MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wemapwe Structured version   Visualization version   GIF version

Theorem wemapwe 9290
Description: Construct lexicographic order on a function space based on a reverse well-ordering of the indices and a well-ordering of the values. (Contributed by Mario Carneiro, 29-May-2015.) (Revised by AV, 3-Jul-2019.)
Hypotheses
Ref Expression
wemapwe.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 ((𝑥𝑧)𝑆(𝑦𝑧) ∧ ∀𝑤𝐴 (𝑧𝑅𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
wemapwe.u 𝑈 = {𝑥 ∈ (𝐵m 𝐴) ∣ 𝑥 finSupp 𝑍}
wemapwe.2 (𝜑𝑅 We 𝐴)
wemapwe.3 (𝜑𝑆 We 𝐵)
wemapwe.4 (𝜑𝐵 ≠ ∅)
wemapwe.5 𝐹 = OrdIso(𝑅, 𝐴)
wemapwe.6 𝐺 = OrdIso(𝑆, 𝐵)
wemapwe.7 𝑍 = (𝐺‘∅)
Assertion
Ref Expression
wemapwe (𝜑𝑇 We 𝑈)
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦   𝑤,𝐹,𝑥,𝑦,𝑧   𝑥,𝐺,𝑦   𝜑,𝑥,𝑦   𝑤,𝑅,𝑧   𝑧,𝑆   𝑥,𝑈,𝑦   𝑥,𝑍
Allowed substitution hints:   𝜑(𝑧,𝑤)   𝐵(𝑧,𝑤)   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦,𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤)   𝑈(𝑧,𝑤)   𝐺(𝑧,𝑤)   𝑍(𝑦,𝑧,𝑤)

Proof of Theorem wemapwe
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wemapwe.u . . . . . . . . 9 𝑈 = {𝑥 ∈ (𝐵m 𝐴) ∣ 𝑥 finSupp 𝑍}
2 eqid 2736 . . . . . . . . 9 {𝑥 ∈ (dom 𝐺m dom 𝐹) ∣ 𝑥 finSupp (𝐺𝑍)} = {𝑥 ∈ (dom 𝐺m dom 𝐹) ∣ 𝑥 finSupp (𝐺𝑍)}
3 eqid 2736 . . . . . . . . 9 (𝐺𝑍) = (𝐺𝑍)
4 simprr 773 . . . . . . . . . . 11 ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → 𝐴 ∈ V)
5 wemapwe.2 . . . . . . . . . . . 12 (𝜑𝑅 We 𝐴)
65adantr 484 . . . . . . . . . . 11 ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → 𝑅 We 𝐴)
7 wemapwe.5 . . . . . . . . . . . 12 𝐹 = OrdIso(𝑅, 𝐴)
87oiiso 9131 . . . . . . . . . . 11 ((𝐴 ∈ V ∧ 𝑅 We 𝐴) → 𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴))
94, 6, 8syl2anc 587 . . . . . . . . . 10 ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → 𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴))
10 isof1o 7110 . . . . . . . . . 10 (𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴) → 𝐹:dom 𝐹1-1-onto𝐴)
119, 10syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → 𝐹:dom 𝐹1-1-onto𝐴)
12 simprl 771 . . . . . . . . . . 11 ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → 𝐵 ∈ V)
13 wemapwe.3 . . . . . . . . . . . 12 (𝜑𝑆 We 𝐵)
1413adantr 484 . . . . . . . . . . 11 ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → 𝑆 We 𝐵)
15 wemapwe.6 . . . . . . . . . . . 12 𝐺 = OrdIso(𝑆, 𝐵)
1615oiiso 9131 . . . . . . . . . . 11 ((𝐵 ∈ V ∧ 𝑆 We 𝐵) → 𝐺 Isom E , 𝑆 (dom 𝐺, 𝐵))
1712, 14, 16syl2anc 587 . . . . . . . . . 10 ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → 𝐺 Isom E , 𝑆 (dom 𝐺, 𝐵))
18 isof1o 7110 . . . . . . . . . 10 (𝐺 Isom E , 𝑆 (dom 𝐺, 𝐵) → 𝐺:dom 𝐺1-1-onto𝐵)
19 f1ocnv 6651 . . . . . . . . . 10 (𝐺:dom 𝐺1-1-onto𝐵𝐺:𝐵1-1-onto→dom 𝐺)
2017, 18, 193syl 18 . . . . . . . . 9 ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → 𝐺:𝐵1-1-onto→dom 𝐺)
217oiexg 9129 . . . . . . . . . . 11 (𝐴 ∈ V → 𝐹 ∈ V)
2221ad2antll 729 . . . . . . . . . 10 ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → 𝐹 ∈ V)
2322dmexd 7661 . . . . . . . . 9 ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → dom 𝐹 ∈ V)
2415oiexg 9129 . . . . . . . . . . 11 (𝐵 ∈ V → 𝐺 ∈ V)
2524ad2antrl 728 . . . . . . . . . 10 ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → 𝐺 ∈ V)
