MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniioombllem3 Structured version   Visualization version   GIF version

Theorem uniioombllem3 25536
Description: Lemma for uniioombl 25540. (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypotheses
Ref Expression
uniioombl.1 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.2 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
uniioombl.3 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
uniioombl.a 𝐴 = ran ((,) ∘ 𝐹)
uniioombl.e (𝜑 → (vol*‘𝐸) ∈ ℝ)
uniioombl.c (𝜑𝐶 ∈ ℝ+)
uniioombl.g (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.s (𝜑𝐸 ran ((,) ∘ 𝐺))
uniioombl.t 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
uniioombl.v (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))
uniioombl.m (𝜑𝑀 ∈ ℕ)
uniioombl.m2 (𝜑 → (abs‘((𝑇𝑀) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)
uniioombl.k 𝐾 = (((,) ∘ 𝐺) “ (1...𝑀))
Assertion
Ref Expression
uniioombllem3 (𝜑 → ((vol*‘(𝐸𝐴)) + (vol*‘(𝐸𝐴))) < (((vol*‘(𝐾𝐴)) + (vol*‘(𝐾𝐴))) + (𝐶 + 𝐶)))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐺   𝑥,𝐾   𝑥,𝐴   𝑥,𝐶   𝑥,𝑀   𝜑,𝑥   𝑥,𝑇
Allowed substitution hints:   𝑆(𝑥)   𝐸(𝑥)

Proof of Theorem uniioombllem3
Dummy variables 𝑗 𝑘 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 4212 . . . . 5 (𝐸𝐴) ⊆ 𝐸
21a1i 11 . . . 4 (𝜑 → (𝐸𝐴) ⊆ 𝐸)
3 uniioombl.s . . . . 5 (𝜑𝐸 ran ((,) ∘ 𝐺))
4 uniioombl.g . . . . . . . 8 (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
54uniiccdif 25529 . . . . . . 7 (𝜑 → ( ran ((,) ∘ 𝐺) ⊆ ran ([,] ∘ 𝐺) ∧ (vol*‘( ran ([,] ∘ 𝐺) ∖ ran ((,) ∘ 𝐺))) = 0))
65simpld 494 . . . . . 6 (𝜑 ran ((,) ∘ 𝐺) ⊆ ran ([,] ∘ 𝐺))
7 ovolficcss 25420 . . . . . . 7 (𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ran ([,] ∘ 𝐺) ⊆ ℝ)
84, 7syl 17 . . . . . 6 (𝜑 ran ([,] ∘ 𝐺) ⊆ ℝ)
96, 8sstrd 3969 . . . . 5 (𝜑 ran ((,) ∘ 𝐺) ⊆ ℝ)
103, 9sstrd 3969 . . . 4 (𝜑𝐸 ⊆ ℝ)
11 uniioombl.e . . . 4 (𝜑 → (vol*‘𝐸) ∈ ℝ)
12 ovolsscl 25437 . . . 4 (((𝐸𝐴) ⊆ 𝐸𝐸 ⊆ ℝ ∧ (vol*‘𝐸) ∈ ℝ) → (vol*‘(𝐸𝐴)) ∈ ℝ)
132, 10, 11, 12syl3anc 1373 . . 3 (𝜑 → (vol*‘(𝐸𝐴)) ∈ ℝ)
14 difssd 4112 . . . 4 (𝜑 → (𝐸𝐴) ⊆ 𝐸)
15 ovolsscl 25437 . . . 4 (((𝐸𝐴) ⊆ 𝐸𝐸 ⊆ ℝ ∧ (vol*‘𝐸) ∈ ℝ) → (vol*‘(𝐸𝐴)) ∈ ℝ)
1614, 10, 11, 15syl3anc 1373 . . 3 (𝜑 → (vol*‘(𝐸𝐴)) ∈ ℝ)
17 inss1 4212 . . . . . 6 (𝐾𝐴) ⊆ 𝐾
1817a1i 11 . . . . 5 (𝜑 → (𝐾𝐴) ⊆ 𝐾)
19 uniioombl.1 . . . . . . . 8 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
20 uniioombl.2 . . . . . . . 8 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
21 uniioombl.3 . . . . . . . 8 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
22 uniioombl.a . . . . . . . 8 𝐴 = ran ((,) ∘ 𝐹)
23 uniioombl.c . . . . . . . 8 (𝜑𝐶 ∈ ℝ+)
24 uniioombl.t . . . . . . . 8 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
25 uniioombl.v . . . . . . . 8 (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))
26 uniioombl.m . . . . . . . 8 (𝜑𝑀 ∈ ℕ)
27 uniioombl.m2 . . . . . . . 8 (𝜑 → (abs‘((𝑇𝑀) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)
28 uniioombl.k . . . . . . . 8 𝐾 = (((,) ∘ 𝐺) “ (1...𝑀))
2919, 20, 21, 22, 11, 23, 4, 3, 24, 25, 26, 27, 28uniioombllem3a 25535 . . . . . . 7 (𝜑 → (𝐾 = 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)) ∧ (vol*‘𝐾) ∈ ℝ))
3029simpld 494 . . . . . 6 (𝜑𝐾 = 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)))
31 inss2 4213 . . . . . . . . . . . . 13 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
32 elfznn 13568 . . . . . . . . . . . . . 14 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ ℕ)
33 ffvelcdm 7070 . . . . . . . . . . . . . 14 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑗 ∈ ℕ) → (𝐺𝑗) ∈ ( ≤ ∩ (ℝ × ℝ)))
344, 32, 33syl2an 596 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑀)) → (𝐺𝑗) ∈ ( ≤ ∩ (ℝ × ℝ)))
3531, 34sselid 3956 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑀)) → (𝐺𝑗) ∈ (ℝ × ℝ))
36 1st2nd2 8025 . . . . . . . . . . . 12 ((𝐺𝑗) ∈ (ℝ × ℝ) → (𝐺𝑗) = ⟨(1st ‘(𝐺𝑗)), (2nd ‘(𝐺𝑗))⟩)
3735, 36syl 17 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → (𝐺𝑗) = ⟨(1st ‘(𝐺𝑗)), (2nd ‘(𝐺𝑗))⟩)
3837fveq2d 6879 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑀)) → ((,)‘(𝐺𝑗)) = ((,)‘⟨(1st ‘(𝐺𝑗)), (2nd ‘(𝐺𝑗))⟩))
39 df-ov 7406 . . . . . . . . . 10 ((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗))) = ((,)‘⟨(1st ‘(𝐺𝑗)), (2nd ‘(𝐺𝑗))⟩)
4038, 39eqtr4di 2788 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑀)) → ((,)‘(𝐺𝑗)) = ((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗))))
41 ioossre 13422 . . . . . . . . 9 ((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗))) ⊆ ℝ
4240, 41eqsstrdi 4003 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑀)) → ((,)‘(𝐺𝑗)) ⊆ ℝ)
4342ralrimiva 3132 . . . . . . 7 (𝜑 → ∀𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)) ⊆ ℝ)
44 iunss 5021 . . . . . . 7 ( 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)) ⊆ ℝ ↔ ∀𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)) ⊆ ℝ)
4543, 44sylibr 234 . . . . . 6 (𝜑 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)) ⊆ ℝ)
4630, 45eqsstrd 3993 . . . . 5 (𝜑𝐾 ⊆ ℝ)
4729simprd 495 . . . . 5 (𝜑 → (vol*‘𝐾) ∈ ℝ)
48 ovolsscl 25437 . . . . 5 (((𝐾𝐴) ⊆ 𝐾𝐾 ⊆ ℝ ∧ (vol*‘𝐾) ∈ ℝ) → (vol*‘(𝐾𝐴)) ∈ ℝ)
4918, 46, 47, 48syl3anc 1373 . . . 4 (𝜑 → (vol*‘(𝐾𝐴)) ∈ ℝ)
5023rpred 13049 . . . 4 (𝜑𝐶 ∈ ℝ)
5149, 50readdcld 11262 . . 3 (𝜑 → ((vol*‘(𝐾𝐴)) + 𝐶) ∈ ℝ)
52 difssd 4112 . . . . 5 (𝜑 → (𝐾𝐴) ⊆ 𝐾)
53 ovolsscl 25437 . . . . 5 (((𝐾𝐴) ⊆ 𝐾𝐾 ⊆ ℝ ∧ (vol*‘𝐾) ∈ ℝ) → (vol*‘(𝐾𝐴)) ∈ ℝ)
5452, 46, 47, 53syl3anc 1373 . . . 4 (𝜑 → (vol*‘(𝐾𝐴)) ∈ ℝ)
5554, 50readdcld 11262 . . 3 (𝜑 → ((vol*‘(𝐾𝐴)) + 𝐶) ∈ ℝ)
