MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniioombllem3 Structured version   Visualization version   GIF version

Theorem uniioombllem3 24654
Description: Lemma for uniioombl 24658. (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypotheses
Ref Expression
uniioombl.1 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.2 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
uniioombl.3 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
uniioombl.a 𝐴 = ran ((,) ∘ 𝐹)
uniioombl.e (𝜑 → (vol*‘𝐸) ∈ ℝ)
uniioombl.c (𝜑𝐶 ∈ ℝ+)
uniioombl.g (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.s (𝜑𝐸 ran ((,) ∘ 𝐺))
uniioombl.t 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
uniioombl.v (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))
uniioombl.m (𝜑𝑀 ∈ ℕ)
uniioombl.m2 (𝜑 → (abs‘((𝑇𝑀) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)
uniioombl.k 𝐾 = (((,) ∘ 𝐺) “ (1...𝑀))
Assertion
Ref Expression
uniioombllem3 (𝜑 → ((vol*‘(𝐸𝐴)) + (vol*‘(𝐸𝐴))) < (((vol*‘(𝐾𝐴)) + (vol*‘(𝐾𝐴))) + (𝐶 + 𝐶)))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐺   𝑥,𝐾   𝑥,𝐴   𝑥,𝐶   𝑥,𝑀   𝜑,𝑥   𝑥,𝑇
Allowed substitution hints:   𝑆(𝑥)   𝐸(𝑥)

Proof of Theorem uniioombllem3
Dummy variables 𝑗 𝑘 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 4159 . . . . 5 (𝐸𝐴) ⊆ 𝐸
21a1i 11 . . . 4 (𝜑 → (𝐸𝐴) ⊆ 𝐸)
3 uniioombl.s . . . . 5 (𝜑𝐸 ran ((,) ∘ 𝐺))
4 uniioombl.g . . . . . . . 8 (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
54uniiccdif 24647 . . . . . . 7 (𝜑 → ( ran ((,) ∘ 𝐺) ⊆ ran ([,] ∘ 𝐺) ∧ (vol*‘( ran ([,] ∘ 𝐺) ∖ ran ((,) ∘ 𝐺))) = 0))
65simpld 494 . . . . . 6 (𝜑 ran ((,) ∘ 𝐺) ⊆ ran ([,] ∘ 𝐺))
7 ovolficcss 24538 . . . . . . 7 (𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ran ([,] ∘ 𝐺) ⊆ ℝ)
84, 7syl 17 . . . . . 6 (𝜑 ran ([,] ∘ 𝐺) ⊆ ℝ)
96, 8sstrd 3927 . . . . 5 (𝜑 ran ((,) ∘ 𝐺) ⊆ ℝ)
103, 9sstrd 3927 . . . 4 (𝜑𝐸 ⊆ ℝ)
11 uniioombl.e . . . 4 (𝜑 → (vol*‘𝐸) ∈ ℝ)
12 ovolsscl 24555 . . . 4 (((𝐸𝐴) ⊆ 𝐸𝐸 ⊆ ℝ ∧ (vol*‘𝐸) ∈ ℝ) → (vol*‘(𝐸𝐴)) ∈ ℝ)
132, 10, 11, 12syl3anc 1369 . . 3 (𝜑 → (vol*‘(𝐸𝐴)) ∈ ℝ)
14 difssd 4063 . . . 4 (𝜑 → (𝐸𝐴) ⊆ 𝐸)
15 ovolsscl 24555 . . . 4 (((𝐸𝐴) ⊆ 𝐸𝐸 ⊆ ℝ ∧ (vol*‘𝐸) ∈ ℝ) → (vol*‘(𝐸𝐴)) ∈ ℝ)
1614, 10, 11, 15syl3anc 1369 . . 3 (𝜑 → (vol*‘(𝐸𝐴)) ∈ ℝ)
17 inss1 4159 . . . . . 6 (𝐾𝐴) ⊆ 𝐾
1817a1i 11 . . . . 5 (𝜑 → (𝐾𝐴) ⊆ 𝐾)
19 uniioombl.1 . . . . . . . 8 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
20 uniioombl.2 . . . . . . . 8 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
21 uniioombl.3 . . . . . . . 8 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
22 uniioombl.a . . . . . . . 8 𝐴 = ran ((,) ∘ 𝐹)
23 uniioombl.c . . . . . . . 8 (𝜑𝐶 ∈ ℝ+)
24 uniioombl.t . . . . . . . 8 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
25 uniioombl.v . . . . . . . 8 (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))
26 uniioombl.m . . . . . . . 8 (𝜑𝑀 ∈ ℕ)
27 uniioombl.m2 . . . . . . . 8 (𝜑 → (abs‘((𝑇𝑀) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)
28 uniioombl.k . . . . . . . 8 𝐾 = (((,) ∘ 𝐺) “ (1...𝑀))
2919, 20, 21, 22, 11, 23, 4, 3, 24, 25, 26, 27, 28uniioombllem3a 24653 . . . . . . 7 (𝜑 → (𝐾 = 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)) ∧ (vol*‘𝐾) ∈ ℝ))
3029simpld 494 . . . . . 6 (𝜑𝐾 = 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)))
31 inss2 4160 . . . . . . . . . . . . 13 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
32 elfznn 13214 . . . . . . . . . . . . . 14 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ ℕ)
33 ffvelrn 6941 . . . . . . . . . . . . . 14 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑗 ∈ ℕ) → (𝐺𝑗) ∈ ( ≤ ∩ (ℝ × ℝ)))
344, 32, 33syl2an 595 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑀)) → (𝐺𝑗) ∈ ( ≤ ∩ (ℝ × ℝ)))
3531, 34sselid 3915 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑀)) → (𝐺𝑗) ∈ (ℝ × ℝ))
36 1st2nd2 7843 . . . . . . . . . . . 12 ((𝐺𝑗) ∈ (ℝ × ℝ) → (𝐺𝑗) = ⟨(1st ‘(𝐺𝑗)), (2nd ‘(𝐺𝑗))⟩)
3735, 36syl 17 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → (𝐺𝑗) = ⟨(1st ‘(𝐺𝑗)), (2nd ‘(𝐺𝑗))⟩)
3837fveq2d 6760 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑀)) → ((,)‘(𝐺𝑗)) = ((,)‘⟨(1st ‘(𝐺𝑗)), (2nd ‘(𝐺𝑗))⟩))
39 df-ov 7258 . . . . . . . . . 10 ((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗))) = ((,)‘⟨(1st ‘(𝐺𝑗)), (2nd ‘(𝐺𝑗))⟩)
4038, 39eqtr4di 2797 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑀)) → ((,)‘(𝐺𝑗)) = ((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗))))
41 ioossre 13069 . . . . . . . . 9 ((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗))) ⊆ ℝ
4240, 41eqsstrdi 3971 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑀)) → ((,)‘(𝐺𝑗)) ⊆ ℝ)
4342ralrimiva 3107 . . . . . . 7 (𝜑 → ∀𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)) ⊆ ℝ)
44 iunss 4971 . . . . . . 7 ( 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)) ⊆ ℝ ↔ ∀𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)) ⊆ ℝ)
4543, 44sylibr 233 . . . . . 6 (𝜑 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)) ⊆ ℝ)
4630, 45eqsstrd 3955 . . . . 5 (𝜑𝐾 ⊆ ℝ)
4729simprd 495 . . . . 5 (𝜑 → (vol*‘𝐾) ∈ ℝ)
48 ovolsscl 24555 . . . . 5 (((𝐾𝐴) ⊆ 𝐾𝐾 ⊆ ℝ ∧ (vol*‘𝐾) ∈ ℝ) → (vol*‘(𝐾𝐴)) ∈ ℝ)
4918, 46, 47, 48syl3anc 1369 . . . 4 (𝜑 → (vol*‘(𝐾𝐴)) ∈ ℝ)
5023rpred 12701 . . . 4 (𝜑𝐶 ∈ ℝ)
5149, 50readdcld 10935 . . 3 (𝜑 → ((vol*‘(𝐾𝐴)) + 𝐶) ∈ ℝ)
52 difssd 4063 . . . . 5 (𝜑 → (𝐾𝐴) ⊆ 𝐾)
53 ovolsscl 24555 . . . . 5 (((𝐾𝐴) ⊆ 𝐾𝐾 ⊆ ℝ ∧ (vol*‘𝐾) ∈ ℝ) → (vol*‘(𝐾𝐴)) ∈ ℝ)
5452, 46, 47, 53syl3anc 1369 . . . 4 (𝜑 → (vol*‘(𝐾𝐴)) ∈ ℝ)
