MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqexw Structured version   Visualization version   GIF version

Theorem seqexw 13943
Description: Weak version of seqex 13929 that holds without ax-rep 5221. A sequence builder exists when its binary operation input exists and its starting index is an integer. (Contributed by Rohan Ridenour, 14-Aug-2023.)
Hypotheses
Ref Expression
seqexw.1 + ∈ V
seqexw.2 𝑀 ∈ ℤ
Assertion
Ref Expression
seqexw seq𝑀( + , 𝐹) ∈ V

Proof of Theorem seqexw
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqexw.2 . . . 4 𝑀 ∈ ℤ
2 seqfn 13939 . . . 4 (𝑀 ∈ ℤ → seq𝑀( + , 𝐹) Fn (ℤ𝑀))
31, 2ax-mp 5 . . 3 seq𝑀( + , 𝐹) Fn (ℤ𝑀)
4 fnfun 6586 . . 3 (seq𝑀( + , 𝐹) Fn (ℤ𝑀) → Fun seq𝑀( + , 𝐹))
53, 4ax-mp 5 . 2 Fun seq𝑀( + , 𝐹)
63fndmi 6590 . . 3 dom seq𝑀( + , 𝐹) = (ℤ𝑀)
7 fvex 6839 . . 3 (ℤ𝑀) ∈ V
86, 7eqeltri 2824 . 2 dom seq𝑀( + , 𝐹) ∈ V
9 seqexw.1 . . . . 5 + ∈ V
109rnex 7850 . . . 4 ran + ∈ V
11 prex 5379 . . . 4 {∅, (𝐹𝑀)} ∈ V
1210, 11unex 7684 . . 3 (ran + ∪ {∅, (𝐹𝑀)}) ∈ V
13 fveq2 6826 . . . . . . 7 (𝑦 = 𝑀 → (seq𝑀( + , 𝐹)‘𝑦) = (seq𝑀( + , 𝐹)‘𝑀))
1413eleq1d 2813 . . . . . 6 (𝑦 = 𝑀 → ((seq𝑀( + , 𝐹)‘𝑦) ∈ (ran + ∪ {∅, (𝐹𝑀)}) ↔ (seq𝑀( + , 𝐹)‘𝑀) ∈ (ran + ∪ {∅, (𝐹𝑀)})))
15 fveq2 6826 . . . . . . 7 (𝑦 = 𝑧 → (seq𝑀( + , 𝐹)‘𝑦) = (seq𝑀( + , 𝐹)‘𝑧))
1615eleq1d 2813 . . . . . 6 (𝑦 = 𝑧 → ((seq𝑀( + , 𝐹)‘𝑦) ∈ (ran + ∪ {∅, (𝐹𝑀)}) ↔ (seq𝑀( + , 𝐹)‘𝑧) ∈ (ran + ∪ {∅, (𝐹𝑀)})))
17 fveq2 6826 . . . . . . 7 (𝑦 = (𝑧 + 1) → (seq𝑀( + , 𝐹)‘𝑦) = (seq𝑀( + , 𝐹)‘(𝑧 + 1)))
1817eleq1d 2813 . . . . . 6 (𝑦 = (𝑧 + 1) → ((seq𝑀( + , 𝐹)‘𝑦) ∈ (ran + ∪ {∅, (𝐹𝑀)}) ↔ (seq𝑀( + , 𝐹)‘(𝑧 + 1)) ∈ (ran + ∪ {∅, (𝐹𝑀)})))
19 fveq2 6826 . . . . . . 7 (𝑦 = 𝑥 → (seq𝑀( + , 𝐹)‘𝑦) = (seq𝑀( + , 𝐹)‘𝑥))
2019eleq1d 2813 . . . . . 6 (𝑦 = 𝑥 → ((seq𝑀( + , 𝐹)‘𝑦) ∈ (ran + ∪ {∅, (𝐹𝑀)}) ↔ (seq𝑀( + , 𝐹)‘𝑥) ∈ (ran + ∪ {∅, (𝐹𝑀)})))
21 seq1 13940 . . . . . . 7 (𝑀 ∈ ℤ → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹𝑀))
22 ssun2 4132 . . . . . . . 8 {∅, (𝐹𝑀)} ⊆ (ran + ∪ {∅, (𝐹𝑀)})
23 fvex 6839 . . . . . . . . 9 (𝐹𝑀) ∈ V
2423prid2 4717 . . . . . . . 8 (𝐹𝑀) ∈ {∅, (𝐹𝑀)}
2522, 24sselii 3934 . . . . . . 7 (𝐹𝑀) ∈ (ran + ∪ {∅, (𝐹𝑀)})
2621, 25eqeltrdi 2836 . . . . . 6 (𝑀 ∈ ℤ → (seq𝑀( + , 𝐹)‘𝑀) ∈ (ran + ∪ {∅, (𝐹𝑀)}))
27 seqp1 13942 . . . . . . . . 9 (𝑧 ∈ (ℤ𝑀) → (seq𝑀( + , 𝐹)‘(𝑧 + 1)) = ((seq𝑀( + , 𝐹)‘𝑧) + (𝐹‘(𝑧 + 1))))
