MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniioombllem3 Structured version   Visualization version   GIF version

Theorem uniioombllem3 25484
Description: Lemma for uniioombl 25488. (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypotheses
Ref Expression
uniioombl.1 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.2 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
uniioombl.3 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
uniioombl.a 𝐴 = ran ((,) ∘ 𝐹)
uniioombl.e (𝜑 → (vol*‘𝐸) ∈ ℝ)
uniioombl.c (𝜑𝐶 ∈ ℝ+)
uniioombl.g (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.s (𝜑𝐸 ran ((,) ∘ 𝐺))
uniioombl.t 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
uniioombl.v (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))
uniioombl.m (𝜑𝑀 ∈ ℕ)
uniioombl.m2 (𝜑 → (abs‘((𝑇𝑀) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)
uniioombl.k 𝐾 = (((,) ∘ 𝐺) “ (1...𝑀))
Assertion
Ref Expression
uniioombllem3 (𝜑 → ((vol*‘(𝐸𝐴)) + (vol*‘(𝐸𝐴))) < (((vol*‘(𝐾𝐴)) + (vol*‘(𝐾𝐴))) + (𝐶 + 𝐶)))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐺   𝑥,𝐾   𝑥,𝐴   𝑥,𝐶   𝑥,𝑀   𝜑,𝑥   𝑥,𝑇
Allowed substitution hints:   𝑆(𝑥)   𝐸(𝑥)

Proof of Theorem uniioombllem3
Dummy variables 𝑗 𝑘 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 4188 . . . . 5 (𝐸𝐴) ⊆ 𝐸
21a1i 11 . . . 4 (𝜑 → (𝐸𝐴) ⊆ 𝐸)
3 uniioombl.s . . . . 5 (𝜑𝐸 ran ((,) ∘ 𝐺))
4 uniioombl.g . . . . . . . 8 (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
54uniiccdif 25477 . . . . . . 7 (𝜑 → ( ran ((,) ∘ 𝐺) ⊆ ran ([,] ∘ 𝐺) ∧ (vol*‘( ran ([,] ∘ 𝐺) ∖ ran ((,) ∘ 𝐺))) = 0))
65simpld 494 . . . . . 6 (𝜑 ran ((,) ∘ 𝐺) ⊆ ran ([,] ∘ 𝐺))
7 ovolficcss 25368 . . . . . . 7 (𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ran ([,] ∘ 𝐺) ⊆ ℝ)
84, 7syl 17 . . . . . 6 (𝜑 ran ([,] ∘ 𝐺) ⊆ ℝ)
96, 8sstrd 3946 . . . . 5 (𝜑 ran ((,) ∘ 𝐺) ⊆ ℝ)
103, 9sstrd 3946 . . . 4 (𝜑𝐸 ⊆ ℝ)
11 uniioombl.e . . . 4 (𝜑 → (vol*‘𝐸) ∈ ℝ)
12 ovolsscl 25385 . . . 4 (((𝐸𝐴) ⊆ 𝐸𝐸 ⊆ ℝ ∧ (vol*‘𝐸) ∈ ℝ) → (vol*‘(𝐸𝐴)) ∈ ℝ)
132, 10, 11, 12syl3anc 1373 . . 3 (𝜑 → (vol*‘(𝐸𝐴)) ∈ ℝ)
14 difssd 4088 . . . 4 (𝜑 → (𝐸𝐴) ⊆ 𝐸)
15 ovolsscl 25385 . . . 4 (((𝐸𝐴) ⊆ 𝐸𝐸 ⊆ ℝ ∧ (vol*‘𝐸) ∈ ℝ) → (vol*‘(𝐸𝐴)) ∈ ℝ)
1614, 10, 11, 15syl3anc 1373 . . 3 (𝜑 → (vol*‘(𝐸𝐴)) ∈ ℝ)
17 inss1 4188 . . . . . 6 (𝐾𝐴) ⊆ 𝐾
1817a1i 11 . . . . 5 (𝜑 → (𝐾𝐴) ⊆ 𝐾)
19 uniioombl.1 . . . . . . . 8 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
20 uniioombl.2 . . . . . . . 8 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
21 uniioombl.3 . . . . . . . 8 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
22 uniioombl.a . . . . . . . 8 𝐴 = ran ((,) ∘ 𝐹)
23 uniioombl.c . . . . . . . 8 (𝜑𝐶 ∈ ℝ+)
24 uniioombl.t . . . . . . . 8 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
25 uniioombl.v . . . . . . . 8 (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))
26 uniioombl.m . . . . . . . 8 (𝜑𝑀 ∈ ℕ)
27 uniioombl.m2 . . . . . . . 8 (𝜑 → (abs‘((𝑇𝑀) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)
28 uniioombl.k . . . . . . . 8 𝐾 = (((,) ∘ 𝐺) “ (1...𝑀))
2919, 20, 21, 22, 11, 23, 4, 3, 24, 25, 26, 27, 28uniioombllem3a 25483 . . . . . . 7 (𝜑 → (𝐾 = 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)) ∧ (vol*‘𝐾) ∈ ℝ))
3029simpld 494 . . . . . 6 (𝜑𝐾 = 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)))
31 inss2 4189 . . . . . . . . . . . . 13 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
32 elfznn 13456 . . . . . . . . . . . . . 14 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ ℕ)
33 ffvelcdm 7015 . . . . . . . . . . . . . 14 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑗 ∈ ℕ) → (𝐺𝑗) ∈ ( ≤ ∩ (ℝ × ℝ)))
344, 32, 33syl2an 596 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑀)) → (𝐺𝑗) ∈ ( ≤ ∩ (ℝ × ℝ)))
3531, 34sselid 3933 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑀)) → (𝐺𝑗) ∈ (ℝ × ℝ))
36 1st2nd2 7963 . . . . . . . . . . . 12 ((𝐺𝑗) ∈ (ℝ × ℝ) → (𝐺𝑗) = ⟨(1st ‘(𝐺𝑗)), (2nd ‘(𝐺𝑗))⟩)
3735, 36syl 17 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → (𝐺𝑗) = ⟨(1st ‘(𝐺𝑗)), (2nd ‘(𝐺𝑗))⟩)
3837fveq2d 6826 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑀)) → ((,)‘(𝐺𝑗)) = ((,)‘⟨(1st ‘(𝐺𝑗)), (2nd ‘(𝐺𝑗))⟩))
39 df-ov 7352 . . . . . . . . . 10 ((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗))) = ((,)‘⟨(1st ‘(𝐺𝑗)), (2nd ‘(𝐺𝑗))⟩)
4038, 39eqtr4di 2782 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑀)) → ((,)‘(𝐺𝑗)) = ((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗))))
41 ioossre 13310 . . . . . . . . 9 ((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗))) ⊆ ℝ
4240, 41eqsstrdi 3980 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑀)) → ((,)‘(𝐺𝑗)) ⊆ ℝ)
4342ralrimiva 3121 . . . . . . 7 (𝜑 → ∀𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)) ⊆ ℝ)
44 iunss 4994 . . . . . . 7 ( 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)) ⊆ ℝ ↔ ∀𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)) ⊆ ℝ)
4543, 44sylibr 234 . . . . . 6 (𝜑 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)) ⊆ ℝ)
4630, 45eqsstrd 3970 . . . . 5 (𝜑𝐾 ⊆ ℝ)
4729simprd 495 . . . . 5 (𝜑 → (vol*‘𝐾) ∈ ℝ)
48 ovolsscl 25385 . . . . 5 (((𝐾𝐴) ⊆ 𝐾𝐾 ⊆ ℝ ∧ (vol*‘𝐾) ∈ ℝ) → (vol*‘(𝐾𝐴)) ∈ ℝ)
4918, 46, 47, 48syl3anc 1373 . . . 4 (𝜑 → (vol*‘(𝐾𝐴)) ∈ ℝ)
5023rpred 12937 . . . 4 (𝜑𝐶 ∈ ℝ)
5149, 50readdcld 11144 . . 3 (𝜑 → ((vol*‘(𝐾𝐴)) + 𝐶) ∈ ℝ)
52 difssd 4088 . . . . 5 (𝜑 → (𝐾𝐴) ⊆ 𝐾)
53 ovolsscl 25385 . . . . 5 (((𝐾𝐴) ⊆ 𝐾𝐾 ⊆ ℝ ∧ (vol*‘𝐾) ∈ ℝ) → (vol*‘(𝐾𝐴)) ∈ ℝ)
5452, 46, 47, 53syl3anc 1373 . . . 4 (𝜑 → (vol*‘(𝐾𝐴)) ∈ ℝ)