5554, 50readdcld 10935 . . 3 (𝜑 → ((vol*‘(𝐾𝐴)) + 𝐶) ∈ ℝ)
56 ssun2 4103 . . . . . . 7 (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) ⊆ (𝐾 (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))
57 ioof 13108 . . . . . . . . . . . . . . 15 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
58 rexpssxrxp 10951 . . . . . . . . . . . . . . . . 17 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
5931, 58sstri 3926 . . . . . . . . . . . . . . . 16 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)
60 fss 6601 . . . . . . . . . . . . . . . 16 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)) → 𝐺:ℕ⟶(ℝ* × ℝ*))
614, 59, 60sylancl 585 . . . . . . . . . . . . . . 15 (𝜑𝐺:ℕ⟶(ℝ* × ℝ*))
62 fco 6608 . . . . . . . . . . . . . . 15 (((,):(ℝ* × ℝ*)⟶𝒫 ℝ ∧ 𝐺:ℕ⟶(ℝ* × ℝ*)) → ((,) ∘ 𝐺):ℕ⟶𝒫 ℝ)
6357, 61, 62sylancr 586 . . . . . . . . . . . . . 14 (𝜑 → ((,) ∘ 𝐺):ℕ⟶𝒫 ℝ)
6463ffnd 6585 . . . . . . . . . . . . 13 (𝜑 → ((,) ∘ 𝐺) Fn ℕ)
65 fnima 6547 . . . . . . . . . . . . 13 (((,) ∘ 𝐺) Fn ℕ → (((,) ∘ 𝐺) “ ℕ) = ran ((,) ∘ 𝐺))
6664, 65syl 17 . . . . . . . . . . . 12 (𝜑 → (((,) ∘ 𝐺) “ ℕ) = ran ((,) ∘ 𝐺))
67 nnuz 12550 . . . . . . . . . . . . . . 15 ℕ = (ℤ‘1)
6826peano2nnd 11920 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑀 + 1) ∈ ℕ)
6968, 67eleqtrdi 2849 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑀 + 1) ∈ (ℤ‘1))
70 uzsplit 13257 . . . . . . . . . . . . . . . 16 ((𝑀 + 1) ∈ (ℤ‘1) → (ℤ‘1) = ((1...((𝑀 + 1) − 1)) ∪ (ℤ‘(𝑀 + 1))))
7169, 70syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (ℤ‘1) = ((1...((𝑀 + 1) − 1)) ∪ (ℤ‘(𝑀 + 1))))
7267, 71syl5eq 2791 . . . . . . . . . . . . . 14 (𝜑 → ℕ = ((1...((𝑀 + 1) − 1)) ∪ (ℤ‘(𝑀 + 1))))
7326nncnd 11919 . . . . . . . . . . . . . . . . 17 (𝜑𝑀 ∈ ℂ)
74 ax-1cn 10860 . . . . . . . . . . . . . . . . 17 1 ∈ ℂ
75 pncan 11157 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑀 + 1) − 1) = 𝑀)
7673, 74, 75sylancl 585 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑀 + 1) − 1) = 𝑀)
7776oveq2d 7271 . . . . . . . . . . . . . . 15 (𝜑 → (1...((𝑀 + 1) − 1)) = (1...𝑀))
7877uneq1d 4092 . . . . . . . . . . . . . 14 (𝜑 → ((1...((𝑀 + 1) − 1)) ∪ (ℤ‘(𝑀 + 1))) = ((1...𝑀) ∪ (ℤ‘(𝑀 + 1))))
7972, 78eqtrd 2778 . . . . . . . . . . . . 13 (𝜑 → ℕ = ((1...𝑀) ∪ (ℤ‘(𝑀 + 1))))
8079imaeq2d 5958 . . . . . . . . . . . 12 (𝜑 → (((,) ∘ 𝐺) “ ℕ) = (((,) ∘ 𝐺) “ ((1...𝑀) ∪ (ℤ‘(𝑀 + 1)))))
8166, 80eqtr3d 2780 . . . . . . . . . . 11 (𝜑 → ran ((,) ∘ 𝐺) = (((,) ∘ 𝐺) “ ((1...𝑀) ∪ (ℤ‘(𝑀 + 1)))))
82 imaundi 6042 . . . . . . . . . . 11 (((,) ∘ 𝐺) “ ((1...𝑀) ∪ (ℤ‘(𝑀 + 1)))) = ((((,) ∘ 𝐺) “ (1...𝑀)) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))
8381, 82eqtrdi 2795 . . . . . . . . . 10 (𝜑 → ran ((,) ∘ 𝐺) = ((((,) ∘ 𝐺) “ (1...𝑀)) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))))
8483unieqd 4850 . . . . . . . . 9 (𝜑 ran ((,) ∘ 𝐺) = ((((,) ∘ 𝐺) “ (1...𝑀)) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))))
85 uniun 4861 . . . . . . . . 9 ((((,) ∘ 𝐺) “ (1...𝑀)) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) = ( (((,) ∘ 𝐺) “ (1...𝑀)) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))
8684, 85eqtrdi 2795 . . . . . . . 8 (𝜑 ran ((,) ∘ 𝐺) = ( (((,) ∘ 𝐺) “ (1...𝑀)) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))))
8728uneq1i 4089 . . . . . . . 8 (𝐾 (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) = ( (((,) ∘ 𝐺) “ (1...𝑀)) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))
8886, 87eqtr4di 2797 . . . . . . 7 (𝜑 ran ((,) ∘ 𝐺) = (𝐾 (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))))
8956, 88sseqtrrid 3970 . . . . . 6 (𝜑 (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) ⊆ ran ((,) ∘ 𝐺))
9019, 20, 21, 22, 11, 23, 4, 3, 24, 25uniioombllem1 24650 . . . . . . 7 (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ)
91 ssid 3939 . . . . . . . 8 ran ((,) ∘ 𝐺) ⊆ ran ((,) ∘ 𝐺)
9224ovollb 24548 . . . . . . . 8 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ran ((,) ∘ 𝐺) ⊆ ran ((,) ∘ 𝐺)) → (vol*‘ ran ((,) ∘ 𝐺)) ≤ sup(ran 𝑇, ℝ*, < ))
934, 91, 92sylancl 585 . . . . . . 7 (𝜑 → (vol*‘ ran ((,) ∘ 𝐺)) ≤ sup(ran 𝑇, ℝ*, < ))
94 ovollecl 24552 . . . . . . 7 (( ran ((,) ∘ 𝐺) ⊆ ℝ ∧ sup(ran 𝑇, ℝ*, < ) ∈ ℝ ∧ (vol*‘ ran ((,) ∘ 𝐺)) ≤ sup(ran 𝑇, ℝ*, < )) → (vol*‘ ran ((,) ∘ 𝐺)) ∈ ℝ)
959, 90, 93, 94syl3anc 1369 . . . . . 6 (𝜑 → (vol*‘ ran ((,) ∘ 𝐺)) ∈ ℝ)
96 ovolsscl 24555 . . . . . 6 (( (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) ⊆ ran ((,) ∘ 𝐺) ∧ ran ((,) ∘ 𝐺) ⊆ ℝ ∧ (vol*‘ ran ((,) ∘ 𝐺)) ∈ ℝ) → (vol*‘ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ∈ ℝ)
9789, 9, 95, 96syl3anc 1369 . . . . 5 (𝜑 → (vol*‘ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ∈ ℝ)
9849, 97readdcld 10935 . . . 4 (𝜑 → ((vol*‘(𝐾𝐴)) + (vol*‘ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))) ∈ ℝ)
99 unss1 4109 . . . . . . . 8 ((𝐾𝐴) ⊆ 𝐾 → ((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ⊆ (𝐾 (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))))
10017, 99ax-mp 5 . . . . . . 7 ((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ⊆ (𝐾 (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))
101100, 88sseqtrrid 3970 . . . . . 6 (𝜑 → ((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ⊆ ran ((,) ∘ 𝐺))
102 ovolsscl 24555 . . . . . 6 ((((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ⊆ ran ((,) ∘ 𝐺) ∧ ran ((,) ∘ 𝐺) ⊆ ℝ ∧ (vol*‘ ran ((,) ∘ 𝐺)) ∈ ℝ) → (vol*‘((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))) ∈ ℝ)
103101, 9, 95, 102syl3anc 1369 . . . . 5 (𝜑 → (vol*‘((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))) ∈ ℝ)
