MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqexw Structured version   Visualization version   GIF version

Theorem seqexw 14037
Description: Weak version of seqex 14023 that holds without ax-rep 5290. A sequence builder exists when its binary operation input exists and its starting index is an integer. (Contributed by Rohan Ridenour, 14-Aug-2023.)
Hypotheses
Ref Expression
seqexw.1 + ∈ V
seqexw.2 𝑀 ∈ ℤ
Assertion
Ref Expression
seqexw seq𝑀( + , 𝐹) ∈ V

Proof of Theorem seqexw
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqexw.2 . . . 4 𝑀 ∈ ℤ
2 seqfn 14033 . . . 4 (𝑀 ∈ ℤ → seq𝑀( + , 𝐹) Fn (ℤ𝑀))
31, 2ax-mp 5 . . 3 seq𝑀( + , 𝐹) Fn (ℤ𝑀)
4 fnfun 6660 . . 3 (seq𝑀( + , 𝐹) Fn (ℤ𝑀) → Fun seq𝑀( + , 𝐹))
53, 4ax-mp 5 . 2 Fun seq𝑀( + , 𝐹)
63fndmi 6664 . . 3 dom seq𝑀( + , 𝐹) = (ℤ𝑀)
7 fvex 6914 . . 3 (ℤ𝑀) ∈ V
86, 7eqeltri 2822 . 2 dom seq𝑀( + , 𝐹) ∈ V
9 seqexw.1 . . . . 5 + ∈ V
109rnex 7923 . . . 4 ran + ∈ V
11 prex 5438 . . . 4 {∅, (𝐹𝑀)} ∈ V
1210, 11unex 7754 . . 3 (ran + ∪ {∅, (𝐹𝑀)}) ∈ V
13 fveq2 6901 . . . . . . 7 (𝑦 = 𝑀 → (seq𝑀( + , 𝐹)‘𝑦) = (seq𝑀( + , 𝐹)‘𝑀))
1413eleq1d 2811 . . . . . 6 (𝑦 = 𝑀 → ((seq𝑀( + , 𝐹)‘𝑦) ∈ (ran + ∪ {∅, (𝐹𝑀)}) ↔ (seq𝑀( + , 𝐹)‘𝑀) ∈ (ran + ∪ {∅, (𝐹𝑀)})))
15 fveq2 6901 . . . . . . 7 (𝑦 = 𝑧 → (seq𝑀( + , 𝐹)‘𝑦) = (seq𝑀( + , 𝐹)‘𝑧))
1615eleq1d 2811 . . . . . 6 (𝑦 = 𝑧 → ((seq𝑀( + , 𝐹)‘𝑦) ∈ (ran + ∪ {∅, (𝐹𝑀)}) ↔ (seq𝑀( + , 𝐹)‘𝑧) ∈ (ran + ∪ {∅, (𝐹𝑀)})))
17 fveq2 6901 . . . . . . 7 (𝑦 = (𝑧 + 1) → (seq𝑀( + , 𝐹)‘𝑦) = (seq𝑀( + , 𝐹)‘(𝑧 + 1)))
1817eleq1d 2811 . . . . . 6 (𝑦 = (𝑧 + 1) → ((seq𝑀( + , 𝐹)‘𝑦) ∈ (ran + ∪ {∅, (𝐹𝑀)}) ↔ (seq𝑀( + , 𝐹)‘(𝑧 + 1)) ∈ (ran + ∪ {∅, (𝐹𝑀)})))
19 fveq2 6901 . . . . . . 7 (𝑦 = 𝑥 → (seq𝑀( + , 𝐹)‘𝑦) = (seq𝑀( + , 𝐹)‘𝑥))
2019eleq1d 2811 . . . . . 6 (𝑦 = 𝑥 → ((seq𝑀( + , 𝐹)‘𝑦) ∈ (ran + ∪ {∅, (𝐹𝑀)}) ↔ (seq𝑀( + , 𝐹)‘𝑥) ∈ (ran + ∪ {∅, (𝐹𝑀)})))
21 seq1 14034 . . . . . . 7 (𝑀 ∈ ℤ → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹𝑀))
22 ssun2 4174 . . . . . . . 8 {∅, (𝐹𝑀)} ⊆ (ran + ∪ {∅, (𝐹𝑀)})
23 fvex 6914 . . . . . . . . 9 (𝐹𝑀) ∈ V
2423prid2 4772 . . . . . . . 8 (𝐹𝑀) ∈ {∅, (𝐹𝑀)}
2522, 24sselii 3976 . . . . . . 7 (𝐹𝑀) ∈ (ran + ∪ {∅, (𝐹𝑀)})
2621, 25eqeltrdi 2834 . . . . . 6 (𝑀 ∈ ℤ → (seq𝑀( + , 𝐹)‘𝑀) ∈ (ran + ∪ {∅, (𝐹𝑀)}))
27 seqp1 14036 . . . . . . . . 9 (𝑧 ∈ (ℤ𝑀) → (seq𝑀( + , 𝐹)‘(𝑧 + 1)) = ((seq𝑀( + , 𝐹)‘𝑧) + (𝐹‘(𝑧 + 1))))