5554, 50readdcld 11144 . . 3 (𝜑 → ((vol*‘(𝐾𝐴)) + 𝐶) ∈ ℝ)
56 ssun2 4130 . . . . . . 7 (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) ⊆ (𝐾 (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))
57 ioof 13350 . . . . . . . . . . . . . . 15 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
58 rexpssxrxp 11160 . . . . . . . . . . . . . . . . 17 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
5931, 58sstri 3945 . . . . . . . . . . . . . . . 16 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)
60 fss 6668 . . . . . . . . . . . . . . . 16 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)) → 𝐺:ℕ⟶(ℝ* × ℝ*))
614, 59, 60sylancl 586 . . . . . . . . . . . . . . 15 (𝜑𝐺:ℕ⟶(ℝ* × ℝ*))
62 fco 6676 . . . . . . . . . . . . . . 15 (((,):(ℝ* × ℝ*)⟶𝒫 ℝ ∧ 𝐺:ℕ⟶(ℝ* × ℝ*)) → ((,) ∘ 𝐺):ℕ⟶𝒫 ℝ)
6357, 61, 62sylancr 587 . . . . . . . . . . . . . 14 (𝜑 → ((,) ∘ 𝐺):ℕ⟶𝒫 ℝ)
6463ffnd 6653 . . . . . . . . . . . . 13 (𝜑 → ((,) ∘ 𝐺) Fn ℕ)
65 fnima 6612 . . . . . . . . . . . . 13 (((,) ∘ 𝐺) Fn ℕ → (((,) ∘ 𝐺) “ ℕ) = ran ((,) ∘ 𝐺))
6664, 65syl 17 . . . . . . . . . . . 12 (𝜑 → (((,) ∘ 𝐺) “ ℕ) = ran ((,) ∘ 𝐺))
67 nnuz 12778 . . . . . . . . . . . . . . 15 ℕ = (ℤ‘1)
6826peano2nnd 12145 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑀 + 1) ∈ ℕ)
6968, 67eleqtrdi 2838 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑀 + 1) ∈ (ℤ‘1))
70 uzsplit 13499 . . . . . . . . . . . . . . . 16 ((𝑀 + 1) ∈ (ℤ‘1) → (ℤ‘1) = ((1...((𝑀 + 1) − 1)) ∪ (ℤ‘(𝑀 + 1))))
7169, 70syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (ℤ‘1) = ((1...((𝑀 + 1) − 1)) ∪ (ℤ‘(𝑀 + 1))))
7267, 71eqtrid 2776 . . . . . . . . . . . . . 14 (𝜑 → ℕ = ((1...((𝑀 + 1) − 1)) ∪ (ℤ‘(𝑀 + 1))))
7326nncnd 12144 . . . . . . . . . . . . . . . . 17 (𝜑𝑀 ∈ ℂ)
74 ax-1cn 11067 . . . . . . . . . . . . . . . . 17 1 ∈ ℂ
75 pncan 11369 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑀 + 1) − 1) = 𝑀)
7673, 74, 75sylancl 586 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑀 + 1) − 1) = 𝑀)
7776oveq2d 7365 . . . . . . . . . . . . . . 15 (𝜑 → (1...((𝑀 + 1) − 1)) = (1...𝑀))
7877uneq1d 4118 . . . . . . . . . . . . . 14 (𝜑 → ((1...((𝑀 + 1) − 1)) ∪ (ℤ‘(𝑀 + 1))) = ((1...𝑀) ∪ (ℤ‘(𝑀 + 1))))
7972, 78eqtrd 2764 . . . . . . . . . . . . 13 (𝜑 → ℕ = ((1...𝑀) ∪ (ℤ‘(𝑀 + 1))))
8079imaeq2d 6011 . . . . . . . . . . . 12 (𝜑 → (((,) ∘ 𝐺) “ ℕ) = (((,) ∘ 𝐺) “ ((1...𝑀) ∪ (ℤ‘(𝑀 + 1)))))
8166, 80eqtr3d 2766 . . . . . . . . . . 11 (𝜑 → ran ((,) ∘ 𝐺) = (((,) ∘ 𝐺) “ ((1...𝑀) ∪ (ℤ‘(𝑀 + 1)))))
82 imaundi 6098 . . . . . . . . . . 11 (((,) ∘ 𝐺) “ ((1...𝑀) ∪ (ℤ‘(𝑀 + 1)))) = ((((,) ∘ 𝐺) “ (1...𝑀)) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))
8381, 82eqtrdi 2780 . . . . . . . . . 10 (𝜑 → ran ((,) ∘ 𝐺) = ((((,) ∘ 𝐺) “ (1...𝑀)) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))))
8483unieqd 4871 . . . . . . . . 9 (𝜑 ran ((,) ∘ 𝐺) = ((((,) ∘ 𝐺) “ (1...𝑀)) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))))
85 uniun 4881 . . . . . . . . 9 ((((,) ∘ 𝐺) “ (1...𝑀)) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) = ( (((,) ∘ 𝐺) “ (1...𝑀)) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))
8684, 85eqtrdi 2780 . . . . . . . 8 (𝜑 ran ((,) ∘ 𝐺) = ( (((,) ∘ 𝐺) “ (1...𝑀)) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))))
8728uneq1i 4115 . . . . . . . 8 (𝐾 (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) = ( (((,) ∘ 𝐺) “ (1...𝑀)) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))
8886, 87eqtr4di 2782 . . . . . . 7 (𝜑 ran ((,) ∘ 𝐺) = (𝐾 (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))))
8956, 88sseqtrrid 3979 . . . . . 6 (𝜑 (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) ⊆ ran ((,) ∘ 𝐺))
9019, 20, 21, 22, 11, 23, 4, 3, 24, 25uniioombllem1 25480 . . . . . . 7 (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ)
91 ssid 3958 . . . . . . . 8 ran ((,) ∘ 𝐺) ⊆ ran ((,) ∘ 𝐺)
9224ovollb 25378 . . . . . . . 8 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ran ((,) ∘ 𝐺) ⊆ ran ((,) ∘ 𝐺)) → (vol*‘ ran ((,) ∘ 𝐺)) ≤ sup(ran 𝑇, ℝ*, < ))
934, 91, 92sylancl 586 . . . . . . 7 (𝜑 → (vol*‘ ran ((,) ∘ 𝐺)) ≤ sup(ran 𝑇, ℝ*, < ))
94 ovollecl 25382 . . . . . . 7 (( ran ((,) ∘ 𝐺) ⊆ ℝ ∧ sup(ran 𝑇, ℝ*, < ) ∈ ℝ ∧ (vol*‘ ran ((,) ∘ 𝐺)) ≤ sup(ran 𝑇, ℝ*, < )) → (vol*‘ ran ((,) ∘ 𝐺)) ∈ ℝ)
959, 90, 93, 94syl3anc 1373 . . . . . 6 (𝜑 → (vol*‘ ran ((,) ∘ 𝐺)) ∈ ℝ)
96 ovolsscl 25385 . . . . . 6 (( (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) ⊆ ran ((,) ∘ 𝐺) ∧ ran ((,) ∘ 𝐺) ⊆ ℝ ∧ (vol*‘ ran ((,) ∘ 𝐺)) ∈ ℝ) → (vol*‘ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ∈ ℝ)
9789, 9, 95, 96syl3anc 1373 . . . . 5 (𝜑 → (vol*‘ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ∈ ℝ)
9849, 97readdcld 11144 . . . 4 (𝜑 → ((vol*‘(𝐾𝐴)) + (vol*‘ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))) ∈ ℝ)
99 unss1 4136 . . . . . . . 8 ((𝐾𝐴) ⊆ 𝐾 → ((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ⊆ (𝐾 (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))))
10017, 99ax-mp 5 . . . . . . 7 ((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ⊆ (𝐾 (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))
101100, 88sseqtrrid 3979 . . . . . 6 (𝜑 → ((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ⊆ ran ((,) ∘ 𝐺))
102 ovolsscl 25385 . . . . . 6 ((((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ⊆ ran ((,) ∘ 𝐺) ∧ ran ((,) ∘ 𝐺) ⊆ ℝ ∧ (vol*‘ ran ((,) ∘ 𝐺)) ∈ ℝ) → (vol*‘((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))) ∈ ℝ)
103101, 9, 95, 102syl3anc 1373 . . . . 5 (𝜑 → (vol*‘((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))) ∈ ℝ)