1043, 88sseqtrd 3957 . . . . . . . 8 (𝜑𝐸 ⊆ (𝐾 (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))))
105104ssrind 4166 . . . . . . 7 (𝜑 → (𝐸𝐴) ⊆ ((𝐾 (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ∩ 𝐴))
106 indir 4206 . . . . . . . 8 ((𝐾 (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ∩ 𝐴) = ((𝐾𝐴) ∪ ( (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) ∩ 𝐴))
107 inss1 4159 . . . . . . . . 9 ( (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) ∩ 𝐴) ⊆ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))
108 unss2 4111 . . . . . . . . 9 (( (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) ∩ 𝐴) ⊆ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) → ((𝐾𝐴) ∪ ( (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) ∩ 𝐴)) ⊆ ((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))))
109107, 108ax-mp 5 . . . . . . . 8 ((𝐾𝐴) ∪ ( (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) ∩ 𝐴)) ⊆ ((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))
110106, 109eqsstri 3951 . . . . . . 7 ((𝐾 (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ∩ 𝐴) ⊆ ((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))
111105, 110sstrdi 3929 . . . . . 6 (𝜑 → (𝐸𝐴) ⊆ ((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))))
112101, 9sstrd 3927 . . . . . 6 (𝜑 → ((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ⊆ ℝ)
113 ovolss 24554 . . . . . 6 (((𝐸𝐴) ⊆ ((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ∧ ((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ⊆ ℝ) → (vol*‘(𝐸𝐴)) ≤ (vol*‘((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))))
114111, 112, 113syl2anc 583 . . . . 5 (𝜑 → (vol*‘(𝐸𝐴)) ≤ (vol*‘((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))))
11518, 46sstrd 3927 . . . . . 6 (𝜑 → (𝐾𝐴) ⊆ ℝ)
11689, 9sstrd 3927 . . . . . 6 (𝜑 (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) ⊆ ℝ)
117 ovolun 24568 . . . . . 6 ((((𝐾𝐴) ⊆ ℝ ∧ (vol*‘(𝐾𝐴)) ∈ ℝ) ∧ ( (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) ⊆ ℝ ∧ (vol*‘ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ∈ ℝ)) → (vol*‘((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))) ≤ ((vol*‘(𝐾𝐴)) + (vol*‘ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))))
118115, 49, 116, 97, 117syl22anc 835 . . . . 5 (𝜑 → (vol*‘((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))) ≤ ((vol*‘(𝐾𝐴)) + (vol*‘ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))))
11913, 103, 98, 114, 118letrd 11062 . . . 4 (𝜑 → (vol*‘(𝐸𝐴)) ≤ ((vol*‘(𝐾𝐴)) + (vol*‘ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))))
120 rge0ssre 13117 . . . . . . . 8 (0[,)+∞) ⊆ ℝ
121 eqid 2738 . . . . . . . . . . 11 ((abs ∘ − ) ∘ 𝐺) = ((abs ∘ − ) ∘ 𝐺)
122121, 24ovolsf 24541 . . . . . . . . . 10 (𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝑇:ℕ⟶(0[,)+∞))
1234, 122syl 17 . . . . . . . . 9 (𝜑𝑇:ℕ⟶(0[,)+∞))
124123, 26ffvelrnd 6944 . . . . . . . 8 (𝜑 → (𝑇𝑀) ∈ (0[,)+∞))
125120, 124sselid 3915 . . . . . . 7 (𝜑 → (𝑇𝑀) ∈ ℝ)
12690, 125resubcld 11333 . . . . . 6 (𝜑 → (sup(ran 𝑇, ℝ*, < ) − (𝑇𝑀)) ∈ ℝ)
12797rexrd 10956 . . . . . . 7 (𝜑 → (vol*‘ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ∈ ℝ*)
128 id 22 . . . . . . . . . . . . . 14 (𝑧 ∈ ℕ → 𝑧 ∈ ℕ)
129 nnaddcl 11926 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑧 + 𝑀) ∈ ℕ)
130128, 26, 129syl2anr 596 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ ℕ) → (𝑧 + 𝑀) ∈ ℕ)
1314ffvelrnda 6943 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧 + 𝑀) ∈ ℕ) → (𝐺‘(𝑧 + 𝑀)) ∈ ( ≤ ∩ (ℝ × ℝ)))
132130, 131syldan 590 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ ℕ) → (𝐺‘(𝑧 + 𝑀)) ∈ ( ≤ ∩ (ℝ × ℝ)))
133132fmpttd 6971 . . . . . . . . . . 11 (𝜑 → (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))):ℕ⟶( ≤ ∩ (ℝ × ℝ)))
134 eqid 2738 . . . . . . . . . . . 12 ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))) = ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))
135 eqid 2738 . . . . . . . . . . . 12 seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))) = seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))
136134, 135ovolsf 24541 . . . . . . . . . . 11 ((𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))):ℕ⟶( ≤ ∩ (ℝ × ℝ)) → seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))):ℕ⟶(0[,)+∞))
137133, 136syl 17 . . . . . . . . . 10 (𝜑 → seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))):ℕ⟶(0[,)+∞))
138137frnd 6592 . . . . . . . . 9 (𝜑 → ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))) ⊆ (0[,)+∞))
139 icossxr 13093 . . . . . . . . 9 (0[,)+∞) ⊆ ℝ*
140138, 139sstrdi 3929 . . . . . . . 8 (𝜑 → ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))) ⊆ ℝ*)
141 supxrcl 12978 . . . . . . . 8 (ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))) ⊆ ℝ* → sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))), ℝ*, < ) ∈ ℝ*)
142140, 141syl 17 . . . . . . 7 (𝜑 → sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))), ℝ*, < ) ∈ ℝ*)
143126rexrd 10956 . . . . . . 7 (𝜑 → (sup(ran 𝑇, ℝ*, < ) − (𝑇𝑀)) ∈ ℝ*)
144 1zzd 12281 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → 1 ∈ ℤ)
14526nnzd 12354 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑀 ∈ ℤ)
146145adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → 𝑀 ∈ ℤ)
147 addcom 11091 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑀 + 1) = (1 + 𝑀))
14873, 74, 147sylancl 585 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑀 + 1) = (1 + 𝑀))
