪ {∅, (𝐹𝑀)}) ↔ (seq𝑀( + , 𝐹)‘𝑧) ∈ (ran + ∪ {∅, (𝐹𝑀)})))
17 fveq2 6892 . . . . . . 7 (𝑦 = (𝑧 + 1) → (seq𝑀( + , 𝐹)‘𝑦) = (seq𝑀( + , 𝐹)‘(𝑧 + 1)))
1817eleq1d 2819 . . . . . 6 (𝑦 = (𝑧 + 1) → ((seq𝑀( + , 𝐹)‘𝑦) ∈ (ran + ∪ {∅, (𝐹𝑀)}) ↔ (seq𝑀( + , 𝐹)‘(𝑧 + 1)) ∈ (ran + ∪ {∅, (𝐹𝑀)})))
19 fveq2 6892 . . . . . . 7 (𝑦 = 𝑥 → (seq𝑀( + , 𝐹)‘𝑦) = (seq𝑀( + , 𝐹)‘𝑥))
2019eleq1d 2819 . . . . . 6 (𝑦 = 𝑥 → ((seq𝑀( + , 𝐹)‘𝑦) ∈ (ran + ∪ {∅, (𝐹𝑀)}) ↔ (seq𝑀( + , 𝐹)‘𝑥) ∈ (ran + ∪ {∅, (𝐹𝑀)})))
21 seq1 13979 . . . . . . 7 (𝑀 ∈ ℤ → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹𝑀))
22 ssun2 4174 . . . . . . . 8 {∅, (𝐹𝑀)} ⊆ (ran + ∪ {∅, (𝐹𝑀)})
23 fvex 6905 . . . . . . . . 9 (𝐹𝑀) ∈ V
2423prid2 4768 . . . . . . . 8 (𝐹𝑀) ∈ {∅, (𝐹𝑀)}
2522, 24sselii 3980 . . . . . . 7 (𝐹𝑀) ∈ (ran + ∪ {∅, (𝐹𝑀)})
2621, 25eqeltrdi 2842 . . . . . 6 (𝑀 ∈ ℤ → (seq𝑀( + , 𝐹)‘𝑀) ∈ (ran + ∪ {∅, (𝐹𝑀)}))
27 seqp1 13981 . . . . . . . . 9 (𝑧 ∈ (ℤ𝑀) → (seq𝑀( + , 𝐹)‘(𝑧 + 1)) = ((seq𝑀( + , 𝐹)‘𝑧) + (𝐹‘(𝑧 + 1))))
2827adantr 482 . . . . . . . 8 ((𝑧 ∈ (ℤ𝑀) ∧ (seq𝑀( + , 𝐹)‘𝑧) ∈ (ran + ∪ {∅, (𝐹𝑀)})) → (seq𝑀( + , 𝐹)‘(𝑧 + 1)) = ((seq𝑀( + , 𝐹)‘𝑧) + (𝐹‘(𝑧 + 1))))
29 df-ov 7412 . . . . . . . . . 10 ((seq𝑀( + , 𝐹)‘𝑧) + (𝐹‘(𝑧 + 1))) = ( + ‘⟨(seq𝑀( + , 𝐹)‘𝑧), (𝐹‘(𝑧 + 1))⟩)
30 snsspr1 4818 . . . . . . . . . . . 12 {∅} ⊆ {∅, (𝐹𝑀)}
31 unss2 4182 . . . . . . . . . . . 12 ({∅} ⊆ {∅, (𝐹𝑀)} → (ran + ∪ {∅}) ⊆ (ran + ∪ {∅, (𝐹𝑀)}))
3230, 31ax-mp 5 . . . . . . . . . . 11 (ran + ∪ {∅}) ⊆ (ran + ∪ {∅, (𝐹𝑀)})
33 fvrn0 6922 . . . . . . . . . . 11 ( + ‘⟨(seq𝑀( + , 𝐹)‘𝑧), (𝐹‘(𝑧 + 1))⟩) ∈ (ran + ∪ {∅})
3432, 33sselii 3980 . . . . . . . . . 10 ( + ‘⟨(seq𝑀( + , 𝐹)‘𝑧), (𝐹‘(𝑧 + 1))⟩) ∈ (ran + ∪ {∅, (𝐹𝑀)})