2625dmexd 7661 . . . . . . . . 9 ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → dom 𝐺 ∈ V)
27 wemapwe.7 . . . . . . . . . 10 𝑍 = (𝐺‘∅)
2817, 18syl 17 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → 𝐺:dom 𝐺1-1-onto𝐵)
29 f1ofo 6646 . . . . . . . . . . . . . . 15 (𝐺:dom 𝐺1-1-onto𝐵𝐺:dom 𝐺onto𝐵)
30 forn 6614 . . . . . . . . . . . . . . 15 (𝐺:dom 𝐺onto𝐵 → ran 𝐺 = 𝐵)
3128, 29, 303syl 18 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → ran 𝐺 = 𝐵)
32 wemapwe.4 . . . . . . . . . . . . . . 15 (𝜑𝐵 ≠ ∅)
3332adantr 484 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → 𝐵 ≠ ∅)
3431, 33eqnetrd 2999 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → ran 𝐺 ≠ ∅)
35 dm0rn0 5779 . . . . . . . . . . . . . 14 (dom 𝐺 = ∅ ↔ ran 𝐺 = ∅)
3635necon3bii 2984 . . . . . . . . . . . . 13 (dom 𝐺 ≠ ∅ ↔ ran 𝐺 ≠ ∅)
3734, 36sylibr 237 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → dom 𝐺 ≠ ∅)
3815oicl 9123 . . . . . . . . . . . . 13 Ord dom 𝐺
39 ord0eln0 6245 . . . . . . . . . . . . 13 (Ord dom 𝐺 → (∅ ∈ dom 𝐺 ↔ dom 𝐺 ≠ ∅))
4038, 39ax-mp 5 . . . . . . . . . . . 12 (∅ ∈ dom 𝐺 ↔ dom 𝐺 ≠ ∅)
4137, 40sylibr 237 . . . . . . . . . . 11 ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → ∅ ∈ dom 𝐺)
4215oif 9124 . . . . . . . . . . . 12 𝐺:dom 𝐺𝐵
4342ffvelrni 6881 . . . . . . . . . . 11 (∅ ∈ dom 𝐺 → (𝐺‘∅) ∈ 𝐵)
4441, 43syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → (𝐺‘∅) ∈ 𝐵)
4527, 44eqeltrid 2835 . . . . . . . . 9 ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → 𝑍𝐵)
461, 2, 3, 11, 20, 4, 12, 23, 26, 45mapfien 9002 . . . . . . . 8 ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → (𝑓𝑈 ↦ (𝐺 ∘ (𝑓𝐹))):𝑈1-1-onto→{𝑥 ∈ (dom 𝐺m dom 𝐹) ∣ 𝑥 finSupp (𝐺𝑍)})
47 eqid 2736 . . . . . . . . . . 11 {𝑥 ∈ (dom 𝐺m dom 𝐹) ∣ 𝑥 finSupp ∅} = {𝑥 ∈ (dom 𝐺m dom 𝐹) ∣ 𝑥 finSupp ∅}
4815oion 9130 . . . . . . . . . . . 12 (𝐵 ∈ V → dom 𝐺 ∈ On)
4948ad2antrl 728 . . . . . . . . . . 11 ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → dom 𝐺 ∈ On)
507oion 9130 . . . . . . . . . . . 12 (𝐴 ∈ V → dom 𝐹 ∈ On)
5150ad2antll 729 . . . . . . . . . . 11 ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → dom 𝐹 ∈ On)
5247, 49, 51cantnfdm 9257 . . . . . . . . . 10 ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → dom (dom 𝐺 CNF dom 𝐹) = {𝑥 ∈ (dom 𝐺m dom 𝐹) ∣ 𝑥 finSupp ∅})
5327fveq2i 6698 . . . . . . . . . . . . 13 (𝐺𝑍) = (𝐺‘(𝐺‘∅))
54 f1ocnvfv1 7065 . . . . . . . . . . . . . 14 ((𝐺:dom 𝐺1-1-onto𝐵 ∧ ∅ ∈ dom 𝐺) → (𝐺‘(𝐺‘∅)) = ∅)
5528, 41, 54syl2anc 587 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → (𝐺‘(𝐺‘∅)) = ∅)
5653, 55syl5eq 2783 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → (𝐺𝑍) = ∅)
5756breq2d 5051 . . . . . . . . . . 11 ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → (𝑥 finSupp (𝐺𝑍) ↔ 𝑥 finSupp ∅))
5857rabbidv 3380 . . . . . . . . . 10 ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → {𝑥 ∈ (dom 𝐺m dom 𝐹) ∣ 𝑥 finSupp (𝐺𝑍)} = {𝑥 ∈ (dom 𝐺m dom 𝐹) ∣ 𝑥 finSupp ∅})
5952, 58eqtr4d 2774 . . . . . . . . 9 ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → dom (dom 𝐺 CNF dom 𝐹) = {𝑥 ∈ (dom 𝐺m dom 𝐹) ∣ 𝑥 finSupp (𝐺𝑍)})
6059f1oeq3d 6636 . . . . . . . 8 ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → ((𝑓𝑈 ↦ (𝐺 ∘ (𝑓𝐹))):𝑈1-1-onto→dom (dom 𝐺 CNF dom 𝐹) ↔ (𝑓𝑈 ↦ (𝐺 ∘ (𝑓𝐹))):𝑈1-1-onto→{𝑥 ∈ (dom 𝐺m dom 𝐹) ∣ 𝑥 finSupp (𝐺𝑍)}))