149148fveq2d 6760 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (ℤ‘(𝑀 + 1)) = (ℤ‘(1 + 𝑀)))
150149eleq2d 2824 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑥 ∈ (ℤ‘(𝑀 + 1)) ↔ 𝑥 ∈ (ℤ‘(1 + 𝑀))))
151150biimpa 476 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → 𝑥 ∈ (ℤ‘(1 + 𝑀)))
152 eluzsub 12543 . . . . . . . . . . . . . . . . . . 19 ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑥 ∈ (ℤ‘(1 + 𝑀))) → (𝑥𝑀) ∈ (ℤ‘1))
153144, 146, 151, 152syl3anc 1369 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → (𝑥𝑀) ∈ (ℤ‘1))
154153, 67eleqtrrdi 2850 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → (𝑥𝑀) ∈ ℕ)
155 eluzelz 12521 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (ℤ‘(𝑀 + 1)) → 𝑥 ∈ ℤ)
156155adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → 𝑥 ∈ ℤ)
157156zcnd 12356 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → 𝑥 ∈ ℂ)
15873adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → 𝑀 ∈ ℂ)
159157, 158npcand 11266 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → ((𝑥𝑀) + 𝑀) = 𝑥)
160159eqcomd 2744 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → 𝑥 = ((𝑥𝑀) + 𝑀))
161 oveq1 7262 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝑥𝑀) → (𝑧 + 𝑀) = ((𝑥𝑀) + 𝑀))
162161rspceeqv 3567 . . . . . . . . . . . . . . . . 17 (((𝑥𝑀) ∈ ℕ ∧ 𝑥 = ((𝑥𝑀) + 𝑀)) → ∃𝑧 ∈ ℕ 𝑥 = (𝑧 + 𝑀))
163154, 160, 162syl2anc 583 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → ∃𝑧 ∈ ℕ 𝑥 = (𝑧 + 𝑀))
164 eqid 2738 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ℕ ↦ (𝑧 + 𝑀)) = (𝑧 ∈ ℕ ↦ (𝑧 + 𝑀))
165164elrnmpt 5854 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ V → (𝑥 ∈ ran (𝑧 ∈ ℕ ↦ (𝑧 + 𝑀)) ↔ ∃𝑧 ∈ ℕ 𝑥 = (𝑧 + 𝑀)))
166165elv 3428 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ran (𝑧 ∈ ℕ ↦ (𝑧 + 𝑀)) ↔ ∃𝑧 ∈ ℕ 𝑥 = (𝑧 + 𝑀))
167163, 166sylibr 233 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → 𝑥 ∈ ran (𝑧 ∈ ℕ ↦ (𝑧 + 𝑀)))
168167ex 412 . . . . . . . . . . . . . 14 (𝜑 → (𝑥 ∈ (ℤ‘(𝑀 + 1)) → 𝑥 ∈ ran (𝑧 ∈ ℕ ↦ (𝑧 + 𝑀))))
169168ssrdv 3923 . . . . . . . . . . . . 13 (𝜑 → (ℤ‘(𝑀 + 1)) ⊆ ran (𝑧 ∈ ℕ ↦ (𝑧 + 𝑀)))
170 imass2 5999 . . . . . . . . . . . . 13 ((ℤ‘(𝑀 + 1)) ⊆ ran (𝑧 ∈ ℕ ↦ (𝑧 + 𝑀)) → (𝐺 “ (ℤ‘(𝑀 + 1))) ⊆ (𝐺 “ ran (𝑧 ∈ ℕ ↦ (𝑧 + 𝑀))))
171169, 170syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐺 “ (ℤ‘(𝑀 + 1))) ⊆ (𝐺 “ ran (𝑧 ∈ ℕ ↦ (𝑧 + 𝑀))))
172 rnco2 6146 . . . . . . . . . . . . 13 ran (𝐺 ∘ (𝑧 ∈ ℕ ↦ (𝑧 + 𝑀))) = (𝐺 “ ran (𝑧 ∈ ℕ ↦ (𝑧 + 𝑀)))
1734, 130cofmpt 6986 . . . . . . . . . . . . . 14 (𝜑 → (𝐺 ∘ (𝑧 ∈ ℕ ↦ (𝑧 + 𝑀))) = (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))
174173rneqd 5836 . . . . . . . . . . . . 13 (𝜑 → ran (𝐺 ∘ (𝑧 ∈ ℕ ↦ (𝑧 + 𝑀))) = ran (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))
175172, 174eqtr3id 2793 . . . . . . . . . . . 12 (𝜑 → (𝐺 “ ran (𝑧 ∈ ℕ ↦ (𝑧 + 𝑀))) = ran (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))
176171, 175sseqtrd 3957 . . . . . . . . . . 11 (𝜑 → (𝐺 “ (ℤ‘(𝑀 + 1))) ⊆ ran (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))
177 imass2 5999 . . . . . . . . . . 11 ((𝐺 “ (ℤ‘(𝑀 + 1))) ⊆ ran (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))) → ((,) “ (𝐺 “ (ℤ‘(𝑀 + 1)))) ⊆ ((,) “ ran (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))
178176, 177syl 17 . . . . . . . . . 10 (𝜑 → ((,) “ (𝐺 “ (ℤ‘(𝑀 + 1)))) ⊆ ((,) “ ran (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))
179 imaco 6144 . . . . . . . . . 10 (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) = ((,) “ (𝐺 “ (ℤ‘(𝑀 + 1))))
180 rnco2 6146 . . . . . . . . . 10 ran ((,) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))) = ((,) “ ran (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))
181178, 179, 1803sstr4g 3962 . . . . . . . . 9 (𝜑 → (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) ⊆ ran ((,) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))
182181unissd 4846 . . . . . . . 8 (𝜑 (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) ⊆ ran ((,) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))
183135ovollb 24548 . . . . . . . 8 (((𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))):ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) ⊆ ran ((,) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))) → (vol*‘ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))), ℝ*, < ))
184133, 182, 183syl2anc 583 . . . . . . 7 (𝜑 → (vol*‘ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))), ℝ*, < ))
185123frnd 6592 . . . . . . . . . . . . 13 (𝜑 → ran 𝑇 ⊆ (0[,)+∞))
186185, 139sstrdi 3929 . . . . . . . . . . . 12 (𝜑 → ran 𝑇 ⊆ ℝ*)
18724fveq1i 6757 . . . . . . . . . . . . . 14 (𝑇‘(𝑀 + 𝑛)) = (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘(𝑀 + 𝑛))
18826nnred 11918 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑀 ∈ ℝ)
189188ltp1d 11835 . . . . . . . . . . . . . . . . . 18 (𝜑𝑀 < (𝑀 + 1))
190 fzdisj 13212 . . . . . . . . . . . . . . . . . 18 (𝑀 < (𝑀 + 1) → ((1...𝑀) ∩ ((𝑀 + 1)...(𝑀 + 𝑛))) = ∅)
191189, 190syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → ((1...𝑀) ∩ ((𝑀 + 1)...(𝑀 + 𝑛))) = ∅)
192191adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → ((1...𝑀) ∩ ((𝑀 + 1)...(𝑀 + 𝑛))) = ∅)
193 nnnn0 12170 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
194 nn0addge1 12209 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ ℝ ∧ 𝑛 ∈ ℕ0) → 𝑀 ≤ (𝑀 + 𝑛))
195188, 193, 194syl2an 595 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ ℕ) → 𝑀 ≤ (𝑀 + 𝑛))
19626adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑛 ∈ ℕ) → 𝑀 ∈ ℕ)
