| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wereu | Structured version Visualization version GIF version | ||
| Description: A nonempty subset of an 𝑅-well-ordered class has a unique 𝑅 -minimal element. (Contributed by NM, 18-Mar-1997.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| wereu | ⊢ ((𝑅 We 𝐴 ∧ (𝐵 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → ∃!𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wefr 5609 | . . 3 ⊢ (𝑅 We 𝐴 → 𝑅 Fr 𝐴) | |
| 2 | fri 5577 | . . . . . 6 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝑅 Fr 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥) | |
| 3 | 2 | exp32 420 | . . . . 5 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑅 Fr 𝐴) → (𝐵 ⊆ 𝐴 → (𝐵 ≠ ∅ → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥))) |
| 4 | 3 | expcom 413 | . . . 4 ⊢ (𝑅 Fr 𝐴 → (𝐵 ∈ 𝑉 → (𝐵 ⊆ 𝐴 → (𝐵 ≠ ∅ → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥)))) |
| 5 | 4 | 3imp2 1350 | . . 3 ⊢ ((𝑅 Fr 𝐴 ∧ (𝐵 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥) |
| 6 | 1, 5 | sylan 580 | . 2 ⊢ ((𝑅 We 𝐴 ∧ (𝐵 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥) |
| 7 | weso 5610 | . . . . 5 ⊢ (𝑅 We 𝐴 → 𝑅 Or 𝐴) | |
| 8 | soss 5547 | . . . . 5 ⊢ (𝐵 ⊆ 𝐴 → (𝑅 Or 𝐴 → 𝑅 Or 𝐵)) | |
| 9 | 7, 8 | mpan9 506 | . . . 4 ⊢ ((𝑅 We 𝐴 ∧ 𝐵 ⊆ 𝐴) → 𝑅 Or 𝐵) |
| 10 | somo 5566 | . . . 4 ⊢ (𝑅 Or 𝐵 → ∃*𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥) | |
| 11 | 9, 10 | syl 17 | . . 3 ⊢ ((𝑅 We 𝐴 ∧ 𝐵 ⊆ 𝐴) → ∃*𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥) |
| 12 | 11 | 3ad2antr2 1190 | . 2 ⊢ ((𝑅 We 𝐴 ∧ (𝐵 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → ∃*𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥) |
| 13 | reu5 3345 | . 2 ⊢ (∃!𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ↔ (∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∃*𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥)) | |
| 14 | 6, 12, 13 | sylanbrc 583 | 1 ⊢ ((𝑅 We 𝐴 ∧ (𝐵 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → ∃!𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 ∃!wreu 3341 ∃*wrmo 3342 ⊆ wss 3903 ∅c0 4284 class class class wbr 5092 Or wor 5526 Fr wfr 5569 We wwe 5571 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 |
| This theorem is referenced by: htalem 9792 zorn2lem1 10390 dyadmax 25497 wevgblacfn 35086 finorwe 37360 wessf1ornlem 45167 |
| Copyright terms: Public domain | W3C validator |