6146, 60mpbird 260 . . . . . . 7 ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → (𝑓𝑈 ↦ (𝐺 ∘ (𝑓𝐹))):𝑈1-1-onto→dom (dom 𝐺 CNF dom 𝐹))
62 eqid 2736 . . . . . . . . 9 dom (dom 𝐺 CNF dom 𝐹) = dom (dom 𝐺 CNF dom 𝐹)
63 eqid 2736 . . . . . . . . 9 {⟨𝑎, 𝑏⟩ ∣ ∃𝑐 ∈ dom 𝐹((𝑎𝑐) ∈ (𝑏𝑐) ∧ ∀𝑑 ∈ dom 𝐹(𝑐𝑑 → (𝑎𝑑) = (𝑏𝑑)))} = {⟨𝑎, 𝑏⟩ ∣ ∃𝑐 ∈ dom 𝐹((𝑎𝑐) ∈ (𝑏𝑐) ∧ ∀𝑑 ∈ dom 𝐹(𝑐𝑑 → (𝑎𝑑) = (𝑏𝑑)))}
6462, 49, 51, 63oemapwe 9287 . . . . . . . 8 ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → ({⟨𝑎, 𝑏⟩ ∣ ∃𝑐 ∈ dom 𝐹((𝑎𝑐) ∈ (𝑏𝑐) ∧ ∀𝑑 ∈ dom 𝐹(𝑐𝑑 → (𝑎𝑑) = (𝑏𝑑)))} We dom (dom 𝐺 CNF dom 𝐹) ∧ dom OrdIso({⟨𝑎, 𝑏⟩ ∣ ∃𝑐 ∈ dom 𝐹((𝑎𝑐) ∈ (𝑏𝑐) ∧ ∀𝑑 ∈ dom 𝐹(𝑐𝑑 → (𝑎𝑑) = (𝑏𝑑)))}, dom (dom 𝐺 CNF dom 𝐹)) = (dom 𝐺o dom 𝐹)))
6564simpld 498 . . . . . . 7 ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → {⟨𝑎, 𝑏⟩ ∣ ∃𝑐 ∈ dom 𝐹((𝑎𝑐) ∈ (𝑏𝑐) ∧ ∀𝑑 ∈ dom 𝐹(𝑐𝑑 → (𝑎𝑑) = (𝑏𝑑)))} We dom (dom 𝐺 CNF dom 𝐹))
66 eqid 2736 . . . . . . . 8 {⟨𝑥, 𝑦⟩ ∣ ((𝑓𝑈 ↦ (𝐺 ∘ (𝑓𝐹)))‘𝑥){⟨𝑎, 𝑏⟩ ∣ ∃𝑐 ∈ dom 𝐹((𝑎𝑐) ∈ (𝑏𝑐) ∧ ∀𝑑 ∈ dom 𝐹(𝑐𝑑 → (𝑎𝑑) = (𝑏𝑑)))} ((𝑓𝑈 ↦ (𝐺 ∘ (𝑓𝐹)))‘𝑦)} = {⟨𝑥, 𝑦⟩ ∣ ((𝑓𝑈 ↦ (𝐺 ∘ (𝑓𝐹)))‘𝑥){⟨𝑎, 𝑏⟩ ∣ ∃𝑐 ∈ dom 𝐹((𝑎𝑐) ∈ (𝑏𝑐) ∧ ∀𝑑 ∈ dom 𝐹(𝑐𝑑 → (𝑎𝑑) = (𝑏𝑑)))} ((𝑓𝑈 ↦ (𝐺 ∘ (𝑓𝐹)))‘𝑦)}
6766f1owe 7140 . . . . . . 7 ((𝑓𝑈 ↦ (𝐺 ∘ (𝑓𝐹))):𝑈1-1-onto→dom (dom 𝐺 CNF dom 𝐹) → ({⟨𝑎, 𝑏⟩ ∣ ∃𝑐 ∈ dom 𝐹((𝑎𝑐) ∈ (𝑏𝑐) ∧ ∀𝑑 ∈ dom 𝐹(𝑐𝑑 → (𝑎𝑑) = (𝑏𝑑)))} We dom (dom 𝐺 CNF dom 𝐹) → {⟨𝑥, 𝑦⟩ ∣ ((𝑓𝑈 ↦ (𝐺 ∘ (𝑓𝐹)))‘𝑥){⟨𝑎, 𝑏⟩ ∣ ∃𝑐 ∈ dom 𝐹((𝑎𝑐) ∈ (𝑏𝑐) ∧ ∀𝑑 ∈ dom 𝐹(𝑐𝑑 → (𝑎𝑑) = (𝑏𝑑)))} ((𝑓𝑈 ↦ (𝐺 ∘ (𝑓𝐹)))‘𝑦)} We 𝑈))
6861, 65, 67sylc 65 . . . . . 6 ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → {⟨𝑥, 𝑦⟩ ∣ ((𝑓𝑈 ↦ (𝐺 ∘ (𝑓𝐹)))‘𝑥){⟨𝑎, 𝑏⟩ ∣ ∃𝑐 ∈ dom 𝐹((𝑎𝑐) ∈ (𝑏𝑐) ∧ ∀𝑑 ∈ dom 𝐹(𝑐𝑑 → (𝑎𝑑) = (𝑏𝑑)))} ((𝑓𝑈 ↦ (𝐺 ∘ (𝑓𝐹)))‘𝑦)} We 𝑈)
69 weinxp 5618 . . . . . 6 ({⟨𝑥, 𝑦⟩ ∣ ((𝑓𝑈 ↦ (𝐺 ∘ (𝑓𝐹)))‘𝑥){⟨𝑎, 𝑏⟩ ∣ ∃𝑐 ∈ dom 𝐹((𝑎𝑐) ∈ (𝑏𝑐) ∧ ∀𝑑 ∈ dom 𝐹(𝑐𝑑 → (𝑎𝑑) = (𝑏𝑑)))} ((𝑓𝑈 ↦ (𝐺 ∘ (𝑓𝐹)))‘𝑦)} We 𝑈 ↔ ({⟨𝑥, 𝑦⟩ ∣ ((𝑓𝑈 ↦ (𝐺 ∘ (𝑓𝐹)))‘𝑥){⟨𝑎, 𝑏⟩ ∣ ∃𝑐 ∈ dom 𝐹((𝑎𝑐) ∈ (𝑏𝑐) ∧ ∀𝑑 ∈ dom 𝐹(𝑐𝑑 → (𝑎𝑑) = (𝑏𝑑)))} ((𝑓𝑈 ↦ (𝐺 ∘ (𝑓𝐹)))‘𝑦)} ∩ (𝑈 × 𝑈)) We 𝑈)
7068, 69sylib 221 . . . . 5 ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → ({⟨𝑥, 𝑦⟩ ∣ ((𝑓𝑈 ↦ (𝐺 ∘ (𝑓𝐹)))‘𝑥){⟨𝑎, 𝑏⟩ ∣ ∃𝑐 ∈ dom 𝐹((𝑎𝑐) ∈ (𝑏𝑐) ∧ ∀𝑑 ∈ dom 𝐹(𝑐𝑑 → (𝑎𝑑) = (𝑏𝑑)))} ((𝑓𝑈 ↦ (𝐺 ∘ (𝑓𝐹)))‘𝑦)} ∩ (𝑈 × 𝑈)) We 𝑈)
7111adantr 484 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥𝑈𝑦𝑈)) → 𝐹:dom 𝐹1-1-onto𝐴)
72 f1ofn 6640 . . . . . . . . . . . 12 (𝐹:dom 𝐹1-1-onto𝐴𝐹 Fn dom 𝐹)
73 fveq2 6695 . . . . . . . . . . . . . . 15 (𝑧 = (𝐹𝑐) → (𝑥𝑧) = (𝑥‘(𝐹𝑐)))
74 fveq2 6695 . . . . . . . . . . . . . . 15 (𝑧 = (𝐹𝑐) → (𝑦𝑧) = (𝑦‘(𝐹𝑐)))
7573, 74breq12d 5052 . . . . . . . . . . . . . 14 (𝑧 = (𝐹𝑐) → ((𝑥𝑧)𝑆(𝑦𝑧) ↔ (𝑥‘(𝐹𝑐))𝑆(𝑦‘(𝐹𝑐))))
76 breq1 5042 . . . . . . . . . . . . . . . 16 (𝑧 = (𝐹𝑐) → (𝑧𝑅𝑤 ↔ (𝐹𝑐)𝑅𝑤))
7776imbi1d 345 . . . . . . . . . . . . . . 15 (𝑧 = (𝐹𝑐) → ((𝑧𝑅𝑤 → (𝑥𝑤) = (𝑦𝑤)) ↔ ((𝐹𝑐)𝑅𝑤 → (𝑥𝑤) = (𝑦𝑤))))
7877ralbidv 3108 . . . . . . . . . . . . . 14 (𝑧 = (𝐹𝑐) → (∀𝑤𝐴 (𝑧𝑅𝑤 → (𝑥𝑤) = (𝑦𝑤)) ↔ ∀𝑤𝐴 ((𝐹𝑐)𝑅𝑤 → (𝑥𝑤) = (𝑦𝑤))))
7975, 78anbi12d 634 . . . . . . . . . . . . 13 (𝑧 = (𝐹𝑐) → (((𝑥𝑧)𝑆(𝑦𝑧) ∧ ∀𝑤𝐴 (𝑧𝑅𝑤 → (𝑥𝑤) = (𝑦𝑤))) ↔ ((𝑥‘(𝐹𝑐))𝑆(𝑦‘(𝐹𝑐)) ∧ ∀𝑤𝐴 ((𝐹𝑐)𝑅𝑤 → (𝑥𝑤) = (𝑦𝑤)))))
8079rexrn 6884 . . . . . . . . . . . 12 (𝐹 Fn dom 𝐹 → (∃𝑧 ∈ ran 𝐹((𝑥𝑧)𝑆(𝑦𝑧) ∧ ∀𝑤𝐴 (𝑧𝑅𝑤 → (𝑥𝑤) = (𝑦𝑤))) ↔ ∃𝑐 ∈ dom 𝐹((𝑥‘(𝐹𝑐))𝑆(𝑦‘(𝐹𝑐)) ∧ ∀𝑤𝐴 ((𝐹𝑐)𝑅𝑤 → (𝑥𝑤) = (𝑦𝑤)))))