197196, 67eleqtrdi 2849 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ) → 𝑀 ∈ (ℤ‘1))
198 nnaddcl 11926 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝑀 + 𝑛) ∈ ℕ)
19926, 198sylan 579 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑛 ∈ ℕ) → (𝑀 + 𝑛) ∈ ℕ)
200199nnzd 12354 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ) → (𝑀 + 𝑛) ∈ ℤ)
201 elfz5 13177 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ (ℤ‘1) ∧ (𝑀 + 𝑛) ∈ ℤ) → (𝑀 ∈ (1...(𝑀 + 𝑛)) ↔ 𝑀 ≤ (𝑀 + 𝑛)))
202197, 200, 201syl2anc 583 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ ℕ) → (𝑀 ∈ (1...(𝑀 + 𝑛)) ↔ 𝑀 ≤ (𝑀 + 𝑛)))
203195, 202mpbird 256 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ) → 𝑀 ∈ (1...(𝑀 + 𝑛)))
204 fzsplit 13211 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ (1...(𝑀 + 𝑛)) → (1...(𝑀 + 𝑛)) = ((1...𝑀) ∪ ((𝑀 + 1)...(𝑀 + 𝑛))))
205203, 204syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → (1...(𝑀 + 𝑛)) = ((1...𝑀) ∪ ((𝑀 + 1)...(𝑀 + 𝑛))))
206 fzfid 13621 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → (1...(𝑀 + 𝑛)) ∈ Fin)
2074adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑛 ∈ ℕ) → 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
208 elfznn 13214 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ (1...(𝑀 + 𝑛)) → 𝑗 ∈ ℕ)
209 ovolfcl 24535 . . . . . . . . . . . . . . . . . . . 20 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑗 ∈ ℕ) → ((1st ‘(𝐺𝑗)) ∈ ℝ ∧ (2nd ‘(𝐺𝑗)) ∈ ℝ ∧ (1st ‘(𝐺𝑗)) ≤ (2nd ‘(𝐺𝑗))))
210207, 208, 209syl2an 595 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛 ∈ ℕ) ∧ 𝑗 ∈ (1...(𝑀 + 𝑛))) → ((1st ‘(𝐺𝑗)) ∈ ℝ ∧ (2nd ‘(𝐺𝑗)) ∈ ℝ ∧ (1st ‘(𝐺𝑗)) ≤ (2nd ‘(𝐺𝑗))))
211210simp2d 1141 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ 𝑗 ∈ (1...(𝑀 + 𝑛))) → (2nd ‘(𝐺𝑗)) ∈ ℝ)
212210simp1d 1140 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ 𝑗 ∈ (1...(𝑀 + 𝑛))) → (1st ‘(𝐺𝑗)) ∈ ℝ)
213211, 212resubcld 11333 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ 𝑗 ∈ (1...(𝑀 + 𝑛))) → ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))) ∈ ℝ)
214213recnd 10934 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑗 ∈ (1...(𝑀 + 𝑛))) → ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))) ∈ ℂ)
215192, 205, 206, 214fsumsplit 15381 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → Σ𝑗 ∈ (1...(𝑀 + 𝑛))((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))) = (Σ𝑗 ∈ (1...𝑀)((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))) + Σ𝑗 ∈ ((𝑀 + 1)...(𝑀 + 𝑛))((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗)))))
216121ovolfsval 24539 . . . . . . . . . . . . . . . . 17 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑗 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘𝑗) = ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))))
217207, 208, 216syl2an 595 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑗 ∈ (1...(𝑀 + 𝑛))) → (((abs ∘ − ) ∘ 𝐺)‘𝑗) = ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))))
218199, 67eleqtrdi 2849 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → (𝑀 + 𝑛) ∈ (ℤ‘1))
219217, 218, 214fsumser 15370 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → Σ𝑗 ∈ (1...(𝑀 + 𝑛))((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))) = (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘(𝑀 + 𝑛)))
2204ad2antrr 722 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑀)) → 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
22132adantl 481 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑀)) → 𝑗 ∈ ℕ)
222220, 221, 216syl2anc 583 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑀)) → (((abs ∘ − ) ∘ 𝐺)‘𝑗) = ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))))
2234, 32, 209syl2an 595 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗 ∈ (1...𝑀)) → ((1st ‘(𝐺𝑗)) ∈ ℝ ∧ (2nd ‘(𝐺𝑗)) ∈ ℝ ∧ (1st ‘(𝐺𝑗)) ≤ (2nd ‘(𝐺𝑗))))
224223simp2d 1141 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (1...𝑀)) → (2nd ‘(𝐺𝑗)) ∈ ℝ)
225223simp1d 1140 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (1...𝑀)) → (1st ‘(𝐺𝑗)) ∈ ℝ)
226224, 225resubcld 11333 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (1...𝑀)) → ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))) ∈ ℝ)
227226adantlr 711 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑀)) → ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))) ∈ ℝ)
228227recnd 10934 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑀)) → ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))) ∈ ℂ)
229222, 197, 228fsumser 15370 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ) → Σ𝑗 ∈ (1...𝑀)((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))) = (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑀))
23024fveq1i 6757 . . . . . . . . . . . . . . . . 17 (𝑇𝑀) = (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑀)
231229, 230eqtr4di 2797 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → Σ𝑗 ∈ (1...𝑀)((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))) = (𝑇𝑀))
232196nnzd 12354 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ ℕ) → 𝑀 ∈ ℤ)
233232peano2zd 12358 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ ℕ) → (𝑀 + 1) ∈ ℤ)
2344ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑛 ∈ ℕ) ∧ 𝑗 ∈ ((𝑀 + 1)...(𝑀 + 𝑛))) → 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
235196peano2nnd 11920 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑛 ∈ ℕ) → (𝑀 + 1) ∈ ℕ)
236 elfzuz 13181 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ ((𝑀 + 1)...(𝑀 + 𝑛)) → 𝑗 ∈ (ℤ‘(𝑀 + 1)))
