MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnf0 Structured version   Visualization version   GIF version

Theorem cantnf0 9130
Description: The value of the zero function. (Contributed by Mario Carneiro, 30-May-2015.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
cantnf0.a (𝜑 → ∅ ∈ 𝐴)
Assertion
Ref Expression
cantnf0 (𝜑 → ((𝐴 CNF 𝐵)‘(𝐵 × {∅})) = ∅)

Proof of Theorem cantnf0
Dummy variables 𝑘 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cantnfs.s . . 3 𝑆 = dom (𝐴 CNF 𝐵)
2 cantnfs.a . . 3 (𝜑𝐴 ∈ On)
3 cantnfs.b . . 3 (𝜑𝐵 ∈ On)
4 eqid 2819 . . 3 OrdIso( E , ((𝐵 × {∅}) supp ∅)) = OrdIso( E , ((𝐵 × {∅}) supp ∅))
5 cantnf0.a . . . . 5 (𝜑 → ∅ ∈ 𝐴)
6 fconst6g 6561 . . . . 5 (∅ ∈ 𝐴 → (𝐵 × {∅}):𝐵𝐴)
75, 6syl 17 . . . 4 (𝜑 → (𝐵 × {∅}):𝐵𝐴)
83, 5fczfsuppd 8843 . . . 4 (𝜑 → (𝐵 × {∅}) finSupp ∅)
91, 2, 3cantnfs 9121 . . . 4 (𝜑 → ((𝐵 × {∅}) ∈ 𝑆 ↔ ((𝐵 × {∅}):𝐵𝐴 ∧ (𝐵 × {∅}) finSupp ∅)))
107, 8, 9mpbir2and 711 . . 3 (𝜑 → (𝐵 × {∅}) ∈ 𝑆)
11 eqid 2819 . . 3 seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ((𝐵 × {∅}) supp ∅))‘𝑘)) ·o ((𝐵 × {∅})‘(OrdIso( E , ((𝐵 × {∅}) supp ∅))‘𝑘))) +o 𝑧)), ∅) = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ((𝐵 × {∅}) supp ∅))‘𝑘)) ·o ((𝐵 × {∅})‘(OrdIso( E , ((𝐵 × {∅}) supp ∅))‘𝑘))) +o 𝑧)), ∅)
121, 2, 3, 4, 10, 11cantnfval 9123 . 2 (𝜑 → ((𝐴 CNF 𝐵)‘(𝐵 × {∅})) = (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ((𝐵 × {∅}) supp ∅))‘𝑘)) ·o ((𝐵 × {∅})‘(OrdIso( E , ((𝐵 × {∅}) supp ∅))‘𝑘))) +o 𝑧)), ∅)‘dom OrdIso( E , ((𝐵 × {∅}) supp ∅))))
13 eqidd 2820 . . . . . . 7 (𝜑 → (𝐵 × {∅}) = (𝐵 × {∅}))
14 0ex 5202 . . . . . . . . 9 ∅ ∈ V
15 fnconstg 6560 . . . . . . . . 9 (∅ ∈ V → (𝐵 × {∅}) Fn 𝐵)
1614, 15mp1i 13 . . . . . . . 8 (𝜑 → (𝐵 × {∅}) Fn 𝐵)
1714a1i 11 . . . . . . . 8 (𝜑 → ∅ ∈ V)
18 fnsuppeq0 7850 . . . . . . . 8 (((𝐵 × {∅}) Fn 𝐵𝐵 ∈ On ∧ ∅ ∈ V) → (((𝐵 × {∅}) supp ∅) = ∅ ↔ (𝐵 × {∅}) = (𝐵 × {∅})))
1916, 3, 17, 18syl3anc 1365 . . . . . . 7 (𝜑 → (((𝐵 × {∅}) supp ∅) = ∅ ↔ (𝐵 × {∅}) = (𝐵 × {∅})))
2013, 19mpbird 259 . . . . . 6 (𝜑 → ((𝐵 × {∅}) supp ∅) = ∅)
21 oieq2 8969 . . . . . 6 (((𝐵 × {∅}) supp ∅) = ∅ → OrdIso( E , ((𝐵 × {∅}) supp ∅)) = OrdIso( E , ∅))
2220, 21syl 17 . . . . 5 (𝜑 → OrdIso( E , ((𝐵 × {∅}) supp ∅)) = OrdIso( E , ∅))
2322dmeqd 5767 . . . 4 (𝜑 → dom OrdIso( E , ((𝐵 × {∅}) supp ∅)) = dom OrdIso( E , ∅))
24 we0 5543 . . . . . 6 E We ∅
25 eqid 2819 . . . . . . 7 OrdIso( E , ∅) = OrdIso( E , ∅)
2625oien 8994 . . . . . 6 ((∅ ∈ V ∧ E We ∅) → dom OrdIso( E , ∅) ≈ ∅)
2714, 24, 26mp2an 690 . . . . 5 dom OrdIso( E , ∅) ≈ ∅
28 en0 8564 . . . . 5 (dom OrdIso( E , ∅) ≈ ∅ ↔ dom OrdIso( E , ∅) = ∅)
2927, 28mpbi 232 . . . 4 dom OrdIso( E , ∅) = ∅
3023, 29syl6eq 2870 . . 3 (𝜑 → dom OrdIso( E , ((𝐵 × {∅}) supp ∅)) = ∅)
3130fveq2d 6667 . 2 (𝜑 → (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ((𝐵 × {∅}) supp ∅))‘𝑘)) ·o ((𝐵 × {∅})‘(OrdIso( E , ((𝐵 × {∅}) supp ∅))‘𝑘))) +o 𝑧)), ∅)‘dom OrdIso( E , ((𝐵 × {∅}) supp ∅))) = (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ((𝐵 × {∅}) supp ∅))‘𝑘)) ·o ((𝐵 × {∅})‘(OrdIso( E , ((𝐵 × {∅}) supp ∅))‘𝑘))) +o 𝑧)), ∅)‘∅))
3211seqom0g 8084 . . 3 (∅ ∈ V → (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ((𝐵 × {∅}) supp ∅))‘𝑘)) ·o ((𝐵 × {∅})‘(OrdIso( E , ((𝐵 × {∅}) supp ∅))‘𝑘))) +o 𝑧)), ∅)‘∅) = ∅)
3314, 32mp1i 13 . 2 (𝜑 → (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ((𝐵 × {∅}) supp ∅))‘𝑘)) ·o ((𝐵 × {∅})‘(OrdIso( E , ((𝐵 × {∅}) supp ∅))‘𝑘))) +o 𝑧)), ∅)‘∅) = ∅)
3412, 31, 333eqtrd 2858 1 (𝜑 → ((𝐴 CNF 𝐵)‘(𝐵 × {∅})) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208   = wceq 1530  wcel 2107  Vcvv 3493  c0 4289  {csn 4559   class class class wbr 5057   E cep 5457   We wwe 5506   × cxp 5546  dom cdm 5548  Oncon0 6184   Fn wfn 6343  wf 6344  cfv 6348  (class class class)co 7148  cmpo 7150   supp csupp 7822  seqωcseqom 8075   +o coa 8091   ·o comu 8092  o coe 8093  cen 8498   finSupp cfsupp 8825  OrdIsocoi 8965   CNF ccnf 9116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-2nd 7682  df-supp 7823  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-seqom 8076  df-map 8400  df-en 8502  df-fin 8505  df-fsupp 8826  df-oi 8966  df-cnf 9117
This theorem is referenced by:  cnfcom2lem  9156
  Copyright terms: Public domain W3C validator