Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wereu | Structured version Visualization version GIF version |
Description: A nonempty subset of an 𝑅-well-ordered class has a unique 𝑅 -minimal element. (Contributed by NM, 18-Mar-1997.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
wereu | ⊢ ((𝑅 We 𝐴 ∧ (𝐵 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → ∃!𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wefr 5579 | . . 3 ⊢ (𝑅 We 𝐴 → 𝑅 Fr 𝐴) | |
2 | fri 5549 | . . . . . 6 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝑅 Fr 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥) | |
3 | 2 | exp32 421 | . . . . 5 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑅 Fr 𝐴) → (𝐵 ⊆ 𝐴 → (𝐵 ≠ ∅ → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥))) |
4 | 3 | expcom 414 | . . . 4 ⊢ (𝑅 Fr 𝐴 → (𝐵 ∈ 𝑉 → (𝐵 ⊆ 𝐴 → (𝐵 ≠ ∅ → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥)))) |
5 | 4 | 3imp2 1348 | . . 3 ⊢ ((𝑅 Fr 𝐴 ∧ (𝐵 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥) |
6 | 1, 5 | sylan 580 | . 2 ⊢ ((𝑅 We 𝐴 ∧ (𝐵 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥) |
7 | weso 5580 | . . . . 5 ⊢ (𝑅 We 𝐴 → 𝑅 Or 𝐴) | |
8 | soss 5523 | . . . . 5 ⊢ (𝐵 ⊆ 𝐴 → (𝑅 Or 𝐴 → 𝑅 Or 𝐵)) | |
9 | 7, 8 | mpan9 507 | . . . 4 ⊢ ((𝑅 We 𝐴 ∧ 𝐵 ⊆ 𝐴) → 𝑅 Or 𝐵) |
10 | somo 5540 | . . . 4 ⊢ (𝑅 Or 𝐵 → ∃*𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥) | |
11 | 9, 10 | syl 17 | . . 3 ⊢ ((𝑅 We 𝐴 ∧ 𝐵 ⊆ 𝐴) → ∃*𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥) |
12 | 11 | 3ad2antr2 1188 | . 2 ⊢ ((𝑅 We 𝐴 ∧ (𝐵 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → ∃*𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥) |
13 | reu5 3361 | . 2 ⊢ (∃!𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ↔ (∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∃*𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥)) | |
14 | 6, 12, 13 | sylanbrc 583 | 1 ⊢ ((𝑅 We 𝐴 ∧ (𝐵 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → ∃!𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∧ w3a 1086 ∈ wcel 2106 ≠ wne 2943 ∀wral 3064 ∃wrex 3065 ∃!wreu 3066 ∃*wrmo 3067 ⊆ wss 3887 ∅c0 4256 class class class wbr 5074 Or wor 5502 Fr wfr 5541 We wwe 5543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 |
This theorem is referenced by: htalem 9654 zorn2lem1 10252 dyadmax 24762 finorwe 35553 wessf1ornlem 42722 |
Copyright terms: Public domain | W3C validator |