237 eluznn 12587 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑀 + 1) ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(𝑀 + 1))) → 𝑗 ∈ ℕ)
238235, 236, 237syl2an 595 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑛 ∈ ℕ) ∧ 𝑗 ∈ ((𝑀 + 1)...(𝑀 + 𝑛))) → 𝑗 ∈ ℕ)
239234, 238, 209syl2anc 583 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑛 ∈ ℕ) ∧ 𝑗 ∈ ((𝑀 + 1)...(𝑀 + 𝑛))) → ((1st ‘(𝐺𝑗)) ∈ ℝ ∧ (2nd ‘(𝐺𝑗)) ∈ ℝ ∧ (1st ‘(𝐺𝑗)) ≤ (2nd ‘(𝐺𝑗))))
240239simp2d 1141 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑛 ∈ ℕ) ∧ 𝑗 ∈ ((𝑀 + 1)...(𝑀 + 𝑛))) → (2nd ‘(𝐺𝑗)) ∈ ℝ)
241239simp1d 1140 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑛 ∈ ℕ) ∧ 𝑗 ∈ ((𝑀 + 1)...(𝑀 + 𝑛))) → (1st ‘(𝐺𝑗)) ∈ ℝ)
242240, 241resubcld 11333 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛 ∈ ℕ) ∧ 𝑗 ∈ ((𝑀 + 1)...(𝑀 + 𝑛))) → ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))) ∈ ℝ)
243242recnd 10934 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ 𝑗 ∈ ((𝑀 + 1)...(𝑀 + 𝑛))) → ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))) ∈ ℂ)
244 2fveq3 6761 . . . . . . . . . . . . . . . . . . 19 (𝑗 = (𝑘 + 𝑀) → (2nd ‘(𝐺𝑗)) = (2nd ‘(𝐺‘(𝑘 + 𝑀))))
245 2fveq3 6761 . . . . . . . . . . . . . . . . . . 19 (𝑗 = (𝑘 + 𝑀) → (1st ‘(𝐺𝑗)) = (1st ‘(𝐺‘(𝑘 + 𝑀))))
246244, 245oveq12d 7273 . . . . . . . . . . . . . . . . . 18 (𝑗 = (𝑘 + 𝑀) → ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))) = ((2nd ‘(𝐺‘(𝑘 + 𝑀))) − (1st ‘(𝐺‘(𝑘 + 𝑀)))))
247232, 233, 200, 243, 246fsumshftm 15421 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ) → Σ𝑗 ∈ ((𝑀 + 1)...(𝑀 + 𝑛))((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))) = Σ𝑘 ∈ (((𝑀 + 1) − 𝑀)...((𝑀 + 𝑛) − 𝑀))((2nd ‘(𝐺‘(𝑘 + 𝑀))) − (1st ‘(𝐺‘(𝑘 + 𝑀)))))
248196nncnd 11919 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑛 ∈ ℕ) → 𝑀 ∈ ℂ)
249 pncan2 11158 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑀 + 1) − 𝑀) = 1)
250248, 74, 249sylancl 585 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ) → ((𝑀 + 1) − 𝑀) = 1)
251 nncn 11911 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
252251adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℂ)
253248, 252pncan2d 11264 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ) → ((𝑀 + 𝑛) − 𝑀) = 𝑛)
254250, 253oveq12d 7273 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ ℕ) → (((𝑀 + 1) − 𝑀)...((𝑀 + 𝑛) − 𝑀)) = (1...𝑛))
255254sumeq1d 15341 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ) → Σ𝑘 ∈ (((𝑀 + 1) − 𝑀)...((𝑀 + 𝑛) − 𝑀))((2nd ‘(𝐺‘(𝑘 + 𝑀))) − (1st ‘(𝐺‘(𝑘 + 𝑀)))) = Σ𝑘 ∈ (1...𝑛)((2nd ‘(𝐺‘(𝑘 + 𝑀))) − (1st ‘(𝐺‘(𝑘 + 𝑀)))))
256133adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑛 ∈ ℕ) → (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))):ℕ⟶( ≤ ∩ (ℝ × ℝ)))
257 elfznn 13214 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (1...𝑛) → 𝑘 ∈ ℕ)
258134ovolfsval 24539 . . . . . . . . . . . . . . . . . . . 20 (((𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))):ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑘 ∈ ℕ) → (((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))‘𝑘) = ((2nd ‘((𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))‘𝑘)) − (1st ‘((𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))‘𝑘))))
259256, 257, 258syl2an 595 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))‘𝑘) = ((2nd ‘((𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))‘𝑘)) − (1st ‘((𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))‘𝑘))))
260257adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ ℕ)
261 fvoveq1 7278 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 = 𝑘 → (𝐺‘(𝑧 + 𝑀)) = (𝐺‘(𝑘 + 𝑀)))
262 eqid 2738 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))) = (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))
263 fvex 6769 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐺‘(𝑘 + 𝑀)) ∈ V
264261, 262, 263fvmpt 6857 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ ℕ → ((𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))‘𝑘) = (𝐺‘(𝑘 + 𝑀)))
265260, 264syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))‘𝑘) = (𝐺‘(𝑘 + 𝑀)))
266265fveq2d 6760 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (2nd ‘((𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))‘𝑘)) = (2nd ‘(𝐺‘(𝑘 + 𝑀))))
267265fveq2d 6760 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (1st ‘((𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))‘𝑘)) = (1st ‘(𝐺‘(𝑘 + 𝑀))))
268266, 267oveq12d 7273 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((2nd ‘((𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))‘𝑘)) − (1st ‘((𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))‘𝑘))) = ((2nd ‘(𝐺‘(𝑘 + 𝑀))) − (1st ‘(𝐺‘(𝑘 + 𝑀)))))
269259, 268eqtrd 2778 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))‘𝑘) = ((2nd ‘(𝐺‘(𝑘 + 𝑀))) − (1st ‘(𝐺‘(𝑘 + 𝑀)))))
270 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
271270, 67eleqtrdi 2849 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ (ℤ‘1))
2724ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
273 nnaddcl 11926 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑘 + 𝑀) ∈ ℕ)
274257, 196, 273syl2anr 596 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (𝑘 + 𝑀) ∈ ℕ)
275 ovolfcl 24535 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ (𝑘 + 𝑀) ∈ ℕ) → ((1st ‘(𝐺‘(𝑘 + 𝑀))) ∈ ℝ ∧ (2nd ‘(𝐺‘(𝑘 + 𝑀))) ∈ ℝ ∧ (1st ‘(𝐺‘(𝑘 + 𝑀))) ≤ (2nd ‘(𝐺‘(𝑘 + 𝑀)))))
276272, 274, 275syl2anc 583 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((1st ‘(𝐺‘(𝑘 + 𝑀))) ∈ ℝ ∧ (2nd ‘(𝐺‘(𝑘 + 𝑀))) ∈ ℝ ∧ (1st ‘(𝐺‘(𝑘 + 𝑀))) ≤ (2nd ‘(𝐺‘(𝑘 + 𝑀)))))