1043, 88sseqtrd 3972 . . . . . . . 8 (𝜑𝐸 ⊆ (𝐾 (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))))
105104ssrind 4195 . . . . . . 7 (𝜑 → (𝐸𝐴) ⊆ ((𝐾 (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ∩ 𝐴))
106 indir 4237 . . . . . . . 8 ((𝐾 (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ∩ 𝐴) = ((𝐾𝐴) ∪ ( (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) ∩ 𝐴))
107 inss1 4188 . . . . . . . . 9 ( (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) ∩ 𝐴) ⊆ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))
108 unss2 4138 . . . . . . . . 9 (( (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) ∩ 𝐴) ⊆ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) → ((𝐾𝐴) ∪ ( (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) ∩ 𝐴)) ⊆ ((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))))
109107, 108ax-mp 5 . . . . . . . 8 ((𝐾𝐴) ∪ ( (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) ∩ 𝐴)) ⊆ ((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))
110106, 109eqsstri 3982 . . . . . . 7 ((𝐾 (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ∩ 𝐴) ⊆ ((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))
111105, 110sstrdi 3948 . . . . . 6 (𝜑 → (𝐸𝐴) ⊆ ((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))))
112101, 9sstrd 3946 . . . . . 6 (𝜑 → ((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ⊆ ℝ)
113 ovolss 25384 . . . . . 6 (((𝐸𝐴) ⊆ ((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ∧ ((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ⊆ ℝ) → (vol*‘(𝐸𝐴)) ≤ (vol*‘((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))))
114111, 112, 113syl2anc 584 . . . . 5 (𝜑 → (vol*‘(𝐸𝐴)) ≤ (vol*‘((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))))
11518, 46sstrd 3946 . . . . . 6 (𝜑 → (𝐾𝐴) ⊆ ℝ)
11689, 9sstrd 3946 . . . . . 6 (𝜑 (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) ⊆ ℝ)
117 ovolun 25398 . . . . . 6 ((((𝐾𝐴) ⊆ ℝ ∧ (vol*‘(𝐾𝐴)) ∈ ℝ) ∧ ( (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) ⊆ ℝ ∧ (vol*‘ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ∈ ℝ)) → (vol*‘((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))) ≤ ((vol*‘(𝐾𝐴)) + (vol*‘ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))))
118115, 49, 116, 97, 117syl22anc 838 . . . . 5 (𝜑 → (vol*‘((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))) ≤ ((vol*‘(𝐾𝐴)) + (vol*‘ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))))
11913, 103, 98, 114, 118letrd 11273 . . . 4 (𝜑 → (vol*‘(𝐸𝐴)) ≤ ((vol*‘(𝐾𝐴)) + (vol*‘ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))))
120 rge0ssre 13359 . . . . . . . 8 (0[,)+∞) ⊆ ℝ
121 eqid 2729 . . . . . . . . . . 11 ((abs ∘ − ) ∘ 𝐺) = ((abs ∘ − ) ∘ 𝐺)
122121, 24ovolsf 25371 . . . . . . . . . 10 (𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝑇:ℕ⟶(0[,)+∞))
1234, 122syl 17 . . . . . . . . 9 (𝜑𝑇:ℕ⟶(0[,)+∞))
124123, 26ffvelcdmd 7019 . . . . . . . 8 (𝜑 → (𝑇𝑀) ∈ (0[,)+∞))
125120, 124sselid 3933 . . . . . . 7 (𝜑 → (𝑇𝑀) ∈ ℝ)
12690, 125resubcld 11548 . . . . . 6 (𝜑 → (sup(ran 𝑇, ℝ*, < ) − (𝑇𝑀)) ∈ ℝ)
12797rexrd 11165 . . . . . . 7 (𝜑 → (vol*‘ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ∈ ℝ*)
128 id 22 . . . . . . . . . . . . . 14 (𝑧 ∈ ℕ → 𝑧 ∈ ℕ)
129 nnaddcl 12151 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑧 + 𝑀) ∈ ℕ)
130128, 26, 129syl2anr 597 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ ℕ) → (𝑧 + 𝑀) ∈ ℕ)
1314ffvelcdmda 7018 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧 + 𝑀) ∈ ℕ) → (𝐺‘(𝑧 + 𝑀)) ∈ ( ≤ ∩ (ℝ × ℝ)))
132130, 131syldan 591 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ ℕ) → (𝐺‘(𝑧 + 𝑀)) ∈ ( ≤ ∩ (ℝ × ℝ)))
133132fmpttd 7049 . . . . . . . . . . 11 (𝜑 → (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))):ℕ⟶( ≤ ∩ (ℝ × ℝ)))
134 eqid 2729 . . . . . . . . . . . 12 ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))) = ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))
135 eqid 2729 . . . . . . . . . . . 12 seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))) = seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))
136134, 135ovolsf 25371 . . . . . . . . . . 11 ((𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))):ℕ⟶( ≤ ∩ (ℝ × ℝ)) → seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))):ℕ⟶(0[,)+∞))
137133, 136syl 17 . . . . . . . . . 10 (𝜑 → seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))):ℕ⟶(0[,)+∞))
138137frnd 6660 . . . . . . . . 9 (𝜑 → ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))) ⊆ (0[,)+∞))
139 icossxr 13335 . . . . . . . . 9 (0[,)+∞) ⊆ ℝ*
140138, 139sstrdi 3948 . . . . . . . 8 (𝜑 → ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))) ⊆ ℝ*)
141 supxrcl 13217 . . . . . . . 8 (ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))) ⊆ ℝ* → sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))), ℝ*, < ) ∈ ℝ*)
142140, 141syl 17 . . . . . . 7 (𝜑 → sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))), ℝ*, < ) ∈ ℝ*)
143126rexrd 11165 . . . . . . 7 (𝜑 → (sup(ran 𝑇, ℝ*, < ) − (𝑇𝑀)) ∈ ℝ*)
144 1zzd 12506 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → 1 ∈ ℤ)
14526nnzd 12498 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑀 ∈ ℤ)
146145adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → 𝑀 ∈ ℤ)
147 addcom 11302 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑀 + 1) = (1 + 𝑀))
14873, 74, 147sylancl 586 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑀 + 1) = (1 + 𝑀))