56 ssun2 4154 . . . . . . 7 (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) ⊆ (𝐾 (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))
57 ioof 13462 . . . . . . . . . . . . . . 15 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
58 rexpssxrxp 11278 . . . . . . . . . . . . . . . . 17 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
5931, 58sstri 3968 . . . . . . . . . . . . . . . 16 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)
60 fss 6721 . . . . . . . . . . . . . . . 16 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)) → 𝐺:ℕ⟶(ℝ* × ℝ*))
614, 59, 60sylancl 586 . . . . . . . . . . . . . . 15 (𝜑𝐺:ℕ⟶(ℝ* × ℝ*))
62 fco 6729 . . . . . . . . . . . . . . 15 (((,):(ℝ* × ℝ*)⟶𝒫 ℝ ∧ 𝐺:ℕ⟶(ℝ* × ℝ*)) → ((,) ∘ 𝐺):ℕ⟶𝒫 ℝ)
6357, 61, 62sylancr 587 . . . . . . . . . . . . . 14 (𝜑 → ((,) ∘ 𝐺):ℕ⟶𝒫 ℝ)
6463ffnd 6706 . . . . . . . . . . . . 13 (𝜑 → ((,) ∘ 𝐺) Fn ℕ)
65 fnima 6667 . . . . . . . . . . . . 13 (((,) ∘ 𝐺) Fn ℕ → (((,) ∘ 𝐺) “ ℕ) = ran ((,) ∘ 𝐺))
6664, 65syl 17 . . . . . . . . . . . 12 (𝜑 → (((,) ∘ 𝐺) “ ℕ) = ran ((,) ∘ 𝐺))
67 nnuz 12893 . . . . . . . . . . . . . . 15 ℕ = (ℤ‘1)
6826peano2nnd 12255 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑀 + 1) ∈ ℕ)
6968, 67eleqtrdi 2844 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑀 + 1) ∈ (ℤ‘1))
70 uzsplit 13611 . . . . . . . . . . . . . . . 16 ((𝑀 + 1) ∈ (ℤ‘1) → (ℤ‘1) = ((1...((𝑀 + 1) − 1)) ∪ (ℤ‘(𝑀 + 1))))
7169, 70syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (ℤ‘1) = ((1...((𝑀 + 1) − 1)) ∪ (ℤ‘(𝑀 + 1))))
7267, 71eqtrid 2782 . . . . . . . . . . . . . 14 (𝜑 → ℕ = ((1...((𝑀 + 1) − 1)) ∪ (ℤ‘(𝑀 + 1))))
7326nncnd 12254 . . . . . . . . . . . . . . . . 17 (𝜑𝑀 ∈ ℂ)
74 ax-1cn 11185 . . . . . . . . . . . . . . . . 17 1 ∈ ℂ
75 pncan 11486 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑀 + 1) − 1) = 𝑀)
7673, 74, 75sylancl 586 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑀 + 1) − 1) = 𝑀)
7776oveq2d 7419 . . . . . . . . . . . . . . 15 (𝜑 → (1...((𝑀 + 1) − 1)) = (1...𝑀))
7877uneq1d 4142 . . . . . . . . . . . . . 14 (𝜑 → ((1...((𝑀 + 1) − 1)) ∪ (ℤ‘(𝑀 + 1))) = ((1...𝑀) ∪ (ℤ‘(𝑀 + 1))))
7972, 78eqtrd 2770 . . . . . . . . . . . . 13 (𝜑 → ℕ = ((1...𝑀) ∪ (ℤ‘(𝑀 + 1))))
8079imaeq2d 6047 . . . . . . . . . . . 12 (𝜑 → (((,) ∘ 𝐺) “ ℕ) = (((,) ∘ 𝐺) “ ((1...𝑀) ∪ (ℤ‘(𝑀 + 1)))))
8166, 80eqtr3d 2772 . . . . . . . . . . 11 (𝜑 → ran ((,) ∘ 𝐺) = (((,) ∘ 𝐺) “ ((1...𝑀) ∪ (ℤ‘(𝑀 + 1)))))
82 imaundi 6138 . . . . . . . . . . 11 (((,) ∘ 𝐺) “ ((1...𝑀) ∪ (ℤ‘(𝑀 + 1)))) = ((((,) ∘ 𝐺) “ (1...𝑀)) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))
8381, 82eqtrdi 2786 . . . . . . . . . 10 (𝜑 → ran ((,) ∘ 𝐺) = ((((,) ∘ 𝐺) “ (1...𝑀)) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))))
8483unieqd 4896 . . . . . . . . 9 (𝜑 ran ((,) ∘ 𝐺) = ((((,) ∘ 𝐺) “ (1...𝑀)) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))))
85 uniun 4906 . . . . . . . . 9 ((((,) ∘ 𝐺) “ (1...𝑀)) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) = ( (((,) ∘ 𝐺) “ (1...𝑀)) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))
8684, 85eqtrdi 2786 . . . . . . . 8 (𝜑 ran ((,) ∘ 𝐺) = ( (((,) ∘ 𝐺) “ (1...𝑀)) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))))
8728uneq1i 4139 . . . . . . . 8 (𝐾 (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) = ( (((,) ∘ 𝐺) “ (1...𝑀)) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))
8886, 87eqtr4di 2788 . . . . . . 7 (𝜑 ran ((,) ∘ 𝐺) = (𝐾 (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))))
8956, 88sseqtrrid 4002 . . . . . 6 (𝜑 (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) ⊆ ran ((,) ∘ 𝐺))
9019, 20, 21, 22, 11, 23, 4, 3, 24, 25uniioombllem1 25532 . . . . . . 7 (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ)
91 ssid 3981 . . . . . . . 8 ran ((,) ∘ 𝐺) ⊆ ran ((,) ∘ 𝐺)
9224ovollb 25430 . . . . . . . 8 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ran ((,) ∘ 𝐺) ⊆ ran ((,) ∘ 𝐺)) → (vol*‘ ran ((,) ∘ 𝐺)) ≤ sup(ran 𝑇, ℝ*, < ))
934, 91, 92sylancl 586 . . . . . . 7 (𝜑 → (vol*‘ ran ((,) ∘ 𝐺)) ≤ sup(ran 𝑇, ℝ*, < ))
94 ovollecl 25434 . . . . . . 7 (( ran ((,) ∘ 𝐺) ⊆ ℝ ∧ sup(ran 𝑇, ℝ*, < ) ∈ ℝ ∧ (vol*‘ ran ((,) ∘ 𝐺)) ≤ sup(ran 𝑇, ℝ*, < )) → (vol*‘ ran ((,) ∘ 𝐺)) ∈ ℝ)
959, 90, 93, 94syl3anc 1373 . . . . . 6 (𝜑 → (vol*‘ ran ((,) ∘ 𝐺)) ∈ ℝ)
96 ovolsscl 25437 . . . . . 6 (( (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) ⊆ ran ((,) ∘ 𝐺) ∧ ran ((,) ∘ 𝐺) ⊆ ℝ ∧ (vol*‘ ran ((,) ∘ 𝐺)) ∈ ℝ) → (vol*‘ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ∈ ℝ)
9789, 9, 95, 96syl3anc 1373 . . . . 5 (𝜑 → (vol*‘ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ∈ ℝ)
9849, 97readdcld 11262 . . . 4 (𝜑 → ((vol*‘(𝐾𝐴)) + (vol*‘ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))) ∈ ℝ)
99 unss1 4160 . . . . . . . 8 ((𝐾𝐴) ⊆ 𝐾 → ((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ⊆ (𝐾 (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))))
10017, 99ax-mp 5 . . . . . . 7 ((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ⊆ (𝐾 (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))
101100, 88sseqtrrid 4002 . . . . . 6 (𝜑 → ((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ⊆ ran ((,) ∘ 𝐺))
102 ovolsscl 25437 . . . . . 6 ((((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ⊆ ran ((,) ∘ 𝐺) ∧ ran ((,) ∘ 𝐺) ⊆ ℝ ∧ (vol*‘ ran ((,) ∘ 𝐺)) ∈ ℝ) → (vol*‘((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))) ∈ ℝ)
103101, 9, 95, 102syl3anc 1373 . . . . 5 (𝜑 → (vol*‘((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))) ∈ ℝ)
1043, 88sseqtrd 3995 . . . . . . . 8 (𝜑𝐸 ⊆ (𝐾 (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))))