2827adantr 479 . . . . . . . 8 ((𝑧 ∈ (ℤ𝑀) ∧ (seq𝑀( + , 𝐹)‘𝑧) ∈ (ran + ∪ {∅, (𝐹𝑀)})) → (seq𝑀( + , 𝐹)‘(𝑧 + 1)) = ((seq𝑀( + , 𝐹)‘𝑧) + (𝐹‘(𝑧 + 1))))
29 df-ov 7427 . . . . . . . . . 10 ((seq𝑀( + , 𝐹)‘𝑧) + (𝐹‘(𝑧 + 1))) = ( + ‘⟨(seq𝑀( + , 𝐹)‘𝑧), (𝐹‘(𝑧 + 1))⟩)
30 snsspr1 4823 . . . . . . . . . . . 12 {∅} ⊆ {∅, (𝐹𝑀)}
31 unss2 4182 . . . . . . . . . . . 12 ({∅} ⊆ {∅, (𝐹𝑀)} → (ran + ∪ {∅}) ⊆ (ran + ∪ {∅, (𝐹𝑀)}))
3230, 31ax-mp 5 . . . . . . . . . . 11 (ran + ∪ {∅}) ⊆ (ran + ∪ {∅, (𝐹𝑀)})
33 fvrn0 6931 . . . . . . . . . . 11 ( + ‘⟨(seq𝑀( + , 𝐹)‘𝑧), (𝐹‘(𝑧 + 1))⟩) ∈ (ran + ∪ {∅})
3432, 33sselii 3976 . . . . . . . . . 10 ( + ‘⟨(seq𝑀( + , 𝐹)‘𝑧), (𝐹‘(𝑧 + 1))⟩) ∈ (ran + ∪ {∅, (𝐹𝑀)})
3529, 34eqeltri 2822 . . . . . . . . 9 ((seq𝑀( + , 𝐹)‘𝑧) + (𝐹‘(𝑧 + 1))) ∈ (ran + ∪ {∅, (𝐹𝑀)})
3635a1i 11 . . . . . . . 8 ((𝑧 ∈ (ℤ𝑀) ∧ (seq𝑀( + , 𝐹)‘𝑧) ∈ (ran + ∪ {∅, (𝐹𝑀)})) → ((seq𝑀( + , 𝐹)‘𝑧) + (𝐹‘(𝑧 + 1))) ∈ (ran + ∪ {∅, (𝐹𝑀)}))
3728, 36eqeltrd 2826 . . . . . . 7 ((𝑧 ∈ (ℤ𝑀) ∧ (seq𝑀( + , 𝐹)‘𝑧) ∈ (ran + ∪ {∅, (𝐹𝑀)})) → (seq𝑀( + , 𝐹)‘(𝑧 + 1)) ∈ (ran + ∪ {∅, (𝐹𝑀)}))
3837ex 411 . . . . . 6 (𝑧 ∈ (ℤ𝑀) → ((seq𝑀( + , 𝐹)‘𝑧) ∈ (ran + ∪ {∅, (𝐹𝑀)}) → (seq𝑀( + , 𝐹)‘(𝑧 + 1)) ∈ (ran + ∪ {∅, (𝐹𝑀)})))
3914, 16, 18, 20, 26, 38uzind4 12942 . . . . 5 (𝑥 ∈ (ℤ𝑀) → (seq𝑀( + , 𝐹)‘𝑥) ∈ (ran + ∪ {∅, (𝐹𝑀)}))
4039rgen 3053 . . . 4 𝑥 ∈ (ℤ𝑀)(seq𝑀( + , 𝐹)‘𝑥) ∈ (ran + ∪ {∅, (𝐹𝑀)})
41 fnfvrnss 7135 . . . 4 ((seq𝑀( + , 𝐹) Fn (ℤ𝑀) ∧ ∀𝑥 ∈ (ℤ𝑀)(seq𝑀( + , 𝐹)‘𝑥) ∈ (ran + ∪ {∅, (𝐹𝑀)})) → ran seq𝑀( + , 𝐹) ⊆ (ran + ∪ {∅, (𝐹𝑀)}))
423, 40, 41mp2an 690 . . 3 ran seq𝑀( + , 𝐹) ⊆ (ran + ∪ {∅, (𝐹𝑀)})
4312, 42ssexi 5327 . 2 ran seq𝑀( + , 𝐹) ∈ V
44 funexw 7965 . 2 ((Fun seq𝑀( + , 𝐹) ∧ dom seq𝑀( + , 𝐹) ∈ V ∧ ran seq𝑀( + , 𝐹) ∈ V) → seq𝑀( + , 𝐹) ∈ V)
455, 8, 43, 44mp3an 1458 1 seq𝑀( + , 𝐹) ∈ V
Colors of variables: wff setvar class
Syntax hints:  wa 394   = wceq 1534  wcel 2099  wral 3051  Vcvv 3462  cun 3945  wss 3947  c0 4325  {csn 4633  {cpr 4635  cop 4639  dom cdm 5682  ran crn 5683  Fun wfun 6548   Fn wfn 6549  cfv 6554  (class class class)co 7424  1c1 11159   + caddc 11161  cz 12610  cuz 12874  seqcseq 14021
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-nn 12265  df-n0 12525  df-z 12611  df-uz 12875  df-seq 14022
This theorem is referenced by:  mulgfval  19063
  Copyright terms: Public domain W3C validator