8171, 72, 803syl 18 . . . . . . . . . . 11 (((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥𝑈𝑦𝑈)) → (∃𝑧 ∈ ran 𝐹((𝑥𝑧)𝑆(𝑦𝑧) ∧ ∀𝑤𝐴 (𝑧𝑅𝑤 → (𝑥𝑤) = (𝑦𝑤))) ↔ ∃𝑐 ∈ dom 𝐹((𝑥‘(𝐹𝑐))𝑆(𝑦‘(𝐹𝑐)) ∧ ∀𝑤𝐴 ((𝐹𝑐)𝑅𝑤 → (𝑥𝑤) = (𝑦𝑤)))))
82 f1ofo 6646 . . . . . . . . . . . . 13 (𝐹:dom 𝐹1-1-onto𝐴𝐹:dom 𝐹onto𝐴)
83 forn 6614 . . . . . . . . . . . . 13 (𝐹:dom 𝐹onto𝐴 → ran 𝐹 = 𝐴)
8471, 82, 833syl 18 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥𝑈𝑦𝑈)) → ran 𝐹 = 𝐴)
8584rexeqdv 3316 . . . . . . . . . . 11 (((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥𝑈𝑦𝑈)) → (∃𝑧 ∈ ran 𝐹((𝑥𝑧)𝑆(𝑦𝑧) ∧ ∀𝑤𝐴 (𝑧𝑅𝑤 → (𝑥𝑤) = (𝑦𝑤))) ↔ ∃𝑧𝐴 ((𝑥𝑧)𝑆(𝑦𝑧) ∧ ∀𝑤𝐴 (𝑧𝑅𝑤 → (𝑥𝑤) = (𝑦𝑤)))))
8625adantr 484 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥𝑈𝑦𝑈)) → 𝐺 ∈ V)
87 cnvexg 7680 . . . . . . . . . . . . . . 15 (𝐺 ∈ V → 𝐺 ∈ V)
8886, 87syl 17 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥𝑈𝑦𝑈)) → 𝐺 ∈ V)
89 vex 3402 . . . . . . . . . . . . . . 15 𝑥 ∈ V
9022adantr 484 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥𝑈𝑦𝑈)) → 𝐹 ∈ V)
91 coexg 7685 . . . . . . . . . . . . . . 15 ((𝑥 ∈ V ∧ 𝐹 ∈ V) → (𝑥𝐹) ∈ V)
9289, 90, 91sylancr 590 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥𝑈𝑦𝑈)) → (𝑥𝐹) ∈ V)
93 coexg 7685 . . . . . . . . . . . . . 14 ((𝐺 ∈ V ∧ (𝑥𝐹) ∈ V) → (𝐺 ∘ (𝑥𝐹)) ∈ V)
9488, 92, 93syl2anc 587 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥𝑈𝑦𝑈)) → (𝐺 ∘ (𝑥𝐹)) ∈ V)
95 vex 3402 . . . . . . . . . . . . . . 15 𝑦 ∈ V
96 coexg 7685 . . . . . . . . . . . . . . 15 ((𝑦 ∈ V ∧ 𝐹 ∈ V) → (𝑦𝐹) ∈ V)
9795, 90, 96sylancr 590 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥𝑈𝑦𝑈)) → (𝑦𝐹) ∈ V)
98 coexg 7685 . . . . . . . . . . . . . 14 ((𝐺 ∈ V ∧ (𝑦𝐹) ∈ V) → (𝐺 ∘ (𝑦𝐹)) ∈ V)
9988, 97, 98syl2anc 587 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥𝑈𝑦𝑈)) → (𝐺 ∘ (𝑦𝐹)) ∈ V)
100 fveq1 6694 . . . . . . . . . . . . . . . . 17 (𝑎 = (𝐺 ∘ (𝑥𝐹)) → (𝑎𝑐) = ((𝐺 ∘ (𝑥𝐹))‘𝑐))
101 fveq1 6694 . . . . . . . . . . . . . . . . 17 (𝑏 = (𝐺 ∘ (𝑦𝐹)) → (𝑏𝑐) = ((𝐺 ∘ (𝑦𝐹))‘𝑐))
102 eleq12 2820 . . . . . . . . . . . . . . . . 17 (((𝑎𝑐) = ((𝐺 ∘ (𝑥𝐹))‘𝑐) ∧ (𝑏𝑐) = ((𝐺 ∘ (𝑦𝐹))‘𝑐)) → ((𝑎𝑐) ∈ (𝑏𝑐) ↔ ((𝐺 ∘ (𝑥𝐹))‘𝑐) ∈ ((𝐺 ∘ (𝑦𝐹))‘𝑐)))
103100, 101, 102syl2an 599 . . . . . . . . . . . . . . . 16 ((𝑎 = (𝐺 ∘ (𝑥𝐹)) ∧ 𝑏 = (𝐺 ∘ (𝑦𝐹))) → ((𝑎𝑐) ∈ (𝑏𝑐) ↔ ((𝐺 ∘ (𝑥𝐹))‘𝑐) ∈ ((𝐺 ∘ (𝑦𝐹))‘𝑐)))
104 fveq1 6694 . . . . . . . . . . . . . . . . . . 19 (𝑎 = (𝐺 ∘ (𝑥𝐹)) → (𝑎𝑑) = ((𝐺 ∘ (𝑥𝐹))‘𝑑))
105 fveq1 6694 . . . . . . . . . . . . . . . . . . 19 (𝑏 = (𝐺 ∘ (𝑦𝐹)) → (𝑏𝑑) = ((𝐺 ∘ (𝑦𝐹))‘𝑑))
106104, 105eqeqan12d 2753 . . . . . . . . . . . . . . . . . 18 ((𝑎 = (𝐺 ∘ (𝑥𝐹)) ∧ 𝑏 = (𝐺 ∘ (𝑦𝐹))) → ((𝑎𝑑) = (𝑏𝑑) ↔ ((𝐺 ∘ (𝑥𝐹))‘𝑑) = ((𝐺 ∘ (𝑦𝐹))‘𝑑)))
107106imbi2d 344 . . . . . . . . . . . . . . . . 17 ((𝑎 = (𝐺 ∘ (𝑥𝐹)) ∧ 𝑏 = (𝐺 ∘ (𝑦𝐹))) → ((𝑐𝑑 → (𝑎𝑑) = (𝑏𝑑)) ↔ (𝑐𝑑 → ((𝐺 ∘ (𝑥𝐹))‘𝑑) = ((𝐺 ∘ (𝑦𝐹))‘𝑑))))
108107ralbidv 3108 . . . . . . . . . . . . . . . 16 ((𝑎 = (𝐺 ∘ (𝑥𝐹)) ∧ 𝑏 = (𝐺 ∘ (𝑦𝐹))) → (∀𝑑 ∈ dom 𝐹(𝑐𝑑 → (𝑎𝑑) = (𝑏𝑑)) ↔ ∀𝑑 ∈ dom 𝐹(𝑐𝑑 → ((𝐺 ∘ (𝑥𝐹))‘𝑑) = ((𝐺 ∘ (𝑦𝐹))‘𝑑))))
109103, 108anbi12d 634 . . . . . . . . . . . . . . 15 ((𝑎 = (𝐺 ∘ (𝑥𝐹)) ∧ 𝑏 = (𝐺 ∘ (𝑦𝐹))) → (((𝑎𝑐) ∈ (𝑏𝑐) ∧ ∀𝑑 ∈ dom 𝐹(𝑐𝑑 → (𝑎𝑑) = (𝑏𝑑))) ↔ (((𝐺 ∘ (𝑥𝐹))‘𝑐) ∈ ((𝐺 ∘ (𝑦𝐹))‘𝑐) ∧ ∀𝑑 ∈ dom 𝐹(𝑐𝑑 → ((𝐺 ∘ (𝑥𝐹))‘𝑑) = ((𝐺 ∘ (𝑦𝐹))‘𝑑)))))
110109rexbidv 3206 . . . . . . . . . . . . . 14 ((𝑎 = (𝐺 ∘ (𝑥𝐹)) ∧ 𝑏 = (𝐺 ∘ (𝑦𝐹))) → (∃𝑐 ∈ dom 𝐹((𝑎𝑐) ∈ (𝑏𝑐) ∧ ∀𝑑 ∈ dom 𝐹(𝑐𝑑 → (𝑎𝑑) = (𝑏𝑑))) ↔ ∃𝑐 ∈ dom 𝐹(((𝐺 ∘ (𝑥𝐹))‘𝑐) ∈ ((𝐺 ∘ (𝑦𝐹))‘𝑐) ∧ ∀𝑑 ∈ dom 𝐹(𝑐𝑑 → ((𝐺 ∘ (𝑥𝐹))‘𝑑) = ((𝐺 ∘ (𝑦𝐹))‘𝑑)))))