105104ssrind 4219 . . . . . . 7 (𝜑 → (𝐸𝐴) ⊆ ((𝐾 (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ∩ 𝐴))
106 indir 4261 . . . . . . . 8 ((𝐾 (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ∩ 𝐴) = ((𝐾𝐴) ∪ ( (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) ∩ 𝐴))
107 inss1 4212 . . . . . . . . 9 ( (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) ∩ 𝐴) ⊆ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))
108 unss2 4162 . . . . . . . . 9 (( (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) ∩ 𝐴) ⊆ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) → ((𝐾𝐴) ∪ ( (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) ∩ 𝐴)) ⊆ ((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))))
109107, 108ax-mp 5 . . . . . . . 8 ((𝐾𝐴) ∪ ( (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) ∩ 𝐴)) ⊆ ((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))
110106, 109eqsstri 4005 . . . . . . 7 ((𝐾 (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ∩ 𝐴) ⊆ ((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))
111105, 110sstrdi 3971 . . . . . 6 (𝜑 → (𝐸𝐴) ⊆ ((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))))
112101, 9sstrd 3969 . . . . . 6 (𝜑 → ((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ⊆ ℝ)
113 ovolss 25436 . . . . . 6 (((𝐸𝐴) ⊆ ((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ∧ ((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ⊆ ℝ) → (vol*‘(𝐸𝐴)) ≤ (vol*‘((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))))
114111, 112, 113syl2anc 584 . . . . 5 (𝜑 → (vol*‘(𝐸𝐴)) ≤ (vol*‘((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))))
11518, 46sstrd 3969 . . . . . 6 (𝜑 → (𝐾𝐴) ⊆ ℝ)
11689, 9sstrd 3969 . . . . . 6 (𝜑 (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) ⊆ ℝ)
117 ovolun 25450 . . . . . 6 ((((𝐾𝐴) ⊆ ℝ ∧ (vol*‘(𝐾𝐴)) ∈ ℝ) ∧ ( (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) ⊆ ℝ ∧ (vol*‘ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ∈ ℝ)) → (vol*‘((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))) ≤ ((vol*‘(𝐾𝐴)) + (vol*‘ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))))
118115, 49, 116, 97, 117syl22anc 838 . . . . 5 (𝜑 → (vol*‘((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))) ≤ ((vol*‘(𝐾𝐴)) + (vol*‘ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))))
11913, 103, 98, 114, 118letrd 11390 . . . 4 (𝜑 → (vol*‘(𝐸𝐴)) ≤ ((vol*‘(𝐾𝐴)) + (vol*‘ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))))
120 rge0ssre 13471 . . . . . . . 8 (0[,)+∞) ⊆ ℝ
121 eqid 2735 . . . . . . . . . . 11 ((abs ∘ − ) ∘ 𝐺) = ((abs ∘ − ) ∘ 𝐺)
122121, 24ovolsf 25423 . . . . . . . . . 10 (𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝑇:ℕ⟶(0[,)+∞))
1234, 122syl 17 . . . . . . . . 9 (𝜑𝑇:ℕ⟶(0[,)+∞))
124123, 26ffvelcdmd 7074 . . . . . . . 8 (𝜑 → (𝑇𝑀) ∈ (0[,)+∞))
125120, 124sselid 3956 . . . . . . 7 (𝜑 → (𝑇𝑀) ∈ ℝ)
12690, 125resubcld 11663 . . . . . 6 (𝜑 → (sup(ran 𝑇, ℝ*, < ) − (𝑇𝑀)) ∈ ℝ)
12797rexrd 11283 . . . . . . 7 (𝜑 → (vol*‘ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ∈ ℝ*)
128 id 22 . . . . . . . . . . . . . 14 (𝑧 ∈ ℕ → 𝑧 ∈ ℕ)
129 nnaddcl 12261 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑧 + 𝑀) ∈ ℕ)
130128, 26, 129syl2anr 597 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ ℕ) → (𝑧 + 𝑀) ∈ ℕ)
1314ffvelcdmda 7073 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧 + 𝑀) ∈ ℕ) → (𝐺‘(𝑧 + 𝑀)) ∈ ( ≤ ∩ (ℝ × ℝ)))
132130, 131syldan 591 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ ℕ) → (𝐺‘(𝑧 + 𝑀)) ∈ ( ≤ ∩ (ℝ × ℝ)))
133132fmpttd 7104 . . . . . . . . . . 11 (𝜑 → (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))):ℕ⟶( ≤ ∩ (ℝ × ℝ)))
134 eqid 2735 . . . . . . . . . . . 12 ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))) = ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))
135 eqid 2735 . . . . . . . . . . . 12 seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))) = seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))
136134, 135ovolsf 25423 . . . . . . . . . . 11 ((𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))):ℕ⟶( ≤ ∩ (ℝ × ℝ)) → seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))):ℕ⟶(0[,)+∞))
137133, 136syl 17 . . . . . . . . . 10 (𝜑 → seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))):ℕ⟶(0[,)+∞))
138137frnd 6713 . . . . . . . . 9 (𝜑 → ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))) ⊆ (0[,)+∞))
139 icossxr 13447 . . . . . . . . 9 (0[,)+∞) ⊆ ℝ*
140138, 139sstrdi 3971 . . . . . . . 8 (𝜑 → ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))) ⊆ ℝ*)
141 supxrcl 13329 . . . . . . . 8 (ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))) ⊆ ℝ* → sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))), ℝ*, < ) ∈ ℝ*)
142140, 141syl 17 . . . . . . 7 (𝜑 → sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))), ℝ*, < ) ∈ ℝ*)
143126rexrd 11283 . . . . . . 7 (𝜑 → (sup(ran 𝑇, ℝ*, < ) − (𝑇𝑀)) ∈ ℝ*)
144 1zzd 12621 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → 1 ∈ ℤ)
14526nnzd 12613 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑀 ∈ ℤ)
146145adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → 𝑀 ∈ ℤ)
147 addcom 11419 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑀 + 1) = (1 + 𝑀))
14873, 74, 147sylancl 586 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑀 + 1) = (1 + 𝑀))
149148fveq2d 6879 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (ℤ‘(𝑀 + 1)) = (ℤ‘(1 + 𝑀)))
150149eleq2d 2820 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑥 ∈ (ℤ‘(𝑀 + 1)) ↔ 𝑥 ∈ (ℤ‘(1 + 𝑀))))
