MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqexw Structured version   Visualization version   GIF version

Theorem seqexw 13923
Description: Weak version of seqex 13909 that holds without ax-rep 5243. A sequence builder exists when its binary operation input exists and its starting index is an integer. (Contributed by Rohan Ridenour, 14-Aug-2023.)
Hypotheses
Ref Expression
seqexw.1 + ∈ V
seqexw.2 𝑀 ∈ ℤ
Assertion
Ref Expression
seqexw seq𝑀( + , 𝐹) ∈ V

Proof of Theorem seqexw
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqexw.2 . . . 4 𝑀 ∈ ℤ
2 seqfn 13919 . . . 4 (𝑀 ∈ ℤ → seq𝑀( + , 𝐹) Fn (ℤ𝑀))
31, 2ax-mp 5 . . 3 seq𝑀( + , 𝐹) Fn (ℤ𝑀)
4 fnfun 6603 . . 3 (seq𝑀( + , 𝐹) Fn (ℤ𝑀) → Fun seq𝑀( + , 𝐹))
53, 4ax-mp 5 . 2 Fun seq𝑀( + , 𝐹)
63fndmi 6607 . . 3 dom seq𝑀( + , 𝐹) = (ℤ𝑀)
7 fvex 6856 . . 3 (ℤ𝑀) ∈ V
86, 7eqeltri 2834 . 2 dom seq𝑀( + , 𝐹) ∈ V
9 seqexw.1 . . . . 5 + ∈ V
109rnex 7850 . . . 4 ran + ∈ V
11 prex 5390 . . . 4 {∅, (𝐹𝑀)} ∈ V
1210, 11unex 7681 . . 3 (ran + ∪ {∅, (𝐹𝑀)}) ∈ V
13 fveq2 6843 . . . . . . 7 (𝑦 = 𝑀 → (seq𝑀( + , 𝐹)‘𝑦) = (seq𝑀( + , 𝐹)‘𝑀))
1413eleq1d 2823 . . . . . 6 (𝑦 = 𝑀 → ((seq𝑀( + , 𝐹)‘𝑦) ∈ (ran + ∪ {∅, (𝐹𝑀)}) ↔ (seq𝑀( + , 𝐹)‘𝑀) ∈ (ran + ∪ {∅, (𝐹𝑀)})))
15 fveq2 6843 . . . . . . 7 (𝑦 = 𝑧 → (seq𝑀( + , 𝐹)‘𝑦) = (seq𝑀( + , 𝐹)‘𝑧))
1615eleq1d 2823 . . . . . 6 (𝑦 = 𝑧 → ((seq𝑀( + , 𝐹)‘𝑦) ∈ (ran + ∪ {∅, (𝐹𝑀)}) ↔ (seq𝑀( + , 𝐹)‘𝑧) ∈ (ran + ∪ {∅, (𝐹𝑀)})))
17 fveq2 6843 . . . . . . 7 (𝑦 = (𝑧 + 1) → (seq𝑀( + , 𝐹)‘𝑦) = (seq𝑀( + , 𝐹)‘(𝑧 + 1)))
1817eleq1d 2823 . . . . . 6 (𝑦 = (𝑧 + 1) → ((seq𝑀( + , 𝐹)‘𝑦) ∈ (ran + ∪ {∅, (𝐹𝑀)}) ↔ (seq𝑀( + , 𝐹)‘(𝑧 + 1)) ∈ (ran + ∪ {∅, (𝐹𝑀)})))
19 fveq2 6843 . . . . . . 7 (𝑦 = 𝑥 → (seq𝑀( + , 𝐹)‘𝑦) = (seq𝑀( + , 𝐹)‘𝑥))
2019eleq1d 2823 . . . . . 6 (𝑦 = 𝑥 → ((seq𝑀( + , 𝐹)‘𝑦) ∈ (ran + ∪ {∅, (𝐹𝑀)}) ↔ (seq𝑀( + , 𝐹)‘𝑥) ∈ (ran + ∪ {∅, (𝐹𝑀)})))
21 seq1 13920 . . . . . . 7 (𝑀 ∈ ℤ → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹𝑀))
22 ssun2 4134 . . . . . . . 8 {∅, (𝐹𝑀)} ⊆ (ran + ∪ {∅, (𝐹𝑀)})
23 fvex 6856 . . . . . . . . 9 (𝐹𝑀) ∈ V
2423prid2 4725 . . . . . . . 8 (𝐹𝑀) ∈ {∅, (𝐹𝑀)}
2522, 24sselii 3942 . . . . . . 7 (𝐹𝑀) ∈ (ran + ∪ {∅, (𝐹𝑀)})
2621, 25eqeltrdi 2846 . . . . . 6 (𝑀 ∈ ℤ → (seq𝑀( + , 𝐹)‘𝑀) ∈ (ran + ∪ {∅, (𝐹𝑀)}))
27 seqp1 13922 . . . . . . . . 9 (𝑧 ∈ (ℤ𝑀) → (seq𝑀( + , 𝐹)‘(𝑧 + 1)) = ((seq𝑀( + , 𝐹)‘𝑧) + (𝐹‘(𝑧 + 1))))
2827adantr 482 . . . . . . . 8 ((𝑧 ∈ (ℤ𝑀) ∧ (seq𝑀( + , 𝐹)‘𝑧) ∈ (ran + ∪ {∅, (𝐹𝑀)})) → (seq𝑀( + , 𝐹)‘(𝑧 + 1)) = ((seq𝑀( + , 𝐹)‘𝑧) + (𝐹‘(𝑧 + 1))))
29 df-ov 7361 . . . . . . . . . 10 ((seq𝑀( + , 𝐹)‘𝑧) + (𝐹‘(𝑧 + 1))) = ( + ‘⟨(seq𝑀( + , 𝐹)‘𝑧), (𝐹‘(𝑧 + 1))⟩)
30 snsspr1 4775 . . . . . . . . . . . 12 {∅} ⊆ {∅, (𝐹𝑀)}