111110, 63brabga 5400 . . . . . . . . . . . . 13 (((𝐺 ∘ (𝑥𝐹)) ∈ V ∧ (𝐺 ∘ (𝑦𝐹)) ∈ V) → ((𝐺 ∘ (𝑥𝐹)){⟨𝑎, 𝑏⟩ ∣ ∃𝑐 ∈ dom 𝐹((𝑎𝑐) ∈ (𝑏𝑐) ∧ ∀𝑑 ∈ dom 𝐹(𝑐𝑑 → (𝑎𝑑) = (𝑏𝑑)))} (𝐺 ∘ (𝑦𝐹)) ↔ ∃𝑐 ∈ dom 𝐹(((𝐺 ∘ (𝑥𝐹))‘𝑐) ∈ ((𝐺 ∘ (𝑦𝐹))‘𝑐) ∧ ∀𝑑 ∈ dom 𝐹(𝑐𝑑 → ((𝐺 ∘ (𝑥𝐹))‘𝑑) = ((𝐺 ∘ (𝑦𝐹))‘𝑑)))))
11294, 99, 111syl2anc 587 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥𝑈𝑦𝑈)) → ((𝐺 ∘ (𝑥𝐹)){⟨𝑎, 𝑏⟩ ∣ ∃𝑐 ∈ dom 𝐹((𝑎𝑐) ∈ (𝑏𝑐) ∧ ∀𝑑 ∈ dom 𝐹(𝑐𝑑 → (𝑎𝑑) = (𝑏𝑑)))} (𝐺 ∘ (𝑦𝐹)) ↔ ∃𝑐 ∈ dom 𝐹(((𝐺 ∘ (𝑥𝐹))‘𝑐) ∈ ((𝐺 ∘ (𝑦𝐹))‘𝑐) ∧ ∀𝑑 ∈ dom 𝐹(𝑐𝑑 → ((𝐺 ∘ (𝑥𝐹))‘𝑑) = ((𝐺 ∘ (𝑦𝐹))‘𝑑)))))
113 eqid 2736 . . . . . . . . . . . . . 14 (𝑓𝑈 ↦ (𝐺 ∘ (𝑓𝐹))) = (𝑓𝑈 ↦ (𝐺 ∘ (𝑓𝐹)))
114 coeq1 5711 . . . . . . . . . . . . . . 15 (𝑓 = 𝑥 → (𝑓𝐹) = (𝑥𝐹))
115114coeq2d 5716 . . . . . . . . . . . . . 14 (𝑓 = 𝑥 → (𝐺 ∘ (𝑓𝐹)) = (𝐺 ∘ (𝑥𝐹)))
116 simprl 771 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥𝑈𝑦𝑈)) → 𝑥𝑈)
117113, 115, 116, 94fvmptd3 6819 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥𝑈𝑦𝑈)) → ((𝑓𝑈 ↦ (𝐺 ∘ (𝑓𝐹)))‘𝑥) = (𝐺 ∘ (𝑥𝐹)))
118 coeq1 5711 . . . . . . . . . . . . . . 15 (𝑓 = 𝑦 → (𝑓𝐹) = (𝑦𝐹))
119118coeq2d 5716 . . . . . . . . . . . . . 14 (𝑓 = 𝑦 → (𝐺 ∘ (𝑓𝐹)) = (𝐺 ∘ (𝑦𝐹)))
120 simprr 773 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥𝑈𝑦𝑈)) → 𝑦𝑈)
121113, 119, 120, 99fvmptd3 6819 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥𝑈𝑦𝑈)) → ((𝑓𝑈 ↦ (𝐺 ∘ (𝑓𝐹)))‘𝑦) = (𝐺 ∘ (𝑦𝐹)))
122117, 121breq12d 5052 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥𝑈𝑦𝑈)) → (((𝑓𝑈 ↦ (𝐺 ∘ (𝑓𝐹)))‘𝑥){⟨𝑎, 𝑏⟩ ∣ ∃𝑐 ∈ dom 𝐹((𝑎𝑐) ∈ (𝑏𝑐) ∧ ∀𝑑 ∈ dom 𝐹(𝑐𝑑 → (𝑎𝑑) = (𝑏𝑑)))} ((𝑓𝑈 ↦ (𝐺 ∘ (𝑓𝐹)))‘𝑦) ↔ (𝐺 ∘ (𝑥𝐹)){⟨𝑎, 𝑏⟩ ∣ ∃𝑐 ∈ dom 𝐹((𝑎𝑐) ∈ (𝑏𝑐) ∧ ∀𝑑 ∈ dom 𝐹(𝑐𝑑 → (𝑎𝑑) = (𝑏𝑑)))} (𝐺 ∘ (𝑦𝐹))))
12317ad2antrr 726 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥𝑈𝑦𝑈)) ∧ 𝑐 ∈ dom 𝐹) → 𝐺 Isom E , 𝑆 (dom 𝐺, 𝐵))
124 isocnv 7117 . . . . . . . . . . . . . . . . . 18 (𝐺 Isom E , 𝑆 (dom 𝐺, 𝐵) → 𝐺 Isom 𝑆, E (𝐵, dom 𝐺))
125123, 124syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥𝑈𝑦𝑈)) ∧ 𝑐 ∈ dom 𝐹) → 𝐺 Isom 𝑆, E (𝐵, dom 𝐺))
1261ssrab3 3981 . . . . . . . . . . . . . . . . . . . 20 𝑈 ⊆ (𝐵m 𝐴)
127126, 116sseldi 3885 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥𝑈𝑦𝑈)) → 𝑥 ∈ (𝐵m 𝐴))
128 elmapi 8508 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (𝐵m 𝐴) → 𝑥:𝐴𝐵)
129127, 128syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥𝑈𝑦𝑈)) → 𝑥:𝐴𝐵)
1307oif 9124 . . . . . . . . . . . . . . . . . . 19 𝐹:dom 𝐹𝐴
131130ffvelrni 6881 . . . . . . . . . . . . . . . . . 18 (𝑐 ∈ dom 𝐹 → (𝐹𝑐) ∈ 𝐴)
132 ffvelrn 6880 . . . . . . . . . . . . . . . . . 18 ((𝑥:𝐴𝐵 ∧ (𝐹𝑐) ∈ 𝐴) → (𝑥‘(𝐹𝑐)) ∈ 𝐵)
133129, 131, 132syl2an 599 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥𝑈𝑦𝑈)) ∧ 𝑐 ∈ dom 𝐹) → (𝑥‘(𝐹𝑐)) ∈ 𝐵)
134126, 120sseldi 3885 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥𝑈𝑦𝑈)) → 𝑦 ∈ (𝐵m 𝐴))
135 elmapi 8508 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (𝐵m 𝐴) → 𝑦:𝐴𝐵)
136134, 135syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥𝑈𝑦𝑈)) → 𝑦:𝐴𝐵)
137 ffvelrn 6880 . . . . . . . . . . . . . . . . . 18 ((𝑦:𝐴𝐵 ∧ (𝐹𝑐) ∈ 𝐴) → (𝑦‘(𝐹𝑐)) ∈ 𝐵)
138136, 131, 137syl2an 599 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥𝑈𝑦𝑈)) ∧ 𝑐 ∈ dom 𝐹) → (𝑦‘(𝐹𝑐)) ∈ 𝐵)
139 isorel 7113 . . . . . . . . . . . . . . . . 17 ((𝐺 Isom 𝑆, E (𝐵, dom 𝐺) ∧ ((𝑥‘(𝐹𝑐)) ∈ 𝐵 ∧ (𝑦‘(𝐹𝑐)) ∈ 𝐵)) → ((𝑥‘(𝐹𝑐))𝑆(𝑦‘(𝐹𝑐)) ↔ (𝐺‘(𝑥‘(𝐹𝑐))) E (𝐺‘(𝑦‘(𝐹𝑐)))))