151150biimpa 476 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → 𝑥 ∈ (ℤ‘(1 + 𝑀)))
152 eluzsub 12880 . . . . . . . . . . . . . . . . . . 19 ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑥 ∈ (ℤ‘(1 + 𝑀))) → (𝑥𝑀) ∈ (ℤ‘1))
153144, 146, 151, 152syl3anc 1373 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → (𝑥𝑀) ∈ (ℤ‘1))
154153, 67eleqtrrdi 2845 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → (𝑥𝑀) ∈ ℕ)
155 eluzelz 12860 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (ℤ‘(𝑀 + 1)) → 𝑥 ∈ ℤ)
156155adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → 𝑥 ∈ ℤ)
157156zcnd 12696 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → 𝑥 ∈ ℂ)
15873adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → 𝑀 ∈ ℂ)
159157, 158npcand 11596 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → ((𝑥𝑀) + 𝑀) = 𝑥)
160159eqcomd 2741 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → 𝑥 = ((𝑥𝑀) + 𝑀))
161 oveq1 7410 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝑥𝑀) → (𝑧 + 𝑀) = ((𝑥𝑀) + 𝑀))
162161rspceeqv 3624 . . . . . . . . . . . . . . . . 17 (((𝑥𝑀) ∈ ℕ ∧ 𝑥 = ((𝑥𝑀) + 𝑀)) → ∃𝑧 ∈ ℕ 𝑥 = (𝑧 + 𝑀))
163154, 160, 162syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → ∃𝑧 ∈ ℕ 𝑥 = (𝑧 + 𝑀))
164 eqid 2735 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ℕ ↦ (𝑧 + 𝑀)) = (𝑧 ∈ ℕ ↦ (𝑧 + 𝑀))
165164elrnmpt 5938 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ V → (𝑥 ∈ ran (𝑧 ∈ ℕ ↦ (𝑧 + 𝑀)) ↔ ∃𝑧 ∈ ℕ 𝑥 = (𝑧 + 𝑀)))
166165elv 3464 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ran (𝑧 ∈ ℕ ↦ (𝑧 + 𝑀)) ↔ ∃𝑧 ∈ ℕ 𝑥 = (𝑧 + 𝑀))
167163, 166sylibr 234 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → 𝑥 ∈ ran (𝑧 ∈ ℕ ↦ (𝑧 + 𝑀)))
168167ex 412 . . . . . . . . . . . . . 14 (𝜑 → (𝑥 ∈ (ℤ‘(𝑀 + 1)) → 𝑥 ∈ ran (𝑧 ∈ ℕ ↦ (𝑧 + 𝑀))))
169168ssrdv 3964 . . . . . . . . . . . . 13 (𝜑 → (ℤ‘(𝑀 + 1)) ⊆ ran (𝑧 ∈ ℕ ↦ (𝑧 + 𝑀)))
170 imass2 6089 . . . . . . . . . . . . 13 ((ℤ‘(𝑀 + 1)) ⊆ ran (𝑧 ∈ ℕ ↦ (𝑧 + 𝑀)) → (𝐺 “ (ℤ‘(𝑀 + 1))) ⊆ (𝐺 “ ran (𝑧 ∈ ℕ ↦ (𝑧 + 𝑀))))
171169, 170syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐺 “ (ℤ‘(𝑀 + 1))) ⊆ (𝐺 “ ran (𝑧 ∈ ℕ ↦ (𝑧 + 𝑀))))
172 rnco2 6242 . . . . . . . . . . . . 13 ran (𝐺 ∘ (𝑧 ∈ ℕ ↦ (𝑧 + 𝑀))) = (𝐺 “ ran (𝑧 ∈ ℕ ↦ (𝑧 + 𝑀)))
1734, 130cofmpt 7121 . . . . . . . . . . . . . 14 (𝜑 → (𝐺 ∘ (𝑧 ∈ ℕ ↦ (𝑧 + 𝑀))) = (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))
174173rneqd 5918 . . . . . . . . . . . . 13 (𝜑 → ran (𝐺 ∘ (𝑧 ∈ ℕ ↦ (𝑧 + 𝑀))) = ran (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))
175172, 174eqtr3id 2784 . . . . . . . . . . . 12 (𝜑 → (𝐺 “ ran (𝑧 ∈ ℕ ↦ (𝑧 + 𝑀))) = ran (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))
176171, 175sseqtrd 3995 . . . . . . . . . . 11 (𝜑 → (𝐺 “ (ℤ‘(𝑀 + 1))) ⊆ ran (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))
177 imass2 6089 . . . . . . . . . . 11 ((𝐺 “ (ℤ‘(𝑀 + 1))) ⊆ ran (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))) → ((,) “ (𝐺 “ (ℤ‘(𝑀 + 1)))) ⊆ ((,) “ ran (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))
178176, 177syl 17 . . . . . . . . . 10 (𝜑 → ((,) “ (𝐺 “ (ℤ‘(𝑀 + 1)))) ⊆ ((,) “ ran (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))
179 imaco 6240 . . . . . . . . . 10 (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) = ((,) “ (𝐺 “ (ℤ‘(𝑀 + 1))))
180 rnco2 6242 . . . . . . . . . 10 ran ((,) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))) = ((,) “ ran (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))
181178, 179, 1803sstr4g 4012 . . . . . . . . 9 (𝜑 → (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) ⊆ ran ((,) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))
182181unissd 4893 . . . . . . . 8 (𝜑 (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) ⊆ ran ((,) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))
183135ovollb 25430 . . . . . . . 8 (((𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))):ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) ⊆ ran ((,) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))) → (vol*‘ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))), ℝ*, < ))
184133, 182, 183syl2anc 584 . . . . . . 7 (𝜑 → (vol*‘ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))), ℝ*, < ))
185123frnd 6713 . . . . . . . . . . . . 13 (𝜑 → ran 𝑇 ⊆ (0[,)+∞))
186185, 139sstrdi 3971 . . . . . . . . . . . 12 (𝜑 → ran 𝑇 ⊆ ℝ*)
18724fveq1i 6876 . . . . . . . . . . . . . 14 (𝑇‘(𝑀 + 𝑛)) = (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘(𝑀 + 𝑛))
18826nnred 12253 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑀 ∈ ℝ)
189188ltp1d 12170 . . . . . . . . . . . . . . . . . 18 (𝜑𝑀 < (𝑀 + 1))
190 fzdisj 13566 . . . . . . . . . . . . . . . . . 18 (𝑀 < (𝑀 + 1) → ((1...𝑀) ∩ ((𝑀 + 1)...(𝑀 + 𝑛))) = ∅)
191189, 190syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → ((1...𝑀) ∩ ((𝑀 + 1)...(𝑀 + 𝑛))) = ∅)
192191adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → ((1...𝑀) ∩ ((𝑀 + 1)...(𝑀 + 𝑛))) = ∅)
193 nnnn0 12506 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
194 nn0addge1 12545 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ ℝ ∧ 𝑛 ∈ ℕ0) → 𝑀 ≤ (𝑀 + 𝑛))
195188, 193, 194syl2an 596 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ ℕ) → 𝑀 ≤ (𝑀 + 𝑛))
19626adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑛 ∈ ℕ) → 𝑀 ∈ ℕ)
197196, 67eleqtrdi 2844 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ) → 𝑀 ∈ (ℤ‘1))
198 nnaddcl 12261 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝑀 + 𝑛) ∈ ℕ)
19926, 198sylan 580 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑛 ∈ ℕ) → (𝑀 + 𝑛) ∈ ℕ)
200199nnzd 12613 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ) → (𝑀 + 𝑛) ∈ ℤ)