149148fveq2d 6826 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (ℤ‘(𝑀 + 1)) = (ℤ‘(1 + 𝑀)))
150149eleq2d 2814 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑥 ∈ (ℤ‘(𝑀 + 1)) ↔ 𝑥 ∈ (ℤ‘(1 + 𝑀))))
151150biimpa 476 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → 𝑥 ∈ (ℤ‘(1 + 𝑀)))
152 eluzsub 12765 . . . . . . . . . . . . . . . . . . 19 ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑥 ∈ (ℤ‘(1 + 𝑀))) → (𝑥𝑀) ∈ (ℤ‘1))
153144, 146, 151, 152syl3anc 1373 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → (𝑥𝑀) ∈ (ℤ‘1))
154153, 67eleqtrrdi 2839 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → (𝑥𝑀) ∈ ℕ)
155 eluzelz 12745 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (ℤ‘(𝑀 + 1)) → 𝑥 ∈ ℤ)
156155adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → 𝑥 ∈ ℤ)
157156zcnd 12581 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → 𝑥 ∈ ℂ)
15873adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → 𝑀 ∈ ℂ)
159157, 158npcand 11479 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → ((𝑥𝑀) + 𝑀) = 𝑥)
160159eqcomd 2735 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → 𝑥 = ((𝑥𝑀) + 𝑀))
161 oveq1 7356 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝑥𝑀) → (𝑧 + 𝑀) = ((𝑥𝑀) + 𝑀))
162161rspceeqv 3600 . . . . . . . . . . . . . . . . 17 (((𝑥𝑀) ∈ ℕ ∧ 𝑥 = ((𝑥𝑀) + 𝑀)) → ∃𝑧 ∈ ℕ 𝑥 = (𝑧 + 𝑀))
163154, 160, 162syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → ∃𝑧 ∈ ℕ 𝑥 = (𝑧 + 𝑀))
164 eqid 2729 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ℕ ↦ (𝑧 + 𝑀)) = (𝑧 ∈ ℕ ↦ (𝑧 + 𝑀))
165164elrnmpt 5900 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ V → (𝑥 ∈ ran (𝑧 ∈ ℕ ↦ (𝑧 + 𝑀)) ↔ ∃𝑧 ∈ ℕ 𝑥 = (𝑧 + 𝑀)))
166165elv 3441 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ran (𝑧 ∈ ℕ ↦ (𝑧 + 𝑀)) ↔ ∃𝑧 ∈ ℕ 𝑥 = (𝑧 + 𝑀))
167163, 166sylibr 234 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → 𝑥 ∈ ran (𝑧 ∈ ℕ ↦ (𝑧 + 𝑀)))
168167ex 412 . . . . . . . . . . . . . 14 (𝜑 → (𝑥 ∈ (ℤ‘(𝑀 + 1)) → 𝑥 ∈ ran (𝑧 ∈ ℕ ↦ (𝑧 + 𝑀))))
169168ssrdv 3941 . . . . . . . . . . . . 13 (𝜑 → (ℤ‘(𝑀 + 1)) ⊆ ran (𝑧 ∈ ℕ ↦ (𝑧 + 𝑀)))
170 imass2 6053 . . . . . . . . . . . . 13 ((ℤ‘(𝑀 + 1)) ⊆ ran (𝑧 ∈ ℕ ↦ (𝑧 + 𝑀)) → (𝐺 “ (ℤ‘(𝑀 + 1))) ⊆ (𝐺 “ ran (𝑧 ∈ ℕ ↦ (𝑧 + 𝑀))))
171169, 170syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐺 “ (ℤ‘(𝑀 + 1))) ⊆ (𝐺 “ ran (𝑧 ∈ ℕ ↦ (𝑧 + 𝑀))))
172 rnco2 6202 . . . . . . . . . . . . 13 ran (𝐺 ∘ (𝑧 ∈ ℕ ↦ (𝑧 + 𝑀))) = (𝐺 “ ran (𝑧 ∈ ℕ ↦ (𝑧 + 𝑀)))
1734, 130cofmpt 7066 . . . . . . . . . . . . . 14 (𝜑 → (𝐺 ∘ (𝑧 ∈ ℕ ↦ (𝑧 + 𝑀))) = (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))
174173rneqd 5880 . . . . . . . . . . . . 13 (𝜑 → ran (𝐺 ∘ (𝑧 ∈ ℕ ↦ (𝑧 + 𝑀))) = ran (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))
175172, 174eqtr3id 2778 . . . . . . . . . . . 12 (𝜑 → (𝐺 “ ran (𝑧 ∈ ℕ ↦ (𝑧 + 𝑀))) = ran (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))
176171, 175sseqtrd 3972 . . . . . . . . . . 11 (𝜑 → (𝐺 “ (ℤ‘(𝑀 + 1))) ⊆ ran (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))
177 imass2 6053 . . . . . . . . . . 11 ((𝐺 “ (ℤ‘(𝑀 + 1))) ⊆ ran (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))) → ((,) “ (𝐺 “ (ℤ‘(𝑀 + 1)))) ⊆ ((,) “ ran (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))
178176, 177syl 17 . . . . . . . . . 10 (𝜑 → ((,) “ (𝐺 “ (ℤ‘(𝑀 + 1)))) ⊆ ((,) “ ran (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))
179 imaco 6200 . . . . . . . . . 10 (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) = ((,) “ (𝐺 “ (ℤ‘(𝑀 + 1))))
180 rnco2 6202 . . . . . . . . . 10 ran ((,) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))) = ((,) “ ran (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))
181178, 179, 1803sstr4g 3989 . . . . . . . . 9 (𝜑 → (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) ⊆ ran ((,) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))
182181unissd 4868 . . . . . . . 8 (𝜑 (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) ⊆ ran ((,) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))
183135ovollb 25378 . . . . . . . 8 (((𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))):ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) ⊆ ran ((,) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))) → (vol*‘ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))), ℝ*, < ))
184133, 182, 183syl2anc 584 . . . . . . 7 (𝜑 → (vol*‘ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))), ℝ*, < ))
185123frnd 6660 . . . . . . . . . . . . 13 (𝜑 → ran 𝑇 ⊆ (0[,)+∞))
186185, 139sstrdi 3948 . . . . . . . . . . . 12 (𝜑 → ran 𝑇 ⊆ ℝ*)
18724fveq1i 6823 . . . . . . . . . . . . . 14 (𝑇‘(𝑀 + 𝑛)) = (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘(𝑀 + 𝑛))
18826nnred 12143 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑀 ∈ ℝ)
189188ltp1d 12055 . . . . . . . . . . . . . . . . . 18 (𝜑𝑀 < (𝑀 + 1))
190 fzdisj 13454 . . . . . . . . . . . . . . . . . 18 (𝑀 < (𝑀 + 1) → ((1...𝑀) ∩ ((𝑀 + 1)...(𝑀 + 𝑛))) = ∅)
191189, 190syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → ((1...𝑀) ∩ ((𝑀 + 1)...(𝑀 + 𝑛))) = ∅)
192191adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → ((1...𝑀) ∩ ((𝑀 + 1)...(𝑀 + 𝑛))) = ∅)
193 nnnn0 12391 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
194 nn0addge1 12430 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ ℝ ∧ 𝑛 ∈ ℕ0) → 𝑀 ≤ (𝑀 + 𝑛))
195188, 193, 194syl2an 596 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ ℕ) → 𝑀 ≤ (𝑀 + 𝑛))
19626adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑛 ∈ ℕ) → 𝑀 ∈ ℕ)