140125, 133, 138, 139syl12anc 837 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥𝑈𝑦𝑈)) ∧ 𝑐 ∈ dom 𝐹) → ((𝑥‘(𝐹𝑐))𝑆(𝑦‘(𝐹𝑐)) ↔ (𝐺‘(𝑥‘(𝐹𝑐))) E (𝐺‘(𝑦‘(𝐹𝑐)))))
141 fvex 6708 . . . . . . . . . . . . . . . . 17 (𝐺‘(𝑦‘(𝐹𝑐))) ∈ V
142141epeli 5447 . . . . . . . . . . . . . . . 16 ((𝐺‘(𝑥‘(𝐹𝑐))) E (𝐺‘(𝑦‘(𝐹𝑐))) ↔ (𝐺‘(𝑥‘(𝐹𝑐))) ∈ (𝐺‘(𝑦‘(𝐹𝑐))))
143140, 142bitrdi 290 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥𝑈𝑦𝑈)) ∧ 𝑐 ∈ dom 𝐹) → ((𝑥‘(𝐹𝑐))𝑆(𝑦‘(𝐹𝑐)) ↔ (𝐺‘(𝑥‘(𝐹𝑐))) ∈ (𝐺‘(𝑦‘(𝐹𝑐)))))
144129adantr 484 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥𝑈𝑦𝑈)) ∧ 𝑐 ∈ dom 𝐹) → 𝑥:𝐴𝐵)
145 fco 6547 . . . . . . . . . . . . . . . . . . 19 ((𝑥:𝐴𝐵𝐹:dom 𝐹𝐴) → (𝑥𝐹):dom 𝐹𝐵)
146144, 130, 145sylancl 589 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥𝑈𝑦𝑈)) ∧ 𝑐 ∈ dom 𝐹) → (𝑥𝐹):dom 𝐹𝐵)
147 fvco3 6788 . . . . . . . . . . . . . . . . . 18 (((𝑥𝐹):dom 𝐹𝐵𝑐 ∈ dom 𝐹) → ((𝐺 ∘ (𝑥𝐹))‘𝑐) = (𝐺‘((𝑥𝐹)‘𝑐)))
148146, 147sylancom 591 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥𝑈𝑦𝑈)) ∧ 𝑐 ∈ dom 𝐹) → ((𝐺 ∘ (𝑥𝐹))‘𝑐) = (𝐺‘((𝑥𝐹)‘𝑐)))
149 simpr 488 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥𝑈𝑦𝑈)) ∧ 𝑐 ∈ dom 𝐹) → 𝑐 ∈ dom 𝐹)
150 fvco3 6788 . . . . . . . . . . . . . . . . . . 19 ((𝐹:dom 𝐹𝐴𝑐 ∈ dom 𝐹) → ((𝑥𝐹)‘𝑐) = (𝑥‘(𝐹𝑐)))
151130, 149, 150sylancr 590 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥𝑈𝑦𝑈)) ∧ 𝑐 ∈ dom 𝐹) → ((𝑥𝐹)‘𝑐) = (𝑥‘(𝐹𝑐)))
152151fveq2d 6699 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥𝑈𝑦𝑈)) ∧ 𝑐 ∈ dom 𝐹) → (𝐺‘((𝑥𝐹)‘𝑐)) = (𝐺‘(𝑥‘(𝐹𝑐))))
153148, 152eqtrd 2771 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥𝑈𝑦𝑈)) ∧ 𝑐 ∈ dom 𝐹) → ((𝐺 ∘ (𝑥𝐹))‘𝑐) = (𝐺‘(𝑥‘(𝐹𝑐))))
154136adantr 484 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥𝑈𝑦𝑈)) ∧ 𝑐 ∈ dom 𝐹) → 𝑦:𝐴𝐵)
155 fco 6547 . . . . . . . . . . . . . . . . . . 19 ((𝑦:𝐴𝐵𝐹:dom 𝐹𝐴) → (𝑦𝐹):dom 𝐹𝐵)
156154, 130, 155sylancl 589 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥𝑈𝑦𝑈)) ∧ 𝑐 ∈ dom 𝐹) → (𝑦𝐹):dom 𝐹𝐵)
157 fvco3 6788 . . . . . . . . . . . . . . . . . 18 (((𝑦𝐹):dom 𝐹𝐵𝑐 ∈ dom 𝐹) → ((𝐺 ∘ (𝑦𝐹))‘𝑐) = (𝐺‘((𝑦𝐹)‘𝑐)))
158156, 157sylancom 591 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥𝑈𝑦𝑈)) ∧ 𝑐 ∈ dom 𝐹) → ((𝐺 ∘ (𝑦𝐹))‘𝑐) = (𝐺‘((𝑦𝐹)‘𝑐)))
159 fvco3 6788 . . . . . . . . . . . . . . . . . . 19 ((𝐹:dom 𝐹𝐴𝑐 ∈ dom 𝐹) → ((𝑦𝐹)‘𝑐) = (𝑦‘(𝐹𝑐)))
160130, 149, 159sylancr 590 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥𝑈𝑦𝑈)) ∧ 𝑐 ∈ dom 𝐹) → ((𝑦𝐹)‘𝑐) = (𝑦‘(𝐹𝑐)))
161160fveq2d 6699 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥𝑈𝑦𝑈)) ∧ 𝑐 ∈ dom 𝐹) → (𝐺‘((𝑦𝐹)‘𝑐)) = (𝐺‘(𝑦‘(𝐹𝑐))))
162158, 161eqtrd 2771 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥𝑈𝑦𝑈)) ∧ 𝑐 ∈ dom 𝐹) → ((𝐺 ∘ (𝑦𝐹))‘𝑐) = (𝐺‘(𝑦‘(𝐹𝑐))))
163153, 162eleq12d 2825 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥𝑈𝑦𝑈)) ∧ 𝑐 ∈ dom 𝐹) → (((𝐺 ∘ (𝑥𝐹))‘𝑐) ∈ ((𝐺 ∘ (𝑦𝐹))‘𝑐) ↔ (𝐺‘(𝑥‘(𝐹𝑐))) ∈ (𝐺‘(𝑦‘(𝐹𝑐)))))
164143, 163bitr4d 285 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥𝑈𝑦𝑈)) ∧ 𝑐 ∈ dom 𝐹) → ((𝑥‘(𝐹𝑐))𝑆(𝑦‘(𝐹𝑐)) ↔ ((𝐺 ∘ (𝑥𝐹))‘𝑐) ∈ ((𝐺 ∘ (𝑦𝐹))‘𝑐)))
16584raleqdv 3315 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥𝑈𝑦𝑈)) → (∀𝑤 ∈ ran 𝐹((𝐹𝑐)𝑅𝑤 → (𝑥𝑤) = (𝑦𝑤)) ↔ ∀𝑤𝐴 ((𝐹𝑐)𝑅𝑤 → (𝑥𝑤) = (𝑦𝑤))))
166 breq2 5043 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = (𝐹𝑑) → ((𝐹𝑐)𝑅𝑤 ↔ (𝐹𝑐)𝑅(𝐹𝑑)))
167 fveq2 6695 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 = (𝐹𝑑) → (𝑥𝑤) = (𝑥‘(𝐹𝑑)))
