MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnf0 Structured version   Visualization version   GIF version

Theorem cantnf0 9604
Description: The value of the zero function. (Contributed by Mario Carneiro, 30-May-2015.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
cantnf0.a (𝜑 → ∅ ∈ 𝐴)
Assertion
Ref Expression
cantnf0 (𝜑 → ((𝐴 CNF 𝐵)‘(𝐵 × {∅})) = ∅)

Proof of Theorem cantnf0
Dummy variables 𝑘 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cantnfs.s . . 3 𝑆 = dom (𝐴 CNF 𝐵)
2 cantnfs.a . . 3 (𝜑𝐴 ∈ On)
3 cantnfs.b . . 3 (𝜑𝐵 ∈ On)
4 eqid 2729 . . 3 OrdIso( E , ((𝐵 × {∅}) supp ∅)) = OrdIso( E , ((𝐵 × {∅}) supp ∅))
5 cantnf0.a . . . . 5 (𝜑 → ∅ ∈ 𝐴)
6 fconst6g 6731 . . . . 5 (∅ ∈ 𝐴 → (𝐵 × {∅}):𝐵𝐴)
75, 6syl 17 . . . 4 (𝜑 → (𝐵 × {∅}):𝐵𝐴)
83, 5fczfsuppd 9313 . . . 4 (𝜑 → (𝐵 × {∅}) finSupp ∅)
91, 2, 3cantnfs 9595 . . . 4 (𝜑 → ((𝐵 × {∅}) ∈ 𝑆 ↔ ((𝐵 × {∅}):𝐵𝐴 ∧ (𝐵 × {∅}) finSupp ∅)))
107, 8, 9mpbir2and 713 . . 3 (𝜑 → (𝐵 × {∅}) ∈ 𝑆)
11 eqid 2729 . . 3 seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ((𝐵 × {∅}) supp ∅))‘𝑘)) ·o ((𝐵 × {∅})‘(OrdIso( E , ((𝐵 × {∅}) supp ∅))‘𝑘))) +o 𝑧)), ∅) = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ((𝐵 × {∅}) supp ∅))‘𝑘)) ·o ((𝐵 × {∅})‘(OrdIso( E , ((𝐵 × {∅}) supp ∅))‘𝑘))) +o 𝑧)), ∅)
121, 2, 3, 4, 10, 11cantnfval 9597 . 2 (𝜑 → ((𝐴 CNF 𝐵)‘(𝐵 × {∅})) = (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ((𝐵 × {∅}) supp ∅))‘𝑘)) ·o ((𝐵 × {∅})‘(OrdIso( E , ((𝐵 × {∅}) supp ∅))‘𝑘))) +o 𝑧)), ∅)‘dom OrdIso( E , ((𝐵 × {∅}) supp ∅))))
13 eqidd 2730 . . . . . . 7 (𝜑 → (𝐵 × {∅}) = (𝐵 × {∅}))
14 0ex 5257 . . . . . . . . 9 ∅ ∈ V
15 fnconstg 6730 . . . . . . . . 9 (∅ ∈ V → (𝐵 × {∅}) Fn 𝐵)
1614, 15mp1i 13 . . . . . . . 8 (𝜑 → (𝐵 × {∅}) Fn 𝐵)
1714a1i 11 . . . . . . . 8 (𝜑 → ∅ ∈ V)
18 fnsuppeq0 8148 . . . . . . . 8 (((𝐵 × {∅}) Fn 𝐵𝐵 ∈ On ∧ ∅ ∈ V) → (((𝐵 × {∅}) supp ∅) = ∅ ↔ (𝐵 × {∅}) = (𝐵 × {∅})))
1916, 3, 17, 18syl3anc 1373 . . . . . . 7 (𝜑 → (((𝐵 × {∅}) supp ∅) = ∅ ↔ (𝐵 × {∅}) = (𝐵 × {∅})))
2013, 19mpbird 257 . . . . . 6 (𝜑 → ((𝐵 × {∅}) supp ∅) = ∅)
21 oieq2 9442 . . . . . 6 (((𝐵 × {∅}) supp ∅) = ∅ → OrdIso( E , ((𝐵 × {∅}) supp ∅)) = OrdIso( E , ∅))
2220, 21syl 17 . . . . 5 (𝜑 → OrdIso( E , ((𝐵 × {∅}) supp ∅)) = OrdIso( E , ∅))
2322dmeqd 5859 . . . 4 (𝜑 → dom OrdIso( E , ((𝐵 × {∅}) supp ∅)) = dom OrdIso( E , ∅))
24 we0 5626 . . . . . 6 E We ∅
25 eqid 2729 . . . . . . 7 OrdIso( E , ∅) = OrdIso( E , ∅)
2625oien 9467 . . . . . 6 ((∅ ∈ V ∧ E We ∅) → dom OrdIso( E , ∅) ≈ ∅)
2714, 24, 26mp2an 692 . . . . 5 dom OrdIso( E , ∅) ≈ ∅
28 en0 8966 . . . . 5 (dom OrdIso( E , ∅) ≈ ∅ ↔ dom OrdIso( E , ∅) = ∅)
2927, 28mpbi 230 . . . 4 dom OrdIso( E , ∅) = ∅
3023, 29eqtrdi 2780 . . 3 (𝜑 → dom OrdIso( E , ((𝐵 × {∅}) supp ∅)) = ∅)
3130fveq2d 6844 . 2 (𝜑 → (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ((𝐵 × {∅}) supp ∅))‘𝑘)) ·o ((𝐵 × {∅})‘(OrdIso( E , ((𝐵 × {∅}) supp ∅))‘𝑘))) +o 𝑧)), ∅)‘dom OrdIso( E , ((𝐵 × {∅}) supp ∅))) = (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ((𝐵 × {∅}) supp ∅))‘𝑘)) ·o ((𝐵 × {∅})‘(OrdIso( E , ((𝐵 × {∅}) supp ∅))‘𝑘))) +o 𝑧)), ∅)‘∅))
3211seqom0g 8401 . . 3 (∅ ∈ V → (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ((𝐵 × {∅}) supp ∅))‘𝑘)) ·o ((𝐵 × {∅})‘(OrdIso( E , ((𝐵 × {∅}) supp ∅))‘𝑘))) +o 𝑧)), ∅)‘∅) = ∅)
3314, 32mp1i 13 . 2 (𝜑 → (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ((𝐵 × {∅}) supp ∅))‘𝑘)) ·o ((𝐵 × {∅})‘(OrdIso( E , ((𝐵 × {∅}) supp ∅))‘𝑘))) +o 𝑧)), ∅)‘∅) = ∅)
3412, 31, 333eqtrd 2768 1 (𝜑 → ((𝐴 CNF 𝐵)‘(𝐵 × {∅})) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  Vcvv 3444  c0 4292  {csn 4585   class class class wbr 5102   E cep 5530   We wwe 5583   × cxp 5629  dom cdm 5631  Oncon0 6320   Fn wfn 6494  wf 6495  cfv 6499  (class class class)co 7369  cmpo 7371   supp csupp 8116  seqωcseqom 8392   +o coa 8408   ·o comu 8409  o coe 8410  cen 8892   finSupp cfsupp 9288  OrdIsocoi 9438   CNF ccnf 9590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-seqom 8393  df-map 8778  df-en 8896  df-fin 8899  df-fsupp 9289  df-oi 9439  df-cnf 9591
This theorem is referenced by:  cnfcom2lem  9630  cantnfresb  43286
  Copyright terms: Public domain W3C validator