201 elfz5 13531 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ (ℤ‘1) ∧ (𝑀 + 𝑛) ∈ ℤ) → (𝑀 ∈ (1...(𝑀 + 𝑛)) ↔ 𝑀 ≤ (𝑀 + 𝑛)))
202197, 200, 201syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ ℕ) → (𝑀 ∈ (1...(𝑀 + 𝑛)) ↔ 𝑀 ≤ (𝑀 + 𝑛)))
203195, 202mpbird 257 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ) → 𝑀 ∈ (1...(𝑀 + 𝑛)))
204 fzsplit 13565 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ (1...(𝑀 + 𝑛)) → (1...(𝑀 + 𝑛)) = ((1...𝑀) ∪ ((𝑀 + 1)...(𝑀 + 𝑛))))
205203, 204syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → (1...(𝑀 + 𝑛)) = ((1...𝑀) ∪ ((𝑀 + 1)...(𝑀 + 𝑛))))
206 fzfid 13989 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → (1...(𝑀 + 𝑛)) ∈ Fin)
2074adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑛 ∈ ℕ) → 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
208 elfznn 13568 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ (1...(𝑀 + 𝑛)) → 𝑗 ∈ ℕ)
209 ovolfcl 25417 . . . . . . . . . . . . . . . . . . . 20 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑗 ∈ ℕ) → ((1st ‘(𝐺𝑗)) ∈ ℝ ∧ (2nd ‘(𝐺𝑗)) ∈ ℝ ∧ (1st ‘(𝐺𝑗)) ≤ (2nd ‘(𝐺𝑗))))
210207, 208, 209syl2an 596 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛 ∈ ℕ) ∧ 𝑗 ∈ (1...(𝑀 + 𝑛))) → ((1st ‘(𝐺𝑗)) ∈ ℝ ∧ (2nd ‘(𝐺𝑗)) ∈ ℝ ∧ (1st ‘(𝐺𝑗)) ≤ (2nd ‘(𝐺𝑗))))
211210simp2d 1143 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ 𝑗 ∈ (1...(𝑀 + 𝑛))) → (2nd ‘(𝐺𝑗)) ∈ ℝ)
212210simp1d 1142 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ 𝑗 ∈ (1...(𝑀 + 𝑛))) → (1st ‘(𝐺𝑗)) ∈ ℝ)
213211, 212resubcld 11663 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ 𝑗 ∈ (1...(𝑀 + 𝑛))) → ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))) ∈ ℝ)
214213recnd 11261 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑗 ∈ (1...(𝑀 + 𝑛))) → ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))) ∈ ℂ)
215192, 205, 206, 214fsumsplit 15755 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → Σ𝑗 ∈ (1...(𝑀 + 𝑛))((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))) = (Σ𝑗 ∈ (1...𝑀)((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))) + Σ𝑗 ∈ ((𝑀 + 1)...(𝑀 + 𝑛))((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗)))))
216121ovolfsval 25421 . . . . . . . . . . . . . . . . 17 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑗 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘𝑗) = ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))))
217207, 208, 216syl2an 596 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑗 ∈ (1...(𝑀 + 𝑛))) → (((abs ∘ − ) ∘ 𝐺)‘𝑗) = ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))))
218199, 67eleqtrdi 2844 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → (𝑀 + 𝑛) ∈ (ℤ‘1))
219217, 218, 214fsumser 15744 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → Σ𝑗 ∈ (1...(𝑀 + 𝑛))((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))) = (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘(𝑀 + 𝑛)))
2204ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑀)) → 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
22132adantl 481 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑀)) → 𝑗 ∈ ℕ)
222220, 221, 216syl2anc 584 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑀)) → (((abs ∘ − ) ∘ 𝐺)‘𝑗) = ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))))
2234, 32, 209syl2an 596 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗 ∈ (1...𝑀)) → ((1st ‘(𝐺𝑗)) ∈ ℝ ∧ (2nd ‘(𝐺𝑗)) ∈ ℝ ∧ (1st ‘(𝐺𝑗)) ≤ (2nd ‘(𝐺𝑗))))
224223simp2d 1143 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (1...𝑀)) → (2nd ‘(𝐺𝑗)) ∈ ℝ)
225223simp1d 1142 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (1...𝑀)) → (1st ‘(𝐺𝑗)) ∈ ℝ)
226224, 225resubcld 11663 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (1...𝑀)) → ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))) ∈ ℝ)
227226adantlr 715 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑀)) → ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))) ∈ ℝ)
228227recnd 11261 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑀)) → ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))) ∈ ℂ)
229222, 197, 228fsumser 15744 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ) → Σ𝑗 ∈ (1...𝑀)((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))) = (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑀))
23024fveq1i 6876 . . . . . . . . . . . . . . . . 17 (𝑇𝑀) = (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑀)
231229, 230eqtr4di 2788 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → Σ𝑗 ∈ (1...𝑀)((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))) = (𝑇𝑀))
232196nnzd 12613 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ ℕ) → 𝑀 ∈ ℤ)
233232peano2zd 12698 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ ℕ) → (𝑀 + 1) ∈ ℤ)
2344ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑛 ∈ ℕ) ∧ 𝑗 ∈ ((𝑀 + 1)...(𝑀 + 𝑛))) → 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
235196peano2nnd 12255 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑛 ∈ ℕ) → (𝑀 + 1) ∈ ℕ)
236 elfzuz 13535 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ ((𝑀 + 1)...(𝑀 + 𝑛)) → 𝑗 ∈ (ℤ‘(𝑀 + 1)))
237 eluznn 12932 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑀 + 1) ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(𝑀 + 1))) → 𝑗 ∈ ℕ)
238235, 236, 237syl2an 596 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑛 ∈ ℕ) ∧ 𝑗 ∈ ((𝑀 + 1)...(𝑀 + 𝑛))) → 𝑗 ∈ ℕ)
239234, 238, 209syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑛 ∈ ℕ) ∧ 𝑗 ∈ ((𝑀 + 1)...(𝑀 + 𝑛))) → ((1st ‘(𝐺𝑗)) ∈ ℝ ∧ (2nd ‘(𝐺𝑗)) ∈ ℝ ∧ (1st ‘(𝐺𝑗)) ≤ (2nd ‘(𝐺𝑗))))