197196, 67eleqtrdi 2838 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ) → 𝑀 ∈ (ℤ‘1))
198 nnaddcl 12151 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝑀 + 𝑛) ∈ ℕ)
19926, 198sylan 580 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑛 ∈ ℕ) → (𝑀 + 𝑛) ∈ ℕ)
200199nnzd 12498 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ) → (𝑀 + 𝑛) ∈ ℤ)
201 elfz5 13419 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ (ℤ‘1) ∧ (𝑀 + 𝑛) ∈ ℤ) → (𝑀 ∈ (1...(𝑀 + 𝑛)) ↔ 𝑀 ≤ (𝑀 + 𝑛)))
202197, 200, 201syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ ℕ) → (𝑀 ∈ (1...(𝑀 + 𝑛)) ↔ 𝑀 ≤ (𝑀 + 𝑛)))
203195, 202mpbird 257 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ) → 𝑀 ∈ (1...(𝑀 + 𝑛)))
204 fzsplit 13453 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ (1...(𝑀 + 𝑛)) → (1...(𝑀 + 𝑛)) = ((1...𝑀) ∪ ((𝑀 + 1)...(𝑀 + 𝑛))))
205203, 204syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → (1...(𝑀 + 𝑛)) = ((1...𝑀) ∪ ((𝑀 + 1)...(𝑀 + 𝑛))))
206 fzfid 13880 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → (1...(𝑀 + 𝑛)) ∈ Fin)
2074adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑛 ∈ ℕ) → 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
208 elfznn 13456 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ (1...(𝑀 + 𝑛)) → 𝑗 ∈ ℕ)
209 ovolfcl 25365 . . . . . . . . . . . . . . . . . . . 20 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑗 ∈ ℕ) → ((1st ‘(𝐺𝑗)) ∈ ℝ ∧ (2nd ‘(𝐺𝑗)) ∈ ℝ ∧ (1st ‘(𝐺𝑗)) ≤ (2nd ‘(𝐺𝑗))))
210207, 208, 209syl2an 596 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛 ∈ ℕ) ∧ 𝑗 ∈ (1...(𝑀 + 𝑛))) → ((1st ‘(𝐺𝑗)) ∈ ℝ ∧ (2nd ‘(𝐺𝑗)) ∈ ℝ ∧ (1st ‘(𝐺𝑗)) ≤ (2nd ‘(𝐺𝑗))))
211210simp2d 1143 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ 𝑗 ∈ (1...(𝑀 + 𝑛))) → (2nd ‘(𝐺𝑗)) ∈ ℝ)
212210simp1d 1142 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ 𝑗 ∈ (1...(𝑀 + 𝑛))) → (1st ‘(𝐺𝑗)) ∈ ℝ)
213211, 212resubcld 11548 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ 𝑗 ∈ (1...(𝑀 + 𝑛))) → ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))) ∈ ℝ)
214213recnd 11143 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑗 ∈ (1...(𝑀 + 𝑛))) → ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))) ∈ ℂ)
215192, 205, 206, 214fsumsplit 15648 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → Σ𝑗 ∈ (1...(𝑀 + 𝑛))((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))) = (Σ𝑗 ∈ (1...𝑀)((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))) + Σ𝑗 ∈ ((𝑀 + 1)...(𝑀 + 𝑛))((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗)))))
216121ovolfsval 25369 . . . . . . . . . . . . . . . . 17 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑗 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘𝑗) = ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))))
217207, 208, 216syl2an 596 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑗 ∈ (1...(𝑀 + 𝑛))) → (((abs ∘ − ) ∘ 𝐺)‘𝑗) = ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))))
218199, 67eleqtrdi 2838 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → (𝑀 + 𝑛) ∈ (ℤ‘1))
219217, 218, 214fsumser 15637 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → Σ𝑗 ∈ (1...(𝑀 + 𝑛))((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))) = (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘(𝑀 + 𝑛)))
2204ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑀)) → 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
22132adantl 481 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑀)) → 𝑗 ∈ ℕ)
222220, 221, 216syl2anc 584 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑀)) → (((abs ∘ − ) ∘ 𝐺)‘𝑗) = ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))))
2234, 32, 209syl2an 596 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗 ∈ (1...𝑀)) → ((1st ‘(𝐺𝑗)) ∈ ℝ ∧ (2nd ‘(𝐺𝑗)) ∈ ℝ ∧ (1st ‘(𝐺𝑗)) ≤ (2nd ‘(𝐺𝑗))))
224223simp2d 1143 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (1...𝑀)) → (2nd ‘(𝐺𝑗)) ∈ ℝ)
225223simp1d 1142 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (1...𝑀)) → (1st ‘(𝐺𝑗)) ∈ ℝ)
226224, 225resubcld 11548 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (1...𝑀)) → ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))) ∈ ℝ)
227226adantlr 715 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑀)) → ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))) ∈ ℝ)
228227recnd 11143 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑀)) → ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))) ∈ ℂ)
229222, 197, 228fsumser 15637 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ) → Σ𝑗 ∈ (1...𝑀)((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))) = (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑀))
23024fveq1i 6823 . . . . . . . . . . . . . . . . 17 (𝑇𝑀) = (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑀)
231229, 230eqtr4di 2782 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → Σ𝑗 ∈ (1...𝑀)((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))) = (𝑇𝑀))
232196nnzd 12498 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ ℕ) → 𝑀 ∈ ℤ)
233232peano2zd 12583 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ ℕ) → (𝑀 + 1) ∈ ℤ)
2344ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑛 ∈ ℕ) ∧ 𝑗 ∈ ((𝑀 + 1)...(𝑀 + 𝑛))) → 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
235196peano2nnd 12145 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑛 ∈ ℕ) → (𝑀 + 1) ∈ ℕ)
236 elfzuz 13423 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ ((𝑀 + 1)...(𝑀 + 𝑛)) → 𝑗 ∈ (ℤ‘(𝑀 + 1)))
