MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnf0 Structured version   Visualization version   GIF version

Theorem cantnf0 9363
Description: The value of the zero function. (Contributed by Mario Carneiro, 30-May-2015.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
cantnf0.a (𝜑 → ∅ ∈ 𝐴)
Assertion
Ref Expression
cantnf0 (𝜑 → ((𝐴 CNF 𝐵)‘(𝐵 × {∅})) = ∅)

Proof of Theorem cantnf0
Dummy variables 𝑘 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cantnfs.s . . 3 𝑆 = dom (𝐴 CNF 𝐵)
2 cantnfs.a . . 3 (𝜑𝐴 ∈ On)
3 cantnfs.b . . 3 (𝜑𝐵 ∈ On)
4 eqid 2738 . . 3 OrdIso( E , ((𝐵 × {∅}) supp ∅)) = OrdIso( E , ((𝐵 × {∅}) supp ∅))
5 cantnf0.a . . . . 5 (𝜑 → ∅ ∈ 𝐴)
6 fconst6g 6647 . . . . 5 (∅ ∈ 𝐴 → (𝐵 × {∅}):𝐵𝐴)
75, 6syl 17 . . . 4 (𝜑 → (𝐵 × {∅}):𝐵𝐴)
83, 5fczfsuppd 9076 . . . 4 (𝜑 → (𝐵 × {∅}) finSupp ∅)
91, 2, 3cantnfs 9354 . . . 4 (𝜑 → ((𝐵 × {∅}) ∈ 𝑆 ↔ ((𝐵 × {∅}):𝐵𝐴 ∧ (𝐵 × {∅}) finSupp ∅)))
107, 8, 9mpbir2and 709 . . 3 (𝜑 → (𝐵 × {∅}) ∈ 𝑆)
11 eqid 2738 . . 3 seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ((𝐵 × {∅}) supp ∅))‘𝑘)) ·o ((𝐵 × {∅})‘(OrdIso( E , ((𝐵 × {∅}) supp ∅))‘𝑘))) +o 𝑧)), ∅) = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ((𝐵 × {∅}) supp ∅))‘𝑘)) ·o ((𝐵 × {∅})‘(OrdIso( E , ((𝐵 × {∅}) supp ∅))‘𝑘))) +o 𝑧)), ∅)
121, 2, 3, 4, 10, 11cantnfval 9356 . 2 (𝜑 → ((𝐴 CNF 𝐵)‘(𝐵 × {∅})) = (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ((𝐵 × {∅}) supp ∅))‘𝑘)) ·o ((𝐵 × {∅})‘(OrdIso( E , ((𝐵 × {∅}) supp ∅))‘𝑘))) +o 𝑧)), ∅)‘dom OrdIso( E , ((𝐵 × {∅}) supp ∅))))
13 eqidd 2739 . . . . . . 7 (𝜑 → (𝐵 × {∅}) = (𝐵 × {∅}))
14 0ex 5226 . . . . . . . . 9 ∅ ∈ V
15 fnconstg 6646 . . . . . . . . 9 (∅ ∈ V → (𝐵 × {∅}) Fn 𝐵)
1614, 15mp1i 13 . . . . . . . 8 (𝜑 → (𝐵 × {∅}) Fn 𝐵)
1714a1i 11 . . . . . . . 8 (𝜑 → ∅ ∈ V)
18 fnsuppeq0 7979 . . . . . . . 8 (((𝐵 × {∅}) Fn 𝐵𝐵 ∈ On ∧ ∅ ∈ V) → (((𝐵 × {∅}) supp ∅) = ∅ ↔ (𝐵 × {∅}) = (𝐵 × {∅})))
1916, 3, 17, 18syl3anc 1369 . . . . . . 7 (𝜑 → (((𝐵 × {∅}) supp ∅) = ∅ ↔ (𝐵 × {∅}) = (𝐵 × {∅})))
2013, 19mpbird 256 . . . . . 6 (𝜑 → ((𝐵 × {∅}) supp ∅) = ∅)
21 oieq2 9202 . . . . . 6 (((𝐵 × {∅}) supp ∅) = ∅ → OrdIso( E , ((𝐵 × {∅}) supp ∅)) = OrdIso( E , ∅))
2220, 21syl 17 . . . . 5 (𝜑 → OrdIso( E , ((𝐵 × {∅}) supp ∅)) = OrdIso( E , ∅))
2322dmeqd 5803 . . . 4 (𝜑 → dom OrdIso( E , ((𝐵 × {∅}) supp ∅)) = dom OrdIso( E , ∅))
24 we0 5575 . . . . . 6 E We ∅
25 eqid 2738 . . . . . . 7 OrdIso( E , ∅) = OrdIso( E , ∅)
2625oien 9227 . . . . . 6 ((∅ ∈ V ∧ E We ∅) → dom OrdIso( E , ∅) ≈ ∅)
2714, 24, 26mp2an 688 . . . . 5 dom OrdIso( E , ∅) ≈ ∅
28 en0 8758 . . . . 5 (dom OrdIso( E , ∅) ≈ ∅ ↔ dom OrdIso( E , ∅) = ∅)
2927, 28mpbi 229 . . . 4 dom OrdIso( E , ∅) = ∅
3023, 29eqtrdi 2795 . . 3 (𝜑 → dom OrdIso( E , ((𝐵 × {∅}) supp ∅)) = ∅)
3130fveq2d 6760 . 2 (𝜑 → (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ((𝐵 × {∅}) supp ∅))‘𝑘)) ·o ((𝐵 × {∅})‘(OrdIso( E , ((𝐵 × {∅}) supp ∅))‘𝑘))) +o 𝑧)), ∅)‘dom OrdIso( E , ((𝐵 × {∅}) supp ∅))) = (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ((𝐵 × {∅}) supp ∅))‘𝑘)) ·o ((𝐵 × {∅})‘(OrdIso( E , ((𝐵 × {∅}) supp ∅))‘𝑘))) +o 𝑧)), ∅)‘∅))
3211seqom0g 8257 . . 3 (∅ ∈ V → (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ((𝐵 × {∅}) supp ∅))‘𝑘)) ·o ((𝐵 × {∅})‘(OrdIso( E , ((𝐵 × {∅}) supp ∅))‘𝑘))) +o 𝑧)), ∅)‘∅) = ∅)
3314, 32mp1i 13 . 2 (𝜑 → (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ((𝐵 × {∅}) supp ∅))‘𝑘)) ·o ((𝐵 × {∅})‘(OrdIso( E , ((𝐵 × {∅}) supp ∅))‘𝑘))) +o 𝑧)), ∅)‘∅) = ∅)
3412, 31, 333eqtrd 2782 1 (𝜑 → ((𝐴 CNF 𝐵)‘(𝐵 × {∅})) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2108  Vcvv 3422  c0 4253  {csn 4558   class class class wbr 5070   E cep 5485   We wwe 5534   × cxp 5578  dom cdm 5580  Oncon0 6251   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  cmpo 7257   supp csupp 7948  seqωcseqom 8248   +o coa 8264   ·o comu 8265  o coe 8266  cen 8688   finSupp cfsupp 9058  OrdIsocoi 9198   CNF ccnf 9349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-seqom 8249  df-map 8575  df-en 8692  df-fin 8695  df-fsupp 9059  df-oi 9199  df-cnf 9350
This theorem is referenced by:  cnfcom2lem  9389
  Copyright terms: Public domain W3C validator