MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wereu Structured version   Visualization version   GIF version

Theorem wereu 5637
Description: A nonempty subset of an 𝑅-well-ordered class has a unique 𝑅 -minimal element. (Contributed by NM, 18-Mar-1997.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
wereu ((𝑅 We 𝐴 ∧ (𝐵𝑉𝐵𝐴𝐵 ≠ ∅)) → ∃!𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦   𝑥,𝑉,𝑦

Proof of Theorem wereu
StepHypRef Expression
1 wefr 5631 . . 3 (𝑅 We 𝐴𝑅 Fr 𝐴)
2 fri 5599 . . . . . 6 (((𝐵𝑉𝑅 Fr 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
32exp32 420 . . . . 5 ((𝐵𝑉𝑅 Fr 𝐴) → (𝐵𝐴 → (𝐵 ≠ ∅ → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)))
43expcom 413 . . . 4 (𝑅 Fr 𝐴 → (𝐵𝑉 → (𝐵𝐴 → (𝐵 ≠ ∅ → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥))))
543imp2 1350 . . 3 ((𝑅 Fr 𝐴 ∧ (𝐵𝑉𝐵𝐴𝐵 ≠ ∅)) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
61, 5sylan 580 . 2 ((𝑅 We 𝐴 ∧ (𝐵𝑉𝐵𝐴𝐵 ≠ ∅)) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
7 weso 5632 . . . . 5 (𝑅 We 𝐴𝑅 Or 𝐴)
8 soss 5569 . . . . 5 (𝐵𝐴 → (𝑅 Or 𝐴𝑅 Or 𝐵))
97, 8mpan9 506 . . . 4 ((𝑅 We 𝐴𝐵𝐴) → 𝑅 Or 𝐵)
10 somo 5588 . . . 4 (𝑅 Or 𝐵 → ∃*𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
119, 10syl 17 . . 3 ((𝑅 We 𝐴𝐵𝐴) → ∃*𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
12113ad2antr2 1190 . 2 ((𝑅 We 𝐴 ∧ (𝐵𝑉𝐵𝐴𝐵 ≠ ∅)) → ∃*𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
13 reu5 3358 . 2 (∃!𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥 ↔ (∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∃*𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥))
146, 12, 13sylanbrc 583 1 ((𝑅 We 𝐴 ∧ (𝐵𝑉𝐵𝐴𝐵 ≠ ∅)) → ∃!𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086  wcel 2109  wne 2926  wral 3045  wrex 3054  ∃!wreu 3354  ∃*wrmo 3355  wss 3917  c0 4299   class class class wbr 5110   Or wor 5548   Fr wfr 5591   We wwe 5593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-po 5549  df-so 5550  df-fr 5594  df-we 5596
This theorem is referenced by:  htalem  9856  zorn2lem1  10456  dyadmax  25506  wevgblacfn  35103  finorwe  37377  wessf1ornlem  45186
  Copyright terms: Public domain W3C validator