240239simp2d 1143 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑛 ∈ ℕ) ∧ 𝑗 ∈ ((𝑀 + 1)...(𝑀 + 𝑛))) → (2nd ‘(𝐺𝑗)) ∈ ℝ)
241239simp1d 1142 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑛 ∈ ℕ) ∧ 𝑗 ∈ ((𝑀 + 1)...(𝑀 + 𝑛))) → (1st ‘(𝐺𝑗)) ∈ ℝ)
242240, 241resubcld 11663 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛 ∈ ℕ) ∧ 𝑗 ∈ ((𝑀 + 1)...(𝑀 + 𝑛))) → ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))) ∈ ℝ)
243242recnd 11261 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ 𝑗 ∈ ((𝑀 + 1)...(𝑀 + 𝑛))) → ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))) ∈ ℂ)
244 2fveq3 6880 . . . . . . . . . . . . . . . . . . 19 (𝑗 = (𝑘 + 𝑀) → (2nd ‘(𝐺𝑗)) = (2nd ‘(𝐺‘(𝑘 + 𝑀))))
245 2fveq3 6880 . . . . . . . . . . . . . . . . . . 19 (𝑗 = (𝑘 + 𝑀) → (1st ‘(𝐺𝑗)) = (1st ‘(𝐺‘(𝑘 + 𝑀))))
246244, 245oveq12d 7421 . . . . . . . . . . . . . . . . . 18 (𝑗 = (𝑘 + 𝑀) → ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))) = ((2nd ‘(𝐺‘(𝑘 + 𝑀))) − (1st ‘(𝐺‘(𝑘 + 𝑀)))))
247232, 233, 200, 243, 246fsumshftm 15795 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ) → Σ𝑗 ∈ ((𝑀 + 1)...(𝑀 + 𝑛))((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))) = Σ𝑘 ∈ (((𝑀 + 1) − 𝑀)...((𝑀 + 𝑛) − 𝑀))((2nd ‘(𝐺‘(𝑘 + 𝑀))) − (1st ‘(𝐺‘(𝑘 + 𝑀)))))
248196nncnd 12254 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑛 ∈ ℕ) → 𝑀 ∈ ℂ)
249 pncan2 11487 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑀 + 1) − 𝑀) = 1)
250248, 74, 249sylancl 586 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ) → ((𝑀 + 1) − 𝑀) = 1)
251 nncn 12246 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
252251adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℂ)
253248, 252pncan2d 11594 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ) → ((𝑀 + 𝑛) − 𝑀) = 𝑛)
254250, 253oveq12d 7421 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ ℕ) → (((𝑀 + 1) − 𝑀)...((𝑀 + 𝑛) − 𝑀)) = (1...𝑛))
255254sumeq1d 15714 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ) → Σ𝑘 ∈ (((𝑀 + 1) − 𝑀)...((𝑀 + 𝑛) − 𝑀))((2nd ‘(𝐺‘(𝑘 + 𝑀))) − (1st ‘(𝐺‘(𝑘 + 𝑀)))) = Σ𝑘 ∈ (1...𝑛)((2nd ‘(𝐺‘(𝑘 + 𝑀))) − (1st ‘(𝐺‘(𝑘 + 𝑀)))))
256133adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑛 ∈ ℕ) → (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))):ℕ⟶( ≤ ∩ (ℝ × ℝ)))
257 elfznn 13568 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (1...𝑛) → 𝑘 ∈ ℕ)
258134ovolfsval 25421 . . . . . . . . . . . . . . . . . . . 20 (((𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))):ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑘 ∈ ℕ) → (((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))‘𝑘) = ((2nd ‘((𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))‘𝑘)) − (1st ‘((𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))‘𝑘))))
259256, 257, 258syl2an 596 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))‘𝑘) = ((2nd ‘((𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))‘𝑘)) − (1st ‘((𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))‘𝑘))))
260257adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ ℕ)
261 fvoveq1 7426 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 = 𝑘 → (𝐺‘(𝑧 + 𝑀)) = (𝐺‘(𝑘 + 𝑀)))
262 eqid 2735 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))) = (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))
263 fvex 6888 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐺‘(𝑘 + 𝑀)) ∈ V
264261, 262, 263fvmpt 6985 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ ℕ → ((𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))‘𝑘) = (𝐺‘(𝑘 + 𝑀)))
265260, 264syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))‘𝑘) = (𝐺‘(𝑘 + 𝑀)))
266265fveq2d 6879 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (2nd ‘((𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))‘𝑘)) = (2nd ‘(𝐺‘(𝑘 + 𝑀))))
267265fveq2d 6879 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (1st ‘((𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))‘𝑘)) = (1st ‘(𝐺‘(𝑘 + 𝑀))))
268266, 267oveq12d 7421 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((2nd ‘((𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))‘𝑘)) − (1st ‘((𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))‘𝑘))) = ((2nd ‘(𝐺‘(𝑘 + 𝑀))) − (1st ‘(𝐺‘(𝑘 + 𝑀)))))
269259, 268eqtrd 2770 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))‘𝑘) = ((2nd ‘(𝐺‘(𝑘 + 𝑀))) − (1st ‘(𝐺‘(𝑘 + 𝑀)))))
270 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
271270, 67eleqtrdi 2844 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ (ℤ‘1))
2724ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
273 nnaddcl 12261 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑘 + 𝑀) ∈ ℕ)
274257, 196, 273syl2anr 597 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (𝑘 + 𝑀) ∈ ℕ)
275 ovolfcl 25417 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ (𝑘 + 𝑀) ∈ ℕ) → ((1st ‘(𝐺‘(𝑘 + 𝑀))) ∈ ℝ ∧ (2nd ‘(𝐺‘(𝑘 + 𝑀))) ∈ ℝ ∧ (1st ‘(𝐺‘(𝑘 + 𝑀))) ≤ (2nd ‘(𝐺‘(𝑘 + 𝑀)))))
276272, 274, 275syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((1st ‘(𝐺‘(𝑘 + 𝑀))) ∈ ℝ ∧ (2nd ‘(𝐺‘(𝑘 + 𝑀))) ∈ ℝ ∧ (1st ‘(𝐺‘(𝑘 + 𝑀))) ≤ (2nd ‘(𝐺‘(𝑘 + 𝑀)))))
277276simp2d 1143 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (2nd ‘(𝐺‘(𝑘 + 𝑀))) ∈ ℝ)
278276simp1d 1142 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (1st ‘(𝐺‘(𝑘 + 𝑀))) ∈ ℝ)
279277, 278resubcld 11663 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((2nd ‘(𝐺‘(𝑘 + 𝑀))) − (1st ‘(𝐺‘(𝑘 + 𝑀)))) ∈ ℝ)
280279recnd 11261 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((2nd ‘(𝐺‘(𝑘 + 𝑀))) − (1st ‘(𝐺‘(𝑘 + 𝑀)))) ∈ ℂ)