237 eluznn 12819 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑀 + 1) ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(𝑀 + 1))) → 𝑗 ∈ ℕ)
238235, 236, 237syl2an 596 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑛 ∈ ℕ) ∧ 𝑗 ∈ ((𝑀 + 1)...(𝑀 + 𝑛))) → 𝑗 ∈ ℕ)
239234, 238, 209syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑛 ∈ ℕ) ∧ 𝑗 ∈ ((𝑀 + 1)...(𝑀 + 𝑛))) → ((1st ‘(𝐺𝑗)) ∈ ℝ ∧ (2nd ‘(𝐺𝑗)) ∈ ℝ ∧ (1st ‘(𝐺𝑗)) ≤ (2nd ‘(𝐺𝑗))))
240239simp2d 1143 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑛 ∈ ℕ) ∧ 𝑗 ∈ ((𝑀 + 1)...(𝑀 + 𝑛))) → (2nd ‘(𝐺𝑗)) ∈ ℝ)
241239simp1d 1142 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑛 ∈ ℕ) ∧ 𝑗 ∈ ((𝑀 + 1)...(𝑀 + 𝑛))) → (1st ‘(𝐺𝑗)) ∈ ℝ)
242240, 241resubcld 11548 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛 ∈ ℕ) ∧ 𝑗 ∈ ((𝑀 + 1)...(𝑀 + 𝑛))) → ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))) ∈ ℝ)
243242recnd 11143 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ 𝑗 ∈ ((𝑀 + 1)...(𝑀 + 𝑛))) → ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))) ∈ ℂ)
244 2fveq3 6827 . . . . . . . . . . . . . . . . . . 19 (𝑗 = (𝑘 + 𝑀) → (2nd ‘(𝐺𝑗)) = (2nd ‘(𝐺‘(𝑘 + 𝑀))))
245 2fveq3 6827 . . . . . . . . . . . . . . . . . . 19 (𝑗 = (𝑘 + 𝑀) → (1st ‘(𝐺𝑗)) = (1st ‘(𝐺‘(𝑘 + 𝑀))))
246244, 245oveq12d 7367 . . . . . . . . . . . . . . . . . 18 (𝑗 = (𝑘 + 𝑀) → ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))) = ((2nd ‘(𝐺‘(𝑘 + 𝑀))) − (1st ‘(𝐺‘(𝑘 + 𝑀)))))
247232, 233, 200, 243, 246fsumshftm 15688 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ) → Σ𝑗 ∈ ((𝑀 + 1)...(𝑀 + 𝑛))((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))) = Σ𝑘 ∈ (((𝑀 + 1) − 𝑀)...((𝑀 + 𝑛) − 𝑀))((2nd ‘(𝐺‘(𝑘 + 𝑀))) − (1st ‘(𝐺‘(𝑘 + 𝑀)))))
248196nncnd 12144 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑛 ∈ ℕ) → 𝑀 ∈ ℂ)
249 pncan2 11370 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑀 + 1) − 𝑀) = 1)
250248, 74, 249sylancl 586 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ) → ((𝑀 + 1) − 𝑀) = 1)
251 nncn 12136 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
252251adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℂ)
253248, 252pncan2d 11477 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ) → ((𝑀 + 𝑛) − 𝑀) = 𝑛)
254250, 253oveq12d 7367 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ ℕ) → (((𝑀 + 1) − 𝑀)...((𝑀 + 𝑛) − 𝑀)) = (1...𝑛))
255254sumeq1d 15607 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ) → Σ𝑘 ∈ (((𝑀 + 1) − 𝑀)...((𝑀 + 𝑛) − 𝑀))((2nd ‘(𝐺‘(𝑘 + 𝑀))) − (1st ‘(𝐺‘(𝑘 + 𝑀)))) = Σ𝑘 ∈ (1...𝑛)((2nd ‘(𝐺‘(𝑘 + 𝑀))) − (1st ‘(𝐺‘(𝑘 + 𝑀)))))
256133adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑛 ∈ ℕ) → (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))):ℕ⟶( ≤ ∩ (ℝ × ℝ)))
257 elfznn 13456 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (1...𝑛) → 𝑘 ∈ ℕ)
258134ovolfsval 25369 . . . . . . . . . . . . . . . . . . . 20 (((𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))):ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑘 ∈ ℕ) → (((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))‘𝑘) = ((2nd ‘((𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))‘𝑘)) − (1st ‘((𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))‘𝑘))))
259256, 257, 258syl2an 596 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))‘𝑘) = ((2nd ‘((𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))‘𝑘)) − (1st ‘((𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))‘𝑘))))
260257adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ ℕ)
261 fvoveq1 7372 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 = 𝑘 → (𝐺‘(𝑧 + 𝑀)) = (𝐺‘(𝑘 + 𝑀)))
262 eqid 2729 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))) = (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))
263 fvex 6835 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐺‘(𝑘 + 𝑀)) ∈ V
264261, 262, 263fvmpt 6930 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ ℕ → ((𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))‘𝑘) = (𝐺‘(𝑘 + 𝑀)))
265260, 264syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))‘𝑘) = (𝐺‘(𝑘 + 𝑀)))
266265fveq2d 6826 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (2nd ‘((𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))‘𝑘)) = (2nd ‘(𝐺‘(𝑘 + 𝑀))))
267265fveq2d 6826 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (1st ‘((𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))‘𝑘)) = (1st ‘(𝐺‘(𝑘 + 𝑀))))
268266, 267oveq12d 7367 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((2nd ‘((𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))‘𝑘)) − (1st ‘((𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))‘𝑘))) = ((2nd ‘(𝐺‘(𝑘 + 𝑀))) − (1st ‘(𝐺‘(𝑘 + 𝑀)))))
269259, 268eqtrd 2764 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))‘𝑘) = ((2nd ‘(𝐺‘(𝑘 + 𝑀))) − (1st ‘(𝐺‘(𝑘 + 𝑀)))))
270 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
271270, 67eleqtrdi 2838 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ (ℤ‘1))
2724ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
273 nnaddcl 12151 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑘 + 𝑀) ∈ ℕ)
274257, 196, 273syl2anr 597 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (𝑘 + 𝑀) ∈ ℕ)
275 ovolfcl 25365 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ (𝑘 + 𝑀) ∈ ℕ) → ((1st ‘(𝐺‘(𝑘 + 𝑀))) ∈ ℝ ∧ (2nd ‘(𝐺‘(𝑘 + 𝑀))) ∈ ℝ ∧ (1st ‘(𝐺‘(𝑘 + 𝑀))) ≤ (2nd ‘(𝐺‘(𝑘 + 𝑀)))))
276272, 274, 275syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((1st ‘(𝐺‘(𝑘 + 𝑀))) ∈ ℝ ∧ (2nd ‘(𝐺‘(𝑘 + 𝑀))) ∈ ℝ ∧ (1st ‘(𝐺‘(𝑘 + 𝑀))) ≤ (2nd ‘(𝐺‘(𝑘 + 𝑀)))))