2827adantr 480 . . . . . . . 8 ((𝑧 ∈ (ℤ𝑀) ∧ (seq𝑀( + , 𝐹)‘𝑧) ∈ (ran + ∪ {∅, (𝐹𝑀)})) → (seq𝑀( + , 𝐹)‘(𝑧 + 1)) = ((seq𝑀( + , 𝐹)‘𝑧) + (𝐹‘(𝑧 + 1))))
29 df-ov 7356 . . . . . . . . . 10 ((seq𝑀( + , 𝐹)‘𝑧) + (𝐹‘(𝑧 + 1))) = ( + ‘⟨(seq𝑀( + , 𝐹)‘𝑧), (𝐹‘(𝑧 + 1))⟩)
30 snsspr1 4768 . . . . . . . . . . . 12 {∅} ⊆ {∅, (𝐹𝑀)}
31 unss2 4140 . . . . . . . . . . . 12 ({∅} ⊆ {∅, (𝐹𝑀)} → (ran + ∪ {∅}) ⊆ (ran + ∪ {∅, (𝐹𝑀)}))
3230, 31ax-mp 5 . . . . . . . . . . 11 (ran + ∪ {∅}) ⊆ (ran + ∪ {∅, (𝐹𝑀)})
33 fvrn0 6854 . . . . . . . . . . 11 ( + ‘⟨(seq𝑀( + , 𝐹)‘𝑧), (𝐹‘(𝑧 + 1))⟩) ∈ (ran + ∪ {∅})
3432, 33sselii 3934 . . . . . . . . . 10 ( + ‘⟨(seq𝑀( + , 𝐹)‘𝑧), (𝐹‘(𝑧 + 1))⟩) ∈ (ran + ∪ {∅, (𝐹𝑀)})
3529, 34eqeltri 2824 . . . . . . . . 9 ((seq𝑀( + , 𝐹)‘𝑧) + (𝐹‘(𝑧 + 1))) ∈ (ran + ∪ {∅, (𝐹𝑀)})
3635a1i 11 . . . . . . . 8 ((𝑧 ∈ (ℤ𝑀) ∧ (seq𝑀( + , 𝐹)‘𝑧) ∈ (ran + ∪ {∅, (𝐹𝑀)})) → ((seq𝑀( + , 𝐹)‘𝑧) + (𝐹‘(𝑧 + 1))) ∈ (ran + ∪ {∅, (𝐹𝑀)}))
3728, 36eqeltrd 2828 . . . . . . 7 ((𝑧 ∈ (ℤ𝑀) ∧ (seq𝑀( + , 𝐹)‘𝑧) ∈ (ran + ∪ {∅, (𝐹𝑀)})) → (seq𝑀( + , 𝐹)‘(𝑧 + 1)) ∈ (ran + ∪ {∅, (𝐹𝑀)}))
3837ex 412 . . . . . 6 (𝑧 ∈ (ℤ𝑀) → ((seq𝑀( + , 𝐹)‘𝑧) ∈ (ran + ∪ {∅, (𝐹𝑀)}) → (seq𝑀( + , 𝐹)‘(𝑧 + 1)) ∈ (ran + ∪ {∅, (𝐹𝑀)})))
3914, 16, 18, 20, 26, 38uzind4 12826 . . . . 5 (𝑥 ∈ (ℤ𝑀) → (seq𝑀( + , 𝐹)‘𝑥) ∈ (ran + ∪ {∅, (𝐹𝑀)}))
4039rgen 3046 . . . 4 𝑥 ∈ (ℤ𝑀)(seq𝑀( + , 𝐹)‘𝑥) ∈ (ran + ∪ {∅, (𝐹𝑀)})
41 fnfvrnss 7059 . . . 4 ((seq𝑀( + , 𝐹) Fn (ℤ𝑀) ∧ ∀𝑥 ∈ (ℤ𝑀)(seq𝑀( + , 𝐹)‘𝑥) ∈ (ran + ∪ {∅, (𝐹𝑀)})) → ran seq𝑀( + , 𝐹) ⊆ (ran + ∪ {∅, (𝐹𝑀)}))
423, 40, 41mp2an 692 . . 3 ran seq𝑀( + , 𝐹) ⊆ (ran + ∪ {∅, (𝐹𝑀)})
4312, 42ssexi 5264 . 2 ran seq𝑀( + , 𝐹) ∈ V
44 funexw 7894 . 2 ((Fun seq𝑀( + , 𝐹) ∧ dom seq𝑀( + , 𝐹) ∈ V ∧ ran seq𝑀( + , 𝐹) ∈ V) → seq𝑀( + , 𝐹) ∈ V)
455, 8, 43, 44mp3an 1463 1 seq𝑀( + , 𝐹) ∈ V
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3438  cun 3903  wss 3905  c0 4286  {csn 4579  {cpr 4581  cop 4585  dom cdm 5623  ran crn 5624  Fun wfun 6480   Fn wfn 6481  cfv 6486  (class class class)co 7353  1c1 11029   + caddc 11031  cz 12490  cuz 12754  seqcseq 13927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-nn 12148  df-n0 12404  df-z 12491  df-uz 12755  df-seq 13928
This theorem is referenced by:  mulgfval  18967
  Copyright terms: Public domain W3C validator