3529, 34eqeltri 2830 . . . . . . . . 9 ((seq𝑀( + , 𝐹)‘𝑧) + (𝐹‘(𝑧 + 1))) ∈ (ran + ∪ {∅, (𝐹𝑀)})
3635a1i 11 . . . . . . . 8 ((𝑧 ∈ (ℤ𝑀) ∧ (seq𝑀( + , 𝐹)‘𝑧) ∈ (ran + ∪ {∅, (𝐹𝑀)})) → ((seq𝑀( + , 𝐹)‘𝑧) + (𝐹‘(𝑧 + 1))) ∈ (ran + ∪ {∅, (𝐹𝑀)}))
3728, 36eqeltrd 2834 . . . . . . 7 ((𝑧 ∈ (ℤ𝑀) ∧ (seq𝑀( + , 𝐹)‘𝑧) ∈ (ran + ∪ {∅, (𝐹𝑀)})) → (seq𝑀( + , 𝐹)‘(𝑧 + 1)) ∈ (ran + ∪ {∅, (𝐹𝑀)}))
3837ex 414 . . . . . 6 (𝑧 ∈ (ℤ𝑀) → ((seq𝑀( + , 𝐹)‘𝑧) ∈ (ran + ∪ {∅, (𝐹𝑀)}) → (seq𝑀( + , 𝐹)‘(𝑧 + 1)) ∈ (ran + ∪ {∅, (𝐹𝑀)})))
3914, 16, 18, 20, 26, 38uzind4 12890 . . . . 5 (𝑥 ∈ (ℤ𝑀) → (seq𝑀( + , 𝐹)‘𝑥) ∈ (ran + ∪ {∅, (𝐹𝑀)}))
4039rgen 3064 . . . 4 𝑥 ∈ (ℤ𝑀)(seq𝑀( + , 𝐹)‘𝑥) ∈ (ran + ∪ {∅, (𝐹𝑀)})
41 fnfvrnss 7120 . . . 4 ((seq𝑀( + , 𝐹) Fn (ℤ𝑀) ∧ ∀𝑥 ∈ (ℤ𝑀)(seq𝑀( + , 𝐹)‘𝑥) ∈ (ran + ∪ {∅, (𝐹𝑀)})) → ran seq𝑀( + , 𝐹) ⊆ (ran + ∪ {∅, (𝐹𝑀)}))
423, 40, 41mp2an 691 . . 3 ran seq𝑀( + , 𝐹) ⊆ (ran + ∪ {∅, (𝐹𝑀)})
4312, 42ssexi 5323 . 2 ran seq𝑀( + , 𝐹) ∈ V
44 funexw 7938 . 2 ((Fun seq𝑀( + , 𝐹) ∧ dom seq𝑀( + , 𝐹) ∈ V ∧ ran seq𝑀( + , 𝐹) ∈ V) → seq𝑀( + , 𝐹) ∈ V)
455, 8, 43, 44mp3an 1462 1 seq𝑀( + , 𝐹) ∈ V
Colors of variables: wff setvar class
Syntax hints:  wa 397   = wceq 1542  wcel 2107  wral 3062  Vcvv 3475  cun 3947  wss 3949  c0 4323  {csn 4629  {cpr 4631  cop 4635  dom cdm 5677  ran crn 5678  Fun wfun 6538   Fn wfn 6539  cfv 6544  (class class class)co 7409  1c1 11111   + caddc 11113  cz 12558  cuz 12822  seqcseq 13966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-n0 12473  df-z 12559  df-uz 12823  df-seq 13967
This theorem is referenced by:  mulgfval  18952
  Copyright terms: Public domain W3C validator