281269, 271, 280fsumser 15744 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ) → Σ𝑘 ∈ (1...𝑛)((2nd ‘(𝐺‘(𝑘 + 𝑀))) − (1st ‘(𝐺‘(𝑘 + 𝑀)))) = (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))‘𝑛))
282247, 255, 2813eqtrd 2774 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → Σ𝑗 ∈ ((𝑀 + 1)...(𝑀 + 𝑛))((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))) = (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))‘𝑛))
283231, 282oveq12d 7421 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → (Σ𝑗 ∈ (1...𝑀)((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))) + Σ𝑗 ∈ ((𝑀 + 1)...(𝑀 + 𝑛))((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗)))) = ((𝑇𝑀) + (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))‘𝑛)))
284215, 219, 2833eqtr3d 2778 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘(𝑀 + 𝑛)) = ((𝑇𝑀) + (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))‘𝑛)))
285187, 284eqtrid 2782 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (𝑇‘(𝑀 + 𝑛)) = ((𝑇𝑀) + (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))‘𝑛)))
286123ffnd 6706 . . . . . . . . . . . . . 14 (𝜑𝑇 Fn ℕ)
287 fnfvelrn 7069 . . . . . . . . . . . . . 14 ((𝑇 Fn ℕ ∧ (𝑀 + 𝑛) ∈ ℕ) → (𝑇‘(𝑀 + 𝑛)) ∈ ran 𝑇)
288286, 199, 287syl2an2r 685 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (𝑇‘(𝑀 + 𝑛)) ∈ ran 𝑇)
289285, 288eqeltrrd 2835 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → ((𝑇𝑀) + (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))‘𝑛)) ∈ ran 𝑇)
290 supxrub 13338 . . . . . . . . . . . 12 ((ran 𝑇 ⊆ ℝ* ∧ ((𝑇𝑀) + (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))‘𝑛)) ∈ ran 𝑇) → ((𝑇𝑀) + (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))‘𝑛)) ≤ sup(ran 𝑇, ℝ*, < ))
291186, 289, 290syl2an2r 685 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ((𝑇𝑀) + (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))‘𝑛)) ≤ sup(ran 𝑇, ℝ*, < ))
292125adantr 480 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝑇𝑀) ∈ ℝ)
293137ffvelcdmda 7073 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))‘𝑛) ∈ (0[,)+∞))
294120, 293sselid 3956 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))‘𝑛) ∈ ℝ)
29590adantr 480 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → sup(ran 𝑇, ℝ*, < ) ∈ ℝ)
296292, 294, 295leaddsub2d 11837 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (((𝑇𝑀) + (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))‘𝑛)) ≤ sup(ran 𝑇, ℝ*, < ) ↔ (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))‘𝑛) ≤ (sup(ran 𝑇, ℝ*, < ) − (𝑇𝑀))))
297291, 296mpbid 232 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))‘𝑛) ≤ (sup(ran 𝑇, ℝ*, < ) − (𝑇𝑀)))
298297ralrimiva 3132 . . . . . . . . 9 (𝜑 → ∀𝑛 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))‘𝑛) ≤ (sup(ran 𝑇, ℝ*, < ) − (𝑇𝑀)))
299137ffnd 6706 . . . . . . . . . 10 (𝜑 → seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))) Fn ℕ)
300 breq1 5122 . . . . . . . . . . 11 (𝑥 = (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))‘𝑛) → (𝑥 ≤ (sup(ran 𝑇, ℝ*, < ) − (𝑇𝑀)) ↔ (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))‘𝑛) ≤ (sup(ran 𝑇, ℝ*, < ) − (𝑇𝑀))))
301300ralrn 7077 . . . . . . . . . 10 (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))) Fn ℕ → (∀𝑥 ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))𝑥 ≤ (sup(ran 𝑇, ℝ*, < ) − (𝑇𝑀)) ↔ ∀𝑛 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))‘𝑛) ≤ (sup(ran 𝑇, ℝ*, < ) − (𝑇𝑀))))
302299, 301syl 17 . . . . . . . . 9 (𝜑 → (∀𝑥 ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))𝑥 ≤ (sup(ran 𝑇, ℝ*, < ) − (𝑇𝑀)) ↔ ∀𝑛 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))‘𝑛) ≤ (sup(ran 𝑇, ℝ*, < ) − (𝑇𝑀))))
303298, 302mpbird 257 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))𝑥 ≤ (sup(ran 𝑇, ℝ*, < ) − (𝑇𝑀)))
304 supxrleub 13340 . . . . . . . . 9 ((ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))) ⊆ ℝ* ∧ (sup(ran 𝑇, ℝ*, < ) − (𝑇𝑀)) ∈ ℝ*) → (sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))), ℝ*, < ) ≤ (sup(ran 𝑇, ℝ*, < ) − (𝑇𝑀)) ↔ ∀𝑥 ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))𝑥 ≤ (sup(ran 𝑇, ℝ*, < ) − (𝑇𝑀))))
305140, 143, 304syl2anc 584 . . . . . . . 8 (𝜑 → (sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))), ℝ*, < ) ≤ (sup(ran 𝑇, ℝ*, < ) − (𝑇𝑀)) ↔ ∀𝑥 ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀)))))𝑥 ≤ (sup(ran 𝑇, ℝ*, < ) − (𝑇𝑀))))
306303, 305mpbird 257 . . . . . . 7 (𝜑 → sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ (𝐺‘(𝑧 + 𝑀))))), ℝ*, < ) ≤ (sup(ran 𝑇, ℝ*, < ) − (𝑇𝑀)))
307127, 142, 143, 184, 306xrletrd 13176 . . . . . 6 (𝜑 → (vol*‘ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ≤ (sup(ran 𝑇, ℝ*, < ) − (𝑇𝑀)))
308125, 90, 50absdifltd 15450 . . . . . . . . 9 (𝜑 → ((abs‘((𝑇𝑀) − sup(ran 𝑇, ℝ*, < ))) < 𝐶 ↔ ((sup(ran 𝑇, ℝ*, < ) − 𝐶) < (𝑇𝑀) ∧ (𝑇𝑀) < (sup(ran 𝑇, ℝ*, < ) + 𝐶))))
30927, 308mpbid 232 . . . . . . . 8 (𝜑 → ((sup(ran 𝑇, ℝ*, < ) − 𝐶) < (𝑇𝑀) ∧ (𝑇𝑀) < (sup(ran 𝑇, ℝ*, < ) + 𝐶)))
310309simpld 494 . . . . . . 7 (𝜑 → (sup(ran 𝑇, ℝ*, < ) − 𝐶) < (𝑇𝑀))
31190, 50, 125, 310ltsub23d 11840 . . . . . 6 (𝜑 → (sup(ran 𝑇, ℝ*, < ) − (𝑇𝑀)) < 𝐶)
31297, 126, 50, 307, 311lelttrd 11391 . . . . 5 (𝜑 → (vol*‘ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) < 𝐶)
31397, 50, 49, 312ltadd2dd 11392 . . . 4 (𝜑 → ((vol*‘(𝐾𝐴)) + (vol*‘ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))) < ((vol*‘(𝐾𝐴)) + 𝐶))
31413, 98, 51, 119, 313lelttrd 11391 . . 3 (𝜑 → (vol*‘(𝐸𝐴)) < ((vol*‘(𝐾𝐴)) + 𝐶))
31554, 97readdcld 11262 . . . 4 (𝜑 → ((vol*‘(𝐾𝐴)) + (vol*‘ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))) ∈ ℝ)
316 difss 4111 . . . . . . . 8 (𝐾𝐴) ⊆ 𝐾