277276simp2d 1143 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (2nd ‘(𝐺‘(𝑘 + 𝑀))) ∈ ℝ)
278276simp1d 1142 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (1st ‘(𝐺‘(𝑘 + 𝑀))) ∈ ℝ)
279277, 278resubcld 11548 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((2nd ‘(𝐺‘(𝑘 + 𝑀))) − (1st ‘(𝐺‘(𝑘 + 𝑀)))) ∈ ℝ)
280279recnd 11143 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((2nd ‘(𝐺‘(𝑘 + 𝑀))) − (1st ‘(𝐺‘(𝑘 + 𝑀)))) ∈ ℂ)
281269, 271, 280fsumser 15637 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ) → Σ𝑘 ∈ (1...𝑛)((2nd ‘(𝐺‘(𝑘 + 𝑀))) − (1st ‘(𝐺‘(𝑘 + 𝑀)))) = (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))‘𝑛))
282247, 255, 2813eqtrd 2768 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → Σ𝑗 ∈ ((𝑀 + 1)...(𝑀 + 𝑛))((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))) = (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))‘𝑛))
283231, 282oveq12d 7367 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → (Σ𝑗 ∈ (1...𝑀)((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))) + Σ𝑗 ∈ ((𝑀 + 1)...(𝑀 + 𝑛))((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗)))) = ((𝑇𝑀) + (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))‘𝑛)))
284215, 219, 2833eqtr3d 2772 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘(𝑀 + 𝑛)) = ((𝑇𝑀) + (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))‘𝑛)))
285187, 284eqtrid 2776 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (𝑇‘(𝑀 + 𝑛)) = ((𝑇𝑀) + (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))‘𝑛)))
286123ffnd 6653 . . . . . . . . . . . . . 14 (𝜑𝑇 Fn ℕ)
287 fnfvelrn 7014 . . . . . . . . . . . . . 14 ((𝑇 Fn ℕ ∧ (𝑀 + 𝑛) ∈ ℕ) → (𝑇‘(𝑀 + 𝑛)) ∈ ran 𝑇)
288286, 199, 287syl2an2r 685 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (𝑇‘(𝑀 + 𝑛)) ∈ ran 𝑇)
289285, 288eqeltrrd 2829 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → ((𝑇𝑀) + (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))‘𝑛)) ∈ ran 𝑇)
290 supxrub 13226 . . . . . . . . . . . 12 ((ran 𝑇 ⊆ ℝ* ∧ ((𝑇𝑀) + (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))‘𝑛)) ∈ ran 𝑇) → ((𝑇𝑀) + (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))‘𝑛)) ≤ sup(ran 𝑇, ℝ*, < ))
291186, 289, 290syl2an2r 685 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ((𝑇𝑀) + (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))‘𝑛)) ≤ sup(ran 𝑇, ℝ*, < ))
292125adantr 480 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝑇𝑀) ∈ ℝ)
293137ffvelcdmda 7018 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))‘𝑛) ∈ (0[,)+∞))
294120, 293sselid 3933 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))‘𝑛) ∈ ℝ)
29590adantr 480 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → sup(ran 𝑇, ℝ*, < ) ∈ ℝ)
296292, 294, 295leaddsub2d 11722 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (((𝑇𝑀) + (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))‘𝑛)) ≤ sup(ran 𝑇, ℝ*, < ) ↔ (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))‘𝑛) ≤ (sup(ran 𝑇, ℝ*, < ) − (𝑇𝑀))))
297291, 296mpbid 232 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))‘𝑛) ≤ (sup(ran 𝑇, ℝ*, < ) − (𝑇𝑀)))
298297ralrimiva 3121 . . . . . . . . 9 (𝜑 → ∀𝑛 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))‘𝑛) ≤ (sup(ran 𝑇, ℝ*, < ) − (𝑇𝑀)))
299137ffnd 6653 . . . . . . . . . 10 (𝜑 → seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))) Fn ℕ)
300 breq1 5095 . . . . . . . . . . 11 (𝑥 = (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))‘𝑛) → (𝑥 ≤ (sup(ran 𝑇, ℝ*, < ) − (𝑇𝑀)) ↔ (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))‘𝑛) ≤ (sup(ran 𝑇, ℝ*, < ) − (𝑇𝑀))))
301300ralrn 7022 . . . . . . . . . 10 (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))) Fn ℕ → (∀𝑥 ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))𝑥 ≤ (sup(ran 𝑇, ℝ*, < ) − (𝑇𝑀)) ↔ ∀𝑛 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))‘𝑛) ≤ (sup(ran 𝑇, ℝ*, < ) − (𝑇𝑀))))
302299, 301syl 17 . . . . . . . . 9 (𝜑 → (∀𝑥 ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))𝑥 ≤ (sup(ran 𝑇, ℝ*, < ) − (𝑇𝑀)) ↔ ∀𝑛 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))‘𝑛) ≤ (sup(ran 𝑇, ℝ*, < ) − (𝑇𝑀))))
303298, 302mpbird 257 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))𝑥 ≤ (sup(ran 𝑇, ℝ*, < ) − (𝑇𝑀)))
304 supxrleub 13228 . . . . . . . . 9 ((ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))) ⊆ ℝ* ∧ (sup(ran 𝑇, ℝ*, < ) − (𝑇𝑀)) ∈ ℝ*) → (sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))), ℝ*, < ) ≤ (sup(ran 𝑇, ℝ*, < ) − (𝑇𝑀)) ↔ ∀𝑥 ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))𝑥 ≤ (sup(ran 𝑇, ℝ*, < ) − (𝑇𝑀))))
305140, 143, 304syl2anc 584 . . . . . . . 8 (𝜑 → (sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))), ℝ*, < ) ≤ (sup(ran 𝑇, ℝ*, < ) − (𝑇𝑀)) ↔ ∀𝑥 ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))𝑥 ≤ (sup(ran 𝑇, ℝ*, < ) − (𝑇𝑀))))
306303, 305mpbird 257 . . . . . . 7 (𝜑 → sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))), ℝ*, < ) ≤ (sup(ran 𝑇, ℝ*, < ) − (𝑇𝑀)))
307127, 142, 143, 184, 306xrletrd 13064 . . . . . 6 (𝜑 → (vol*‘ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ≤ (sup(ran 𝑇, ℝ*, < ) − (𝑇𝑀)))
308125, 90, 50absdifltd 15343 . . . . . . . . 9 (𝜑 → ((abs‘((𝑇𝑀) − sup(ran 𝑇, ℝ*, < ))) < 𝐶 ↔ ((sup(ran 𝑇, ℝ*, < ) − 𝐶) < (𝑇𝑀) ∧ (𝑇𝑀) < (sup(ran 𝑇, ℝ*, < ) + 𝐶))))
30927, 308mpbid 232 . . . . . . . 8 (𝜑 → ((sup(ran 𝑇, ℝ*, < ) − 𝐶) < (𝑇𝑀) ∧ (𝑇𝑀) < (sup(ran 𝑇, ℝ*, < ) + 𝐶)))
310309simpld 494 . . . . . . 7 (𝜑 → (sup(ran 𝑇, ℝ*, < ) − 𝐶) < (𝑇𝑀))
31190, 50, 125, 310ltsub23d 11725 . . . . . 6 (𝜑 → (sup(ran 𝑇, ℝ*, < ) − (𝑇𝑀)) < 𝐶)