168 fveq2 6695 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 = (𝐹𝑑) → (𝑦𝑤) = (𝑦‘(𝐹𝑑)))
169167, 168eqeq12d 2752 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = (𝐹𝑑) → ((𝑥𝑤) = (𝑦𝑤) ↔ (𝑥‘(𝐹𝑑)) = (𝑦‘(𝐹𝑑))))
170166, 169imbi12d 348 . . . . . . . . . . . . . . . . . . 19 (𝑤 = (𝐹𝑑) → (((𝐹𝑐)𝑅𝑤 → (𝑥𝑤) = (𝑦𝑤)) ↔ ((𝐹𝑐)𝑅(𝐹𝑑) → (𝑥‘(𝐹𝑑)) = (𝑦‘(𝐹𝑑)))))
171170ralrn 6885 . . . . . . . . . . . . . . . . . 18 (𝐹 Fn dom 𝐹 → (∀𝑤 ∈ ran 𝐹((𝐹𝑐)𝑅𝑤 → (𝑥𝑤) = (𝑦𝑤)) ↔ ∀𝑑 ∈ dom 𝐹((𝐹𝑐)𝑅(𝐹𝑑) → (𝑥‘(𝐹𝑑)) = (𝑦‘(𝐹𝑑)))))
17271, 72, 1713syl 18 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥𝑈𝑦𝑈)) → (∀𝑤 ∈ ran 𝐹((𝐹𝑐)𝑅𝑤 → (𝑥𝑤) = (𝑦𝑤)) ↔ ∀𝑑 ∈ dom 𝐹((𝐹𝑐)𝑅(𝐹𝑑) → (𝑥‘(𝐹𝑑)) = (𝑦‘(𝐹𝑑)))))
173165, 172bitr3d 284 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥𝑈𝑦𝑈)) → (∀𝑤𝐴 ((𝐹𝑐)𝑅𝑤 → (𝑥𝑤) = (𝑦𝑤)) ↔ ∀𝑑 ∈ dom 𝐹((𝐹𝑐)𝑅(𝐹𝑑) → (𝑥‘(𝐹𝑑)) = (𝑦‘(𝐹𝑑)))))
174173adantr 484 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥𝑈𝑦𝑈)) ∧ 𝑐 ∈ dom 𝐹) → (∀𝑤𝐴 ((𝐹𝑐)𝑅𝑤 → (𝑥𝑤) = (𝑦𝑤)) ↔ ∀𝑑 ∈ dom 𝐹((𝐹𝑐)𝑅(𝐹𝑑) → (𝑥‘(𝐹𝑑)) = (𝑦‘(𝐹𝑑)))))
175 epel 5448 . . . . . . . . . . . . . . . . . . 19 (𝑐 E 𝑑𝑐𝑑)
1769ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥𝑈𝑦𝑈)) ∧ (𝑐 ∈ dom 𝐹𝑑 ∈ dom 𝐹)) → 𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴))
177 isorel 7113 . . . . . . . . . . . . . . . . . . . 20 ((𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴) ∧ (𝑐 ∈ dom 𝐹𝑑 ∈ dom 𝐹)) → (𝑐 E 𝑑 ↔ (𝐹𝑐)𝑅(𝐹𝑑)))
178176, 177sylancom 591 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥𝑈𝑦𝑈)) ∧ (𝑐 ∈ dom 𝐹𝑑 ∈ dom 𝐹)) → (𝑐 E 𝑑 ↔ (𝐹𝑐)𝑅(𝐹𝑑)))
179175, 178bitr3id 288 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥𝑈𝑦𝑈)) ∧ (𝑐 ∈ dom 𝐹𝑑 ∈ dom 𝐹)) → (𝑐𝑑 ↔ (𝐹𝑐)𝑅(𝐹𝑑)))
180146adantrr 717 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥𝑈𝑦𝑈)) ∧ (𝑐 ∈ dom 𝐹𝑑 ∈ dom 𝐹)) → (𝑥𝐹):dom 𝐹𝐵)
181 simprr 773 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥𝑈𝑦𝑈)) ∧ (𝑐 ∈ dom 𝐹𝑑 ∈ dom 𝐹)) → 𝑑 ∈ dom 𝐹)
182180, 181fvco3d 6789 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥𝑈𝑦𝑈)) ∧ (𝑐 ∈ dom 𝐹𝑑 ∈ dom 𝐹)) → ((𝐺 ∘ (𝑥𝐹))‘𝑑) = (𝐺‘((𝑥𝐹)‘𝑑)))
183156adantrr 717 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥𝑈𝑦𝑈)) ∧ (𝑐 ∈ dom 𝐹𝑑 ∈ dom 𝐹)) → (𝑦𝐹):dom 𝐹𝐵)
184183, 181fvco3d 6789 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥𝑈𝑦𝑈)) ∧ (𝑐 ∈ dom 𝐹𝑑 ∈ dom 𝐹)) → ((𝐺 ∘ (𝑦𝐹))‘𝑑) = (𝐺‘((𝑦𝐹)‘𝑑)))
185182, 184eqeq12d 2752 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥𝑈𝑦𝑈)) ∧ (𝑐 ∈ dom 𝐹𝑑 ∈ dom 𝐹)) → (((𝐺 ∘ (𝑥𝐹))‘𝑑) = ((𝐺 ∘ (𝑦𝐹))‘𝑑) ↔ (𝐺‘((𝑥𝐹)‘𝑑)) = (𝐺‘((𝑦𝐹)‘𝑑))))
18628ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥𝑈𝑦𝑈)) ∧ (𝑐 ∈ dom 𝐹𝑑 ∈ dom 𝐹)) → 𝐺:dom 𝐺1-1-onto𝐵)
187 f1of1 6638 . . . . . . . . . . . . . . . . . . . . 21 (𝐺:𝐵1-1-onto→dom 𝐺𝐺:𝐵1-1→dom 𝐺)
188186, 19, 1873syl 18 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥𝑈𝑦𝑈)) ∧ (𝑐 ∈ dom 𝐹𝑑 ∈ dom 𝐹)) → 𝐺:𝐵1-1→dom 𝐺)
189180, 181ffvelrnd 6883 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥𝑈𝑦𝑈)) ∧ (𝑐 ∈ dom 𝐹𝑑 ∈ dom 𝐹)) → ((𝑥𝐹)‘𝑑) ∈ 𝐵)
190183, 181ffvelrnd 6883 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥𝑈𝑦𝑈)) ∧ (𝑐 ∈ dom 𝐹𝑑 ∈ dom 𝐹)) → ((𝑦𝐹)‘𝑑) ∈ 𝐵)
191 f1fveq 7052 . . . . . . . . . . . . . . . . . . . 20 ((𝐺:𝐵1-1→dom 𝐺 ∧ (((𝑥𝐹)‘𝑑) ∈ 𝐵 ∧ ((𝑦𝐹)‘𝑑) ∈ 𝐵)) → ((𝐺‘((𝑥𝐹)‘𝑑)) = (𝐺‘((𝑦𝐹)‘𝑑)) ↔ ((𝑥𝐹)‘𝑑) = ((𝑦𝐹)‘𝑑)))
192188, 189, 190, 191syl12anc 837 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥𝑈𝑦𝑈)) ∧ (𝑐 ∈ dom 𝐹𝑑 ∈ dom 𝐹)) → ((𝐺‘((𝑥𝐹)‘𝑑)) = (𝐺‘((𝑦𝐹)‘𝑑)) ↔ ((𝑥𝐹)‘𝑑) = ((𝑦𝐹)‘𝑑)))