317 unss1 4160 . . . . . . . 8 ((𝐾𝐴) ⊆ 𝐾 → ((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ⊆ (𝐾 (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))))
318316, 317ax-mp 5 . . . . . . 7 ((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ⊆ (𝐾 (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))
319318, 88sseqtrrid 4002 . . . . . 6 (𝜑 → ((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ⊆ ran ((,) ∘ 𝐺))
320 ovolsscl 25437 . . . . . 6 ((((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ⊆ ran ((,) ∘ 𝐺) ∧ ran ((,) ∘ 𝐺) ⊆ ℝ ∧ (vol*‘ ran ((,) ∘ 𝐺)) ∈ ℝ) → (vol*‘((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))) ∈ ℝ)
321319, 9, 95, 320syl3anc 1373 . . . . 5 (𝜑 → (vol*‘((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))) ∈ ℝ)
322104ssdifd 4120 . . . . . . 7 (𝜑 → (𝐸𝐴) ⊆ ((𝐾 (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ∖ 𝐴))
323 difundir 4266 . . . . . . . 8 ((𝐾 (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ∖ 𝐴) = ((𝐾𝐴) ∪ ( (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) ∖ 𝐴))
324 difss 4111 . . . . . . . . 9 ( (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) ∖ 𝐴) ⊆ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))
325 unss2 4162 . . . . . . . . 9 (( (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) ∖ 𝐴) ⊆ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) → ((𝐾𝐴) ∪ ( (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) ∖ 𝐴)) ⊆ ((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))))
326324, 325ax-mp 5 . . . . . . . 8 ((𝐾𝐴) ∪ ( (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) ∖ 𝐴)) ⊆ ((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))
327323, 326eqsstri 4005 . . . . . . 7 ((𝐾 (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ∖ 𝐴) ⊆ ((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))
328322, 327sstrdi 3971 . . . . . 6 (𝜑 → (𝐸𝐴) ⊆ ((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))))
329319, 9sstrd 3969 . . . . . 6 (𝜑 → ((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ⊆ ℝ)
330 ovolss 25436 . . . . . 6 (((𝐸𝐴) ⊆ ((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ∧ ((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ⊆ ℝ) → (vol*‘(𝐸𝐴)) ≤ (vol*‘((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))))
331328, 329, 330syl2anc 584 . . . . 5 (𝜑 → (vol*‘(𝐸𝐴)) ≤ (vol*‘((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))))
33252, 46sstrd 3969 . . . . . 6 (𝜑 → (𝐾𝐴) ⊆ ℝ)
333 ovolun 25450 . . . . . 6 ((((𝐾𝐴) ⊆ ℝ ∧ (vol*‘(𝐾𝐴)) ∈ ℝ) ∧ ( (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))) ⊆ ℝ ∧ (vol*‘ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1)))) ∈ ℝ)) → (vol*‘((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))) ≤ ((vol*‘(𝐾𝐴)) + (vol*‘ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))))
334332, 54, 116, 97, 333syl22anc 838 . . . . 5 (𝜑 → (vol*‘((𝐾𝐴) ∪ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))) ≤ ((vol*‘(𝐾𝐴)) + (vol*‘ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))))
33516, 321, 315, 331, 334letrd 11390 . . . 4 (𝜑 → (vol*‘(𝐸𝐴)) ≤ ((vol*‘(𝐾𝐴)) + (vol*‘ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))))
33697, 50, 54, 312ltadd2dd 11392 . . . 4 (𝜑 → ((vol*‘(𝐾𝐴)) + (vol*‘ (((,) ∘ 𝐺) “ (ℤ‘(𝑀 + 1))))) < ((vol*‘(𝐾𝐴)) + 𝐶))
33716, 315, 55, 335, 336lelttrd 11391 . . 3 (𝜑 → (vol*‘(𝐸𝐴)) < ((vol*‘(𝐾𝐴)) + 𝐶))
33813, 16, 51, 55, 314, 337lt2addd 11858 . 2 (𝜑 → ((vol*‘(𝐸𝐴)) + (vol*‘(𝐸𝐴))) < (((vol*‘(𝐾𝐴)) + 𝐶) + ((vol*‘(𝐾𝐴)) + 𝐶)))
33949recnd 11261 . . 3 (𝜑 → (vol*‘(𝐾𝐴)) ∈ ℂ)
34050recnd 11261 . . 3 (𝜑𝐶 ∈ ℂ)
34154recnd 11261 . . 3 (𝜑 → (vol*‘(𝐾𝐴)) ∈ ℂ)
342339, 340, 341, 340add4d 11462 . 2 (𝜑 → (((vol*‘(𝐾𝐴)) + 𝐶) + ((vol*‘(𝐾𝐴)) + 𝐶)) = (((vol*‘(𝐾𝐴)) + (vol*‘(𝐾𝐴))) + (𝐶 + 𝐶)))
343338, 342breqtrd 5145 1 (𝜑 → ((vol*‘(𝐸𝐴)) + (vol*‘(𝐸𝐴))) < (((vol*‘(𝐾𝐴)) + (vol*‘(𝐾𝐴))) + (𝐶 + 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  wrex 3060  Vcvv 3459  cdif 3923  cun 3924  cin 3925  wss 3926  c0 4308  𝒫 cpw 4575  cop 4607   cuni 4883   ciun 4967  Disj wdisj 5086   class class class wbr 5119  cmpt 5201   × cxp 5652  ran crn 5655  cima 5657  ccom 5658   Fn wfn 6525  wf 6526  cfv 6530  (class class class)co 7403  1st c1st 7984  2nd c2nd 7985  supcsup 9450  cc 11125  cr 11126  0cc0 11127  1c1 11128   + caddc 11130  +∞cpnf 11264  *cxr 11266   < clt 11267  cle 11268  cmin 11464  cn 12238  0cn0 12499  cz 12586  cuz 12850  +crp 13006  (,)cioo 13360  [,)cico 13362  [,]cicc 13363  ...cfz 13522  seqcseq 14017  abscabs 15251  Σcsu 15700  vol*covol 25413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-inf2 9653  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7669  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-er 8717  df-map 8840  df-pm 8841  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fi 9421  df-sup 9452  df-inf 9453  df-oi 9522  df-dju 9913  df-card 9951  df-acn 9954  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-n0 12500  df-z 12587  df-uz 12851  df-q 12963  df-rp 13007  df-xneg 13126  df-xadd 13127  df-xmul 13128  df-ioo 13364  df-ico 13366  df-icc 13367  df-fz 13523  df-fzo 13670  df-fl 13807  df-seq 14018  df-exp 14078  df-hash 14347  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-clim 15502  df-rlim 15503  df-sum 15701  df-rest 17434  df-topgen 17455  df-psmet 21305  df-xmet 21306  df-met 21307  df-bl 21308  df-mopn 21309  df-top 22830  df-topon 22847  df-bases 22882  df-cmp 23323  df-ovol 25415  df-vol 25416
This theorem is referenced by:  uniioombllem5  25538
  Copyright terms: Public domain W3C validator