277276simp2d 1141 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (2nd ‘(𝐺‘(𝑘 + 𝑀))) ∈ ℝ)
278276simp1d 1140 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (1st ‘(𝐺‘(𝑘 + 𝑀))) ∈ ℝ)
279277, 278resubcld 11333 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((2nd ‘(𝐺‘(𝑘 + 𝑀))) − (1st ‘(𝐺‘(𝑘 + 𝑀)))) ∈ ℝ)
280279recnd 10934 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((2nd ‘(𝐺‘(𝑘 + 𝑀))) − (1st ‘(𝐺‘(𝑘 + 𝑀)))) ∈ ℂ)
281269, 271, 280fsumser 15370 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ) → Σ𝑘 ∈ (1...𝑛)((2nd ‘(𝐺‘(𝑘 + 𝑀))) − (1st ‘(𝐺‘(𝑘 + 𝑀)))) = (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))‘𝑛))
282247, 255, 2813eqtrd 2782 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → Σ𝑗 ∈ ((𝑀 + 1)...(𝑀 + 𝑛))((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))) = (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))‘𝑛))
283231, 282oveq12d 7273 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → (Σ𝑗 ∈ (1...𝑀)((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))) + Σ𝑗 ∈ ((𝑀 + 1)...(𝑀 + 𝑛))((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗)))) = ((𝑇𝑀) + (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))‘𝑛)))
284215, 219, 2833eqtr3d 2786 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘(𝑀 + 𝑛)) = ((𝑇𝑀) + (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))‘𝑛)))
285187, 284syl5eq 2791 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (𝑇‘(𝑀 + 𝑛)) = ((𝑇𝑀) + (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))‘𝑛)))
286123ffnd 6585 . . . . . . . . . . . . . 14 (𝜑𝑇 Fn ℕ)
287 fnfvelrn 6940 . . . . . . . . . . . . . 14 ((𝑇 Fn ℕ ∧ (𝑀 + 𝑛) ∈ ℕ) → (𝑇‘(𝑀 + 𝑛)) ∈ ran 𝑇)
288286, 199, 287syl2an2r 681 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (𝑇‘(𝑀 + 𝑛)) ∈ ran 𝑇)
289285, 288eqeltrrd 2840 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → ((𝑇𝑀) + (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))‘𝑛)) ∈ ran 𝑇)
290 supxrub 12987 . . . . . . . . . . . 12 ((ran 𝑇 ⊆ ℝ* ∧ ((𝑇𝑀) + (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))‘𝑛)) ∈ ran 𝑇) → ((𝑇𝑀) + (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))‘𝑛)) ≤ sup(ran 𝑇, ℝ*, < ))
291186, 289, 290syl2an2r 681 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ((𝑇𝑀) + (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))‘𝑛)) ≤ sup(ran 𝑇, ℝ*, < ))
292125adantr 480 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝑇𝑀) ∈ ℝ)
293137ffvelrnda 6943 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))‘𝑛) ∈ (0[,)+∞))
294120, 293sselid 3915 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))‘𝑛) ∈ ℝ)
29590adantr 480 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → sup(ran 𝑇, ℝ*, < ) ∈ ℝ)
296292, 294, 295leaddsub2d 11507 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (((𝑇𝑀) + (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))‘𝑛)) ≤ sup(ran 𝑇, ℝ*, < ) ↔ (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))‘𝑛) ≤ (sup(ran 𝑇, ℝ*, < ) − (𝑇𝑀))))
297291, 296mpbid 231 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))‘𝑛) ≤ (sup(ran 𝑇, ℝ*, < ) − (𝑇𝑀)))
298297ralrimiva 3107 . . . . . . . . 9 (𝜑 → ∀𝑛 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))‘𝑛) ≤ (sup(ran 𝑇, ℝ*, < ) − (𝑇𝑀)))
299137ffnd 6585 . . . . . . . . . 10 (𝜑 → seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))) Fn ℕ)
300 breq1 5073 . . . . . . . . . . 11 (𝑥 = (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))‘𝑛) → (𝑥 ≤ (sup(ran 𝑇, ℝ*, < ) − (𝑇𝑀)) ↔ (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))‘𝑛) ≤ (sup(ran 𝑇, ℝ*, < ) − (𝑇𝑀))))
301300ralrn 6946 . . . . . . . . . 10 (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))) Fn ℕ → (∀𝑥 ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))𝑥 ≤ (sup(ran 𝑇, ℝ*, < ) − (𝑇𝑀)) ↔ ∀𝑛 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))‘𝑛) ≤ (sup(ran 𝑇, ℝ*, < ) − (𝑇𝑀))))
302299, 301syl 17 . . . . . . . . 9 (𝜑 → (∀𝑥 ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))𝑥 ≤ (sup(ran 𝑇, ℝ*, < ) − (𝑇𝑀)) ↔ ∀𝑛 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))‘𝑛) ≤ (sup(ran 𝑇, ℝ*, < ) − (𝑇𝑀))))
303298, 302mpbird 256 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))𝑥 ≤ (sup(ran 𝑇, ℝ*, < ) − (𝑇𝑀)))
304 supxrleub 12989 . . . . . . . . 9 ((ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))) ⊆ ℝ* ∧ (sup(ran 𝑇, ℝ*, < ) − (𝑇𝑀)) ∈ ℝ*) → (sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))), ℝ*, < ) ≤ (sup(ran 𝑇, ℝ*, < ) − (𝑇𝑀)) ↔ ∀𝑥 ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))𝑥 ≤ (sup(ran 𝑇, ℝ*, < ) − (𝑇𝑀))))
305140, 143, 304syl2anc 583 . . . . . . . 8 (𝜑 → (sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))), ℝ*, < ) ≤ (sup(ran 𝑇, ℝ*, < ) − (𝑇𝑀)) ↔ ∀𝑥 ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))𝑥 ≤ (sup(ran 𝑇, ℝ*, < ) − (𝑇𝑀))))
306303, 305mpbird 256 . . . . . . 7 (𝜑 → sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))), ℝ*, < ) ≤ (sup(ran 𝑇, ℝ*, < ) − (𝑇𝑀)))
307127, 142, 143, 184, 306xrletrd 12825 . . . . . 6 (𝜑 → (vol*‘ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ≤ (sup(ran 𝑇, ℝ*, < ) − (𝑇𝑀)))
308125, 90, 50absdifltd 15073 . . . . . . . . 9 (𝜑 → ((abs‘((𝑇𝑀) − sup(ran 𝑇, ℝ*, < ))) < 𝐶 ↔ ((sup(ran 𝑇, ℝ*, < ) − 𝐶) < (𝑇𝑀) ∧ (𝑇𝑀) < (sup(ran 𝑇, ℝ*, < ) + 𝐶))))
30927, 308mpbid 231 . . . . . . . 8 (𝜑 → ((sup(ran 𝑇, ℝ*, < ) − 𝐶) < (𝑇𝑀) ∧ (𝑇𝑀) < (sup(ran 𝑇, ℝ*, < ) + 𝐶)))
310309simpld 494 . . . . . . 7 (𝜑 → (sup(ran 𝑇, ℝ*, < ) − 𝐶) < (𝑇𝑀))
31190, 50, 125, 310ltsub23d 11510 . . . . . 6 (𝜑 → (sup(ran 𝑇, ℝ*, < ) − (𝑇𝑀)) < 𝐶)