31297, 126, 50, 307, 311lelttrd 11274 . . . . 5 (𝜑 → (vol*‘ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) < 𝐶)
31397, 50, 49, 312ltadd2dd 11275 . . . 4 (𝜑 → ((vol*‘(𝐾𝐴)) + (vol*‘ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))) < ((vol*‘(𝐾𝐴)) + 𝐶))
31413, 98, 51, 119, 313lelttrd 11274 . . 3 (𝜑 → (vol*‘(𝐸𝐴)) < ((vol*‘(𝐾𝐴)) + 𝐶))
31554, 97readdcld 11144 . . . 4 (𝜑 → ((vol*‘(𝐾𝐴)) + (vol*‘ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))) ∈ ℝ)
316 difss 4087 . . . . . . . 8 (𝐾𝐴) ⊆ 𝐾
317 unss1 4136 . . . . . . . 8 ((𝐾𝐴) ⊆ 𝐾 → ((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ⊆ (𝐾 (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))))
318316, 317ax-mp 5 . . . . . . 7 ((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ⊆ (𝐾 (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))
319318, 88sseqtrrid 3979 . . . . . 6 (𝜑 → ((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ⊆ ran ((,) ∘ 𝐺))
320 ovolsscl 25385 . . . . . 6 ((((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ⊆ ran ((,) ∘ 𝐺) ∧ ran ((,) ∘ 𝐺) ⊆ ℝ ∧ (vol*‘ ran ((,) ∘ 𝐺)) ∈ ℝ) → (vol*‘((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))) ∈ ℝ)
321319, 9, 95, 320syl3anc 1373 . . . . 5 (𝜑 → (vol*‘((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))) ∈ ℝ)
322104ssdifd 4096 . . . . . . 7 (𝜑 → (𝐸𝐴) ⊆ ((𝐾 (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ∖ 𝐴))
323 difundir 4242 . . . . . . . 8 ((𝐾 (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ∖ 𝐴) = ((𝐾𝐴) ∪ ( (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) ∖ 𝐴))
324 difss 4087 . . . . . . . . 9 ( (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) ∖ 𝐴) ⊆ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))
325 unss2 4138 . . . . . . . . 9 (( (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) ∖ 𝐴) ⊆ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) → ((𝐾𝐴) ∪ ( (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) ∖ 𝐴)) ⊆ ((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))))
326324, 325ax-mp 5 . . . . . . . 8 ((𝐾𝐴) ∪ ( (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) ∖ 𝐴)) ⊆ ((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))
327323, 326eqsstri 3982 . . . . . . 7 ((𝐾 (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ∖ 𝐴) ⊆ ((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))
328322, 327sstrdi 3948 . . . . . 6 (𝜑 → (𝐸𝐴) ⊆ ((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))))
329319, 9sstrd 3946 . . . . . 6 (𝜑 → ((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ⊆ ℝ)
330 ovolss 25384 . . . . . 6 (((𝐸𝐴) ⊆ ((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ∧ ((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ⊆ ℝ) → (vol*‘(𝐸𝐴)) ≤ (vol*‘((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))))
331328, 329, 330syl2anc 584 . . . . 5 (𝜑 → (vol*‘(𝐸𝐴)) ≤ (vol*‘((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))))
33252, 46sstrd 3946 . . . . . 6 (𝜑 → (𝐾𝐴) ⊆ ℝ)
333 ovolun 25398 . . . . . 6 ((((𝐾𝐴) ⊆ ℝ ∧ (vol*‘(𝐾𝐴)) ∈ ℝ) ∧ ( (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) ⊆ ℝ ∧ (vol*‘ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ∈ ℝ)) → (vol*‘((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))) ≤ ((vol*‘(𝐾𝐴)) + (vol*‘ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))))
334332, 54, 116, 97, 333syl22anc 838 . . . . 5 (𝜑 → (vol*‘((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))) ≤ ((vol*‘(𝐾𝐴)) + (vol*‘ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))))
33516, 321, 315, 331, 334letrd 11273 . . . 4 (𝜑 → (vol*‘(𝐸𝐴)) ≤ ((vol*‘(𝐾𝐴)) + (vol*‘ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))))
33697, 50, 54, 312ltadd2dd 11275 . . . 4 (𝜑 → ((vol*‘(𝐾𝐴)) + (vol*‘ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))) < ((vol*‘(𝐾𝐴)) + 𝐶))
33716, 315, 55, 335, 336lelttrd 11274 . . 3 (𝜑 → (vol*‘(𝐸𝐴)) < ((vol*‘(𝐾𝐴)) + 𝐶))
33813, 16, 51, 55, 314, 337lt2addd 11743 . 2 (𝜑 → ((vol*‘(𝐸𝐴)) + (vol*‘(𝐸𝐴))) < (((vol*‘(𝐾𝐴)) + 𝐶) + ((vol*‘(𝐾𝐴)) + 𝐶)))
33949recnd 11143 . . 3 (𝜑 → (vol*‘(𝐾𝐴)) ∈ ℂ)
34050recnd 11143 . . 3 (𝜑𝐶 ∈ ℂ)
34154recnd 11143 . . 3 (𝜑 → (vol*‘(𝐾𝐴)) ∈ ℂ)
342339, 340, 341, 340add4d 11345 . 2 (𝜑 → (((vol*‘(𝐾𝐴)) + 𝐶) + ((vol*‘(𝐾𝐴)) + 𝐶)) = (((vol*‘(𝐾𝐴)) + (vol*‘(𝐾𝐴))) + (𝐶 + 𝐶)))
343338, 342breqtrd 5118 1 (𝜑 → ((vol*‘(𝐸𝐴)) + (vol*‘(𝐸𝐴))) < (((vol*‘(𝐾𝐴)) + (vol*‘(𝐾𝐴))) + (𝐶 + 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  Vcvv 3436  cdif 3900  cun 3901  cin 3902  wss 3903  c0 4284  𝒫 cpw 4551  cop 4583   cuni 4858   ciun 4941  Disj wdisj 5059   class class class wbr 5092  cmpt 5173   × cxp 5617  ran crn 5620  cima 5622  ccom 5623   Fn wfn 6477  wf 6478  cfv 6482  (class class class)co 7349  1st c1st 7922  2nd c2nd 7923  supcsup 9330  cc 11007  cr 11008  0cc0 11009  1c1 11010   + caddc 11012  +∞cpnf 11146  *cxr 11148   < clt 11149  cle 11150  cmin 11347  cn 12128  0cn0 12384  cz 12471  cuz 12735  +crp 12893  (,)cioo 13248  [,)cico 13250  [,]cicc 13251  ...cfz 13410  seqcseq 13908  abscabs 15141  Σcsu 15593  vol*covol 25361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-dju 9797  df-card 9835  df-acn 9838  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-rlim 15396  df-sum 15594  df-rest 17326  df-topgen 17347  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-top 22779  df-topon 22796  df-bases 22831  df-cmp 23272  df-ovol 25363  df-vol 25364
This theorem is referenced by:  uniioombllem5  25486
  Copyright terms: Public domain W3C validator