31 unss2 4142 . . . . . . . . . . . 12 ({∅} ⊆ {∅, (𝐹𝑀)} → (ran + ∪ {∅}) ⊆ (ran + ∪ {∅, (𝐹𝑀)}))
3230, 31ax-mp 5 . . . . . . . . . . 11 (ran + ∪ {∅}) ⊆ (ran + ∪ {∅, (𝐹𝑀)})
33 fvrn0 6873 . . . . . . . . . . 11 ( + ‘⟨(seq𝑀( + , 𝐹)‘𝑧), (𝐹‘(𝑧 + 1))⟩) ∈ (ran + ∪ {∅})
3432, 33sselii 3942 . . . . . . . . . 10 ( + ‘⟨(seq𝑀( + , 𝐹)‘𝑧), (𝐹‘(𝑧 + 1))⟩) ∈ (ran + ∪ {∅, (𝐹𝑀)})
3529, 34eqeltri 2834 . . . . . . . . 9 ((seq𝑀( + , 𝐹)‘𝑧) + (𝐹‘(𝑧 + 1))) ∈ (ran + ∪ {∅, (𝐹𝑀)})
3635a1i 11 . . . . . . . 8 ((𝑧 ∈ (ℤ𝑀) ∧ (seq𝑀( + , 𝐹)‘𝑧) ∈ (ran + ∪ {∅, (𝐹𝑀)})) → ((seq𝑀( + , 𝐹)‘𝑧) + (𝐹‘(𝑧 + 1))) ∈ (ran + ∪ {∅, (𝐹𝑀)}))
3728, 36eqeltrd 2838 . . . . . . 7 ((𝑧 ∈ (ℤ𝑀) ∧ (seq𝑀( + , 𝐹)‘𝑧) ∈ (ran + ∪ {∅, (𝐹𝑀)})) → (seq𝑀( + , 𝐹)‘(𝑧 + 1)) ∈ (ran + ∪ {∅, (𝐹𝑀)}))
3837ex 414 . . . . . 6 (𝑧 ∈ (ℤ𝑀) → ((seq𝑀( + , 𝐹)‘𝑧) ∈ (ran + ∪ {∅, (𝐹𝑀)}) → (seq𝑀( + , 𝐹)‘(𝑧 + 1)) ∈ (ran + ∪ {∅, (𝐹𝑀)})))
3914, 16, 18, 20, 26, 38uzind4 12832 . . . . 5 (𝑥 ∈ (ℤ𝑀) → (seq𝑀( + , 𝐹)‘𝑥) ∈ (ran + ∪ {∅, (𝐹𝑀)}))
4039rgen 3067 . . . 4 𝑥 ∈ (ℤ𝑀)(seq𝑀( + , 𝐹)‘𝑥) ∈ (ran + ∪ {∅, (𝐹𝑀)})
41 fnfvrnss 7069 . . . 4 ((seq𝑀( + , 𝐹) Fn (ℤ𝑀) ∧ ∀𝑥 ∈ (ℤ𝑀)(seq𝑀( + , 𝐹)‘𝑥) ∈ (ran + ∪ {∅, (𝐹𝑀)})) → ran seq𝑀( + , 𝐹) ⊆ (ran + ∪ {∅, (𝐹𝑀)}))
423, 40, 41mp2an 691 . . 3 ran seq𝑀( + , 𝐹) ⊆ (ran + ∪ {∅, (𝐹𝑀)})
4312, 42ssexi 5280 . 2 ran seq𝑀( + , 𝐹) ∈ V
44 funexw 7885 . 2 ((Fun seq𝑀( + , 𝐹) ∧ dom seq𝑀( + , 𝐹) ∈ V ∧ ran seq𝑀( + , 𝐹) ∈ V) → seq𝑀( + , 𝐹) ∈ V)
455, 8, 43, 44mp3an 1462 1 seq𝑀( + , 𝐹) ∈ V
Colors of variables: wff setvar class
Syntax hints:  wa 397   = wceq 1542  wcel 2107  wral 3065  Vcvv 3446  cun 3909  wss 3911  c0 4283  {csn 4587  {cpr 4589  cop 4593  dom cdm 5634  ran crn 5635  Fun wfun 6491   Fn wfn 6492  cfv 6497  (class class class)co 7358  1c1 11053   + caddc 11055  cz 12500  cuz 12764  seqcseq 13907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11108  ax-resscn 11109  ax-1cn 11110  ax-icn 11111  ax-addcl 11112  ax-addrcl 11113  ax-mulcl 11114  ax-mulrcl 11115  ax-mulcom 11116  ax-addass 11117  ax-mulass 11118  ax-distr 11119  ax-i2m1 11120  ax-1ne0 11121  ax-1rid 11122  ax-rnegex 11123  ax-rrecex 11124  ax-cnre 11125  ax-pre-lttri 11126  ax-pre-lttrn 11127  ax-pre-ltadd 11128  ax-pre-mulgt0 11129
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-reu 3355  df-rab 3409  df-v 3448  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-er 8649  df-en 8885  df-dom 8886  df-sdom 8887  df-pnf 11192  df-mnf 11193  df-xr 11194  df-ltxr 11195  df-le 11196  df-sub 11388  df-neg 11389  df-nn 12155  df-n0 12415  df-z 12501  df-uz 12765  df-seq 13908
This theorem is referenced by:  mulgfval  18875
  Copyright terms: Public domain W3C validator