Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wereu | Structured version Visualization version GIF version |
Description: A nonempty subset of an 𝑅-well-ordered class has a unique 𝑅 -minimal element. (Contributed by NM, 18-Mar-1997.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
wereu | ⊢ ((𝑅 We 𝐴 ∧ (𝐵 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → ∃!𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wefr 5579 | . . 3 ⊢ (𝑅 We 𝐴 → 𝑅 Fr 𝐴) | |
2 | fri 5549 | . . . . . 6 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝑅 Fr 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥) | |
3 | 2 | exp32 421 | . . . . 5 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑅 Fr 𝐴) → (𝐵 ⊆ 𝐴 → (𝐵 ≠ ∅ → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥))) |
4 | 3 | expcom 414 | . . . 4 ⊢ (𝑅 Fr 𝐴 → (𝐵 ∈ 𝑉 → (𝐵 ⊆ 𝐴 → (𝐵 ≠ ∅ → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥)))) |
5 | 4 | 3imp2 1348 | . . 3 ⊢ ((𝑅 Fr 𝐴 ∧ (𝐵 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥) |
6 | 1, 5 | sylan 580 | . 2 ⊢ ((𝑅 We 𝐴 ∧ (𝐵 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥) |
7 | weso 5580 | . . . . 5 ⊢ (𝑅 We 𝐴 → 𝑅 Or 𝐴) | |
8 | soss 5523 | . . . . 5 ⊢ (𝐵 ⊆ 𝐴 → (𝑅 Or 𝐴 → 𝑅 Or 𝐵)) | |
9 | 7, 8 | mpan9 507 | . . . 4 ⊢ ((𝑅 We 𝐴 ∧ 𝐵 ⊆ 𝐴) → 𝑅 Or 𝐵) |
10 | somo 5540 | . . . 4 ⊢ (𝑅 Or 𝐵 → ∃*𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥) | |
11 | 9, 10 | syl 17 | . . 3 ⊢ ((𝑅 We 𝐴 ∧ 𝐵 ⊆ 𝐴) → ∃*𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥) |
12 | 11 | 3ad2antr2 1188 | . 2 ⊢ ((𝑅 We 𝐴 ∧ (𝐵 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → ∃*𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥) |
13 | reu5 3360 | . 2 ⊢ (∃!𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ↔ (∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∃*𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥)) | |
14 | 6, 12, 13 | sylanbrc 583 | 1 ⊢ ((𝑅 We 𝐴 ∧ (𝐵 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → ∃!𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∧ w3a 1086 ∈ wcel 2110 ≠ wne 2945 ∀wral 3066 ∃wrex 3067 ∃!wreu 3068 ∃*wrmo 3069 ⊆ wss 3892 ∅c0 4262 class class class wbr 5079 Or wor 5502 Fr wfr 5541 We wwe 5543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-br 5080 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 |
This theorem is referenced by: htalem 9653 zorn2lem1 10251 dyadmax 24758 finorwe 35547 wessf1ornlem 42690 |
Copyright terms: Public domain | W3C validator |