31297, 126, 50, 307, 311lelttrd 11063 . . . . 5 (𝜑 → (vol*‘ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) < 𝐶)
31397, 50, 49, 312ltadd2dd 11064 . . . 4 (𝜑 → ((vol*‘(𝐾𝐴)) + (vol*‘ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))) < ((vol*‘(𝐾𝐴)) + 𝐶))
31413, 98, 51, 119, 313lelttrd 11063 . . 3 (𝜑 → (vol*‘(𝐸𝐴)) < ((vol*‘(𝐾𝐴)) + 𝐶))
31554, 97readdcld 10935 . . . 4 (𝜑 → ((vol*‘(𝐾𝐴)) + (vol*‘ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))) ∈ ℝ)
316 difss 4062 . . . . . . . 8 (𝐾𝐴) ⊆ 𝐾
317 unss1 4109 . . . . . . . 8 ((𝐾𝐴) ⊆ 𝐾 → ((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ⊆ (𝐾 (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))))
318316, 317ax-mp 5 . . . . . . 7 ((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ⊆ (𝐾 (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))
319318, 88sseqtrrid 3970 . . . . . 6 (𝜑 → ((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ⊆ ran ((,) ∘ 𝐺))
320 ovolsscl 24555 . . . . . 6 ((((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ⊆ ran ((,) ∘ 𝐺) ∧ ran ((,) ∘ 𝐺) ⊆ ℝ ∧ (vol*‘ ran ((,) ∘ 𝐺)) ∈ ℝ) → (vol*‘((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))) ∈ ℝ)
321319, 9, 95, 320syl3anc 1369 . . . . 5 (𝜑 → (vol*‘((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))) ∈ ℝ)
322104ssdifd 4071 . . . . . . 7 (𝜑 → (𝐸𝐴) ⊆ ((𝐾 (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ∖ 𝐴))
323 difundir 4211 . . . . . . . 8 ((𝐾 (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ∖ 𝐴) = ((𝐾𝐴) ∪ ( (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) ∖ 𝐴))
324 difss 4062 . . . . . . . . 9 ( (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) ∖ 𝐴) ⊆ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))
325 unss2 4111 . . . . . . . . 9 (( (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) ∖ 𝐴) ⊆ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) → ((𝐾𝐴) ∪ ( (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) ∖ 𝐴)) ⊆ ((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))))
326324, 325ax-mp 5 . . . . . . . 8 ((𝐾𝐴) ∪ ( (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) ∖ 𝐴)) ⊆ ((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))
327323, 326eqsstri 3951 . . . . . . 7 ((𝐾 (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ∖ 𝐴) ⊆ ((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))
328322, 327sstrdi 3929 . . . . . 6 (𝜑 → (𝐸𝐴) ⊆ ((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))))
329319, 9sstrd 3927 . . . . . 6 (𝜑 → ((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ⊆ ℝ)
330 ovolss 24554 . . . . . 6 (((𝐸𝐴) ⊆ ((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ∧ ((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ⊆ ℝ) → (vol*‘(𝐸𝐴)) ≤ (vol*‘((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))))
331328, 329, 330syl2anc 583 . . . . 5 (𝜑 → (vol*‘(𝐸𝐴)) ≤ (vol*‘((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))))
33252, 46sstrd 3927 . . . . . 6 (𝜑 → (𝐾𝐴) ⊆ ℝ)
333 ovolun 24568 . . . . . 6 ((((𝐾𝐴) ⊆ ℝ ∧ (vol*‘(𝐾𝐴)) ∈ ℝ) ∧ ( (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) ⊆ ℝ ∧ (vol*‘ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ∈ ℝ)) → (vol*‘((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))) ≤ ((vol*‘(𝐾𝐴)) + (vol*‘ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))))
334332, 54, 116, 97, 333syl22anc 835 . . . . 5 (𝜑 → (vol*‘((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))) ≤ ((vol*‘(𝐾𝐴)) + (vol*‘ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))))
33516, 321, 315, 331, 334letrd 11062 . . . 4 (𝜑 → (vol*‘(𝐸𝐴)) ≤ ((vol*‘(𝐾𝐴)) + (vol*‘ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))))
33697, 50, 54, 312ltadd2dd 11064 . . . 4 (𝜑 → ((vol*‘(𝐾𝐴)) + (vol*‘ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))) < ((vol*‘(𝐾𝐴)) + 𝐶))
33716, 315, 55, 335, 336lelttrd 11063 . . 3 (𝜑 → (vol*‘(𝐸𝐴)) < ((vol*‘(𝐾𝐴)) + 𝐶))
33813, 16, 51, 55, 314, 337lt2addd 11528 . 2 (𝜑 → ((vol*‘(𝐸𝐴)) + (vol*‘(𝐸𝐴))) < (((vol*‘(𝐾𝐴)) + 𝐶) + ((vol*‘(𝐾𝐴)) + 𝐶)))
33949recnd 10934 . . 3 (𝜑 → (vol*‘(𝐾𝐴)) ∈ ℂ)
34050recnd 10934 . . 3 (𝜑𝐶 ∈ ℂ)
34154recnd 10934 . . 3 (𝜑 → (vol*‘(𝐾𝐴)) ∈ ℂ)
342339, 340, 341, 340add4d 11133 . 2 (𝜑 → (((vol*‘(𝐾𝐴)) + 𝐶) + ((vol*‘(𝐾𝐴)) + 𝐶)) = (((vol*‘(𝐾𝐴)) + (vol*‘(𝐾𝐴))) + (𝐶 + 𝐶)))
343338, 342breqtrd 5096 1 (𝜑 → ((vol*‘(𝐸𝐴)) + (vol*‘(𝐸𝐴))) < (((vol*‘(𝐾𝐴)) + (vol*‘(𝐾𝐴))) + (𝐶 + 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wrex 3064  Vcvv 3422  cdif 3880  cun 3881  cin 3882  wss 3883  c0 4253  𝒫 cpw 4530  cop 4564   cuni 4836   ciun 4921  Disj wdisj 5035   class class class wbr 5070  cmpt 5153   × cxp 5578  ran crn 5581  cima 5583  ccom 5584   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  1st c1st 7802  2nd c2nd 7803  supcsup 9129  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805  +∞cpnf 10937  *cxr 10939   < clt 10940  cle 10941  cmin 11135  cn 11903  0cn0 12163  cz 12249  cuz 12511  +crp 12659  (,)cioo 13008  [,)cico 13010  [,]cicc 13011  ...cfz 13168  seqcseq 13649  abscabs 14873  Σcsu 15325  vol*covol 24531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-acn 9631  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-rlim 15126  df-sum 15326  df-rest 17050  df-topgen 17071  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-top 21951  df-topon 21968  df-bases 22004  df-cmp 22446  df-ovol 24533  df-vol 24534
This theorem is referenced by:  uniioombllem5  24656
  Copyright terms: Public domain W3C validator