MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnf0 Structured version   Visualization version   GIF version

Theorem cantnf0 9715
Description: The value of the zero function. (Contributed by Mario Carneiro, 30-May-2015.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
cantnf0.a (𝜑 → ∅ ∈ 𝐴)
Assertion
Ref Expression
cantnf0 (𝜑 → ((𝐴 CNF 𝐵)‘(𝐵 × {∅})) = ∅)

Proof of Theorem cantnf0
Dummy variables 𝑘 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cantnfs.s . . 3 𝑆 = dom (𝐴 CNF 𝐵)
2 cantnfs.a . . 3 (𝜑𝐴 ∈ On)
3 cantnfs.b . . 3 (𝜑𝐵 ∈ On)
4 eqid 2737 . . 3 OrdIso( E , ((𝐵 × {∅}) supp ∅)) = OrdIso( E , ((𝐵 × {∅}) supp ∅))
5 cantnf0.a . . . . 5 (𝜑 → ∅ ∈ 𝐴)
6 fconst6g 6797 . . . . 5 (∅ ∈ 𝐴 → (𝐵 × {∅}):𝐵𝐴)
75, 6syl 17 . . . 4 (𝜑 → (𝐵 × {∅}):𝐵𝐴)
83, 5fczfsuppd 9426 . . . 4 (𝜑 → (𝐵 × {∅}) finSupp ∅)
91, 2, 3cantnfs 9706 . . . 4 (𝜑 → ((𝐵 × {∅}) ∈ 𝑆 ↔ ((𝐵 × {∅}):𝐵𝐴 ∧ (𝐵 × {∅}) finSupp ∅)))
107, 8, 9mpbir2and 713 . . 3 (𝜑 → (𝐵 × {∅}) ∈ 𝑆)
11 eqid 2737 . . 3 seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ((𝐵 × {∅}) supp ∅))‘𝑘)) ·o ((𝐵 × {∅})‘(OrdIso( E , ((𝐵 × {∅}) supp ∅))‘𝑘))) +o 𝑧)), ∅) = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ((𝐵 × {∅}) supp ∅))‘𝑘)) ·o ((𝐵 × {∅})‘(OrdIso( E , ((𝐵 × {∅}) supp ∅))‘𝑘))) +o 𝑧)), ∅)
121, 2, 3, 4, 10, 11cantnfval 9708 . 2 (𝜑 → ((𝐴 CNF 𝐵)‘(𝐵 × {∅})) = (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ((𝐵 × {∅}) supp ∅))‘𝑘)) ·o ((𝐵 × {∅})‘(OrdIso( E , ((𝐵 × {∅}) supp ∅))‘𝑘))) +o 𝑧)), ∅)‘dom OrdIso( E , ((𝐵 × {∅}) supp ∅))))
13 eqidd 2738 . . . . . . 7 (𝜑 → (𝐵 × {∅}) = (𝐵 × {∅}))
14 0ex 5307 . . . . . . . . 9 ∅ ∈ V
15 fnconstg 6796 . . . . . . . . 9 (∅ ∈ V → (𝐵 × {∅}) Fn 𝐵)
1614, 15mp1i 13 . . . . . . . 8 (𝜑 → (𝐵 × {∅}) Fn 𝐵)
1714a1i 11 . . . . . . . 8 (𝜑 → ∅ ∈ V)
18 fnsuppeq0 8217 . . . . . . . 8 (((𝐵 × {∅}) Fn 𝐵𝐵 ∈ On ∧ ∅ ∈ V) → (((𝐵 × {∅}) supp ∅) = ∅ ↔ (𝐵 × {∅}) = (𝐵 × {∅})))
1916, 3, 17, 18syl3anc 1373 . . . . . . 7 (𝜑 → (((𝐵 × {∅}) supp ∅) = ∅ ↔ (𝐵 × {∅}) = (𝐵 × {∅})))
2013, 19mpbird 257 . . . . . 6 (𝜑 → ((𝐵 × {∅}) supp ∅) = ∅)
21 oieq2 9553 . . . . . 6 (((𝐵 × {∅}) supp ∅) = ∅ → OrdIso( E , ((𝐵 × {∅}) supp ∅)) = OrdIso( E , ∅))
2220, 21syl 17 . . . . 5 (𝜑 → OrdIso( E , ((𝐵 × {∅}) supp ∅)) = OrdIso( E , ∅))
2322dmeqd 5916 . . . 4 (𝜑 → dom OrdIso( E , ((𝐵 × {∅}) supp ∅)) = dom OrdIso( E , ∅))
24 we0 5680 . . . . . 6 E We ∅
25 eqid 2737 . . . . . . 7 OrdIso( E , ∅) = OrdIso( E , ∅)
2625oien 9578 . . . . . 6 ((∅ ∈ V ∧ E We ∅) → dom OrdIso( E , ∅) ≈ ∅)
2714, 24, 26mp2an 692 . . . . 5 dom OrdIso( E , ∅) ≈ ∅
28 en0 9058 . . . . 5 (dom OrdIso( E , ∅) ≈ ∅ ↔ dom OrdIso( E , ∅) = ∅)
2927, 28mpbi 230 . . . 4 dom OrdIso( E , ∅) = ∅
3023, 29eqtrdi 2793 . . 3 (𝜑 → dom OrdIso( E , ((𝐵 × {∅}) supp ∅)) = ∅)
3130fveq2d 6910 . 2 (𝜑 → (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ((𝐵 × {∅}) supp ∅))‘𝑘)) ·o ((𝐵 × {∅})‘(OrdIso( E , ((𝐵 × {∅}) supp ∅))‘𝑘))) +o 𝑧)), ∅)‘dom OrdIso( E , ((𝐵 × {∅}) supp ∅))) = (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ((𝐵 × {∅}) supp ∅))‘𝑘)) ·o ((𝐵 × {∅})‘(OrdIso( E , ((𝐵 × {∅}) supp ∅))‘𝑘))) +o 𝑧)), ∅)‘∅))
3211seqom0g 8496 . . 3 (∅ ∈ V → (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ((𝐵 × {∅}) supp ∅))‘𝑘)) ·o ((𝐵 × {∅})‘(OrdIso( E , ((𝐵 × {∅}) supp ∅))‘𝑘))) +o 𝑧)), ∅)‘∅) = ∅)
3314, 32mp1i 13 . 2 (𝜑 → (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ((𝐵 × {∅}) supp ∅))‘𝑘)) ·o ((𝐵 × {∅})‘(OrdIso( E , ((𝐵 × {∅}) supp ∅))‘𝑘))) +o 𝑧)), ∅)‘∅) = ∅)
3412, 31, 333eqtrd 2781 1 (𝜑 → ((𝐴 CNF 𝐵)‘(𝐵 × {∅})) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2108  Vcvv 3480  c0 4333  {csn 4626   class class class wbr 5143   E cep 5583   We wwe 5636   × cxp 5683  dom cdm 5685  Oncon0 6384   Fn wfn 6556  wf 6557  cfv 6561  (class class class)co 7431  cmpo 7433   supp csupp 8185  seqωcseqom 8487   +o coa 8503   ·o comu 8504  o coe 8505  cen 8982   finSupp cfsupp 9401  OrdIsocoi 9549   CNF ccnf 9701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-seqom 8488  df-map 8868  df-en 8986  df-fin 8989  df-fsupp 9402  df-oi 9550  df-cnf 9702
This theorem is referenced by:  cnfcom2lem  9741  cantnfresb  43337
  Copyright terms: Public domain W3C validator