MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnf0 Structured version   Visualization version   GIF version

Theorem cantnf0 9713
Description: The value of the zero function. (Contributed by Mario Carneiro, 30-May-2015.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
cantnf0.a (𝜑 → ∅ ∈ 𝐴)
Assertion
Ref Expression
cantnf0 (𝜑 → ((𝐴 CNF 𝐵)‘(𝐵 × {∅})) = ∅)

Proof of Theorem cantnf0
Dummy variables 𝑘 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cantnfs.s . . 3 𝑆 = dom (𝐴 CNF 𝐵)
2 cantnfs.a . . 3 (𝜑𝐴 ∈ On)
3 cantnfs.b . . 3 (𝜑𝐵 ∈ On)
4 eqid 2735 . . 3 OrdIso( E , ((𝐵 × {∅}) supp ∅)) = OrdIso( E , ((𝐵 × {∅}) supp ∅))
5 cantnf0.a . . . . 5 (𝜑 → ∅ ∈ 𝐴)
6 fconst6g 6798 . . . . 5 (∅ ∈ 𝐴 → (𝐵 × {∅}):𝐵𝐴)
75, 6syl 17 . . . 4 (𝜑 → (𝐵 × {∅}):𝐵𝐴)
83, 5fczfsuppd 9424 . . . 4 (𝜑 → (𝐵 × {∅}) finSupp ∅)
91, 2, 3cantnfs 9704 . . . 4 (𝜑 → ((𝐵 × {∅}) ∈ 𝑆 ↔ ((𝐵 × {∅}):𝐵𝐴 ∧ (𝐵 × {∅}) finSupp ∅)))
107, 8, 9mpbir2and 713 . . 3 (𝜑 → (𝐵 × {∅}) ∈ 𝑆)
11 eqid 2735 . . 3 seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ((𝐵 × {∅}) supp ∅))‘𝑘)) ·o ((𝐵 × {∅})‘(OrdIso( E , ((𝐵 × {∅}) supp ∅))‘𝑘))) +o 𝑧)), ∅) = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ((𝐵 × {∅}) supp ∅))‘𝑘)) ·o ((𝐵 × {∅})‘(OrdIso( E , ((𝐵 × {∅}) supp ∅))‘𝑘))) +o 𝑧)), ∅)
121, 2, 3, 4, 10, 11cantnfval 9706 . 2 (𝜑 → ((𝐴 CNF 𝐵)‘(𝐵 × {∅})) = (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ((𝐵 × {∅}) supp ∅))‘𝑘)) ·o ((𝐵 × {∅})‘(OrdIso( E , ((𝐵 × {∅}) supp ∅))‘𝑘))) +o 𝑧)), ∅)‘dom OrdIso( E , ((𝐵 × {∅}) supp ∅))))
13 eqidd 2736 . . . . . . 7 (𝜑 → (𝐵 × {∅}) = (𝐵 × {∅}))
14 0ex 5313 . . . . . . . . 9 ∅ ∈ V
15 fnconstg 6797 . . . . . . . . 9 (∅ ∈ V → (𝐵 × {∅}) Fn 𝐵)
1614, 15mp1i 13 . . . . . . . 8 (𝜑 → (𝐵 × {∅}) Fn 𝐵)
1714a1i 11 . . . . . . . 8 (𝜑 → ∅ ∈ V)
18 fnsuppeq0 8216 . . . . . . . 8 (((𝐵 × {∅}) Fn 𝐵𝐵 ∈ On ∧ ∅ ∈ V) → (((𝐵 × {∅}) supp ∅) = ∅ ↔ (𝐵 × {∅}) = (𝐵 × {∅})))
1916, 3, 17, 18syl3anc 1370 . . . . . . 7 (𝜑 → (((𝐵 × {∅}) supp ∅) = ∅ ↔ (𝐵 × {∅}) = (𝐵 × {∅})))
2013, 19mpbird 257 . . . . . 6 (𝜑 → ((𝐵 × {∅}) supp ∅) = ∅)
21 oieq2 9551 . . . . . 6 (((𝐵 × {∅}) supp ∅) = ∅ → OrdIso( E , ((𝐵 × {∅}) supp ∅)) = OrdIso( E , ∅))
2220, 21syl 17 . . . . 5 (𝜑 → OrdIso( E , ((𝐵 × {∅}) supp ∅)) = OrdIso( E , ∅))
2322dmeqd 5919 . . . 4 (𝜑 → dom OrdIso( E , ((𝐵 × {∅}) supp ∅)) = dom OrdIso( E , ∅))
24 we0 5684 . . . . . 6 E We ∅
25 eqid 2735 . . . . . . 7 OrdIso( E , ∅) = OrdIso( E , ∅)
2625oien 9576 . . . . . 6 ((∅ ∈ V ∧ E We ∅) → dom OrdIso( E , ∅) ≈ ∅)
2714, 24, 26mp2an 692 . . . . 5 dom OrdIso( E , ∅) ≈ ∅
28 en0 9057 . . . . 5 (dom OrdIso( E , ∅) ≈ ∅ ↔ dom OrdIso( E , ∅) = ∅)
2927, 28mpbi 230 . . . 4 dom OrdIso( E , ∅) = ∅
3023, 29eqtrdi 2791 . . 3 (𝜑 → dom OrdIso( E , ((𝐵 × {∅}) supp ∅)) = ∅)
3130fveq2d 6911 . 2 (𝜑 → (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ((𝐵 × {∅}) supp ∅))‘𝑘)) ·o ((𝐵 × {∅})‘(OrdIso( E , ((𝐵 × {∅}) supp ∅))‘𝑘))) +o 𝑧)), ∅)‘dom OrdIso( E , ((𝐵 × {∅}) supp ∅))) = (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ((𝐵 × {∅}) supp ∅))‘𝑘)) ·o ((𝐵 × {∅})‘(OrdIso( E , ((𝐵 × {∅}) supp ∅))‘𝑘))) +o 𝑧)), ∅)‘∅))
3211seqom0g 8495 . . 3 (∅ ∈ V → (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ((𝐵 × {∅}) supp ∅))‘𝑘)) ·o ((𝐵 × {∅})‘(OrdIso( E , ((𝐵 × {∅}) supp ∅))‘𝑘))) +o 𝑧)), ∅)‘∅) = ∅)
3314, 32mp1i 13 . 2 (𝜑 → (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ((𝐵 × {∅}) supp ∅))‘𝑘)) ·o ((𝐵 × {∅})‘(OrdIso( E , ((𝐵 × {∅}) supp ∅))‘𝑘))) +o 𝑧)), ∅)‘∅) = ∅)
3412, 31, 333eqtrd 2779 1 (𝜑 → ((𝐴 CNF 𝐵)‘(𝐵 × {∅})) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2106  Vcvv 3478  c0 4339  {csn 4631   class class class wbr 5148   E cep 5588   We wwe 5640   × cxp 5687  dom cdm 5689  Oncon0 6386   Fn wfn 6558  wf 6559  cfv 6563  (class class class)co 7431  cmpo 7433   supp csupp 8184  seqωcseqom 8486   +o coa 8502   ·o comu 8503  o coe 8504  cen 8981   finSupp cfsupp 9399  OrdIsocoi 9547   CNF ccnf 9699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-seqom 8487  df-map 8867  df-en 8985  df-fin 8988  df-fsupp 9400  df-oi 9548  df-cnf 9700
This theorem is referenced by:  cnfcom2lem  9739  cantnfresb  43314
  Copyright terms: Public domain W3C validator