193 fvco3 6788 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹:dom 𝐹𝐴𝑑 ∈ dom 𝐹) → ((𝑥𝐹)‘𝑑) = (𝑥‘(𝐹𝑑)))
194130, 181, 193sylancr 590 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥𝑈𝑦𝑈)) ∧ (𝑐 ∈ dom 𝐹𝑑 ∈ dom 𝐹)) → ((𝑥𝐹)‘𝑑) = (𝑥‘(𝐹𝑑)))
195 fvco3 6788 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹:dom 𝐹𝐴𝑑 ∈ dom 𝐹) → ((𝑦𝐹)‘𝑑) = (𝑦‘(𝐹𝑑)))
196130, 181, 195sylancr 590 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥𝑈𝑦𝑈)) ∧ (𝑐 ∈ dom 𝐹𝑑 ∈ dom 𝐹)) → ((𝑦𝐹)‘𝑑) = (𝑦‘(𝐹𝑑)))
197194, 196eqeq12d 2752 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥𝑈𝑦𝑈)) ∧ (𝑐 ∈ dom 𝐹𝑑 ∈ dom 𝐹)) → (((𝑥𝐹)‘𝑑) = ((𝑦𝐹)‘𝑑) ↔ (𝑥‘(𝐹𝑑)) = (𝑦‘(𝐹𝑑))))
198185, 192, 1973bitrd 308 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥𝑈𝑦𝑈)) ∧ (𝑐 ∈ dom 𝐹𝑑 ∈ dom 𝐹)) → (((𝐺 ∘ (𝑥𝐹))‘𝑑) = ((𝐺 ∘ (𝑦𝐹))‘𝑑) ↔ (𝑥‘(𝐹𝑑)) = (𝑦‘(𝐹𝑑))))
199179, 198imbi12d 348 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥𝑈𝑦𝑈)) ∧ (𝑐 ∈ dom 𝐹𝑑 ∈ dom 𝐹)) → ((𝑐𝑑 → ((𝐺 ∘ (𝑥𝐹))‘𝑑) = ((𝐺 ∘ (𝑦𝐹))‘𝑑)) ↔ ((𝐹𝑐)𝑅(𝐹𝑑) → (𝑥‘(𝐹𝑑)) = (𝑦‘(𝐹𝑑)))))
200199anassrs 471 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥𝑈𝑦𝑈)) ∧ 𝑐 ∈ dom 𝐹) ∧ 𝑑 ∈ dom 𝐹) → ((𝑐𝑑 → ((𝐺 ∘ (𝑥𝐹))‘𝑑) = ((𝐺 ∘ (𝑦𝐹))‘𝑑)) ↔ ((𝐹𝑐)𝑅(𝐹𝑑) → (𝑥‘(𝐹𝑑)) = (𝑦‘(𝐹𝑑)))))
201200ralbidva 3107 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥𝑈𝑦𝑈)) ∧ 𝑐 ∈ dom 𝐹) → (∀𝑑 ∈ dom 𝐹(𝑐𝑑 → ((𝐺 ∘ (𝑥𝐹))‘𝑑) = ((𝐺 ∘ (𝑦𝐹))‘𝑑)) ↔ ∀𝑑 ∈ dom 𝐹((𝐹𝑐)𝑅(𝐹𝑑) → (𝑥‘(𝐹𝑑)) = (𝑦‘(𝐹𝑑)))))
202174, 201bitr4d 285 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥𝑈𝑦𝑈)) ∧ 𝑐 ∈ dom 𝐹) → (∀𝑤𝐴 ((𝐹𝑐)𝑅𝑤 → (𝑥𝑤) = (𝑦𝑤)) ↔ ∀𝑑 ∈ dom 𝐹(𝑐𝑑 → ((𝐺 ∘ (𝑥𝐹))‘𝑑) = ((𝐺 ∘ (𝑦𝐹))‘𝑑))))
203164, 202anbi12d 634 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥𝑈𝑦𝑈)) ∧ 𝑐 ∈ dom 𝐹) → (((𝑥‘(𝐹𝑐))𝑆(𝑦‘(𝐹𝑐)) ∧ ∀𝑤𝐴 ((𝐹𝑐)𝑅𝑤 → (𝑥𝑤) = (𝑦𝑤))) ↔ (((𝐺 ∘ (𝑥𝐹))‘𝑐) ∈ ((𝐺 ∘ (𝑦𝐹))‘𝑐) ∧ ∀𝑑 ∈ dom 𝐹(𝑐𝑑 → ((𝐺 ∘ (𝑥𝐹))‘𝑑) = ((𝐺 ∘ (𝑦𝐹))‘𝑑)))))
204203rexbidva 3205 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥𝑈𝑦𝑈)) → (∃𝑐 ∈ dom 𝐹((𝑥‘(𝐹𝑐))𝑆(𝑦‘(𝐹𝑐)) ∧ ∀𝑤𝐴 ((𝐹𝑐)𝑅𝑤 → (𝑥𝑤) = (𝑦𝑤))) ↔ ∃𝑐 ∈ dom 𝐹(((𝐺 ∘ (𝑥𝐹))‘𝑐) ∈ ((𝐺 ∘ (𝑦𝐹))‘𝑐) ∧ ∀𝑑 ∈ dom 𝐹(𝑐𝑑 → ((𝐺 ∘ (𝑥𝐹))‘𝑑) = ((𝐺 ∘ (𝑦𝐹))‘𝑑)))))
205112, 122, 2043bitr4rd 315 . . . . . . . . . . 11 (((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥𝑈𝑦𝑈)) → (∃𝑐 ∈ dom 𝐹((𝑥‘(𝐹𝑐))𝑆(𝑦‘(𝐹𝑐)) ∧ ∀𝑤𝐴 ((𝐹𝑐)𝑅𝑤 → (𝑥𝑤) = (𝑦𝑤))) ↔ ((𝑓𝑈 ↦ (𝐺 ∘ (𝑓𝐹)))‘𝑥){⟨𝑎, 𝑏⟩ ∣ ∃𝑐 ∈ dom 𝐹((𝑎𝑐) ∈ (𝑏𝑐) ∧ ∀𝑑 ∈ dom 𝐹(𝑐𝑑 → (𝑎𝑑) = (𝑏𝑑)))} ((𝑓𝑈 ↦ (𝐺 ∘ (𝑓𝐹)))‘𝑦)))
20681, 85, 2053bitr3d 312 . . . . . . . . . 10 (((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥𝑈𝑦𝑈)) → (∃𝑧𝐴 ((𝑥𝑧)𝑆(𝑦𝑧) ∧ ∀𝑤𝐴 (𝑧𝑅𝑤 → (𝑥𝑤) = (𝑦𝑤))) ↔ ((𝑓𝑈 ↦ (𝐺 ∘ (𝑓𝐹)))‘𝑥){⟨𝑎, 𝑏⟩ ∣ ∃𝑐 ∈ dom 𝐹((𝑎𝑐) ∈ (𝑏𝑐) ∧ ∀𝑑 ∈ dom 𝐹(𝑐𝑑 → (𝑎𝑑) = (𝑏𝑑)))} ((𝑓𝑈 ↦ (𝐺 ∘ (𝑓𝐹)))‘𝑦)))
207206ex 416 . . . . . . . . 9 ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → ((𝑥𝑈𝑦𝑈) → (∃𝑧𝐴 ((𝑥𝑧)𝑆(𝑦𝑧) ∧ ∀𝑤𝐴 (𝑧𝑅𝑤 → (𝑥𝑤) = (𝑦𝑤))) ↔ ((𝑓𝑈 ↦ (𝐺 ∘ (𝑓𝐹)))‘𝑥){⟨𝑎, 𝑏⟩ ∣ ∃𝑐 ∈ dom 𝐹((𝑎𝑐) ∈ (𝑏𝑐) ∧ ∀𝑑 ∈ dom 𝐹(𝑐𝑑 → (𝑎𝑑) = (𝑏𝑑)))} ((𝑓𝑈 ↦ (𝐺 ∘ (𝑓𝐹)))‘𝑦))))
208207pm5.32rd 581 . . . . . . . 8 ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → ((∃𝑧𝐴 ((𝑥𝑧)𝑆(𝑦𝑧) ∧ ∀𝑤𝐴 (𝑧𝑅𝑤 → (𝑥𝑤) = (𝑦𝑤))) ∧ (𝑥𝑈𝑦𝑈)) ↔ (((𝑓𝑈 ↦ (𝐺 ∘ (𝑓𝐹)))‘𝑥){⟨𝑎, 𝑏⟩ ∣ ∃𝑐 ∈ dom 𝐹((𝑎𝑐) ∈ (𝑏𝑐) ∧ ∀𝑑 ∈ dom 𝐹(𝑐𝑑 → (𝑎𝑑) = (𝑏𝑑)))} ((𝑓𝑈 ↦ (𝐺 ∘ (𝑓𝐹)))‘𝑦) ∧ (𝑥𝑈𝑦𝑈))))
209208opabbidv 5105 . . . . . . 7 ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → {⟨𝑥, 𝑦⟩ ∣ (∃𝑧𝐴 ((𝑥𝑧)𝑆(𝑦𝑧) ∧ ∀𝑤𝐴 (𝑧𝑅𝑤 → (𝑥𝑤) = (𝑦𝑤))) ∧ (𝑥𝑈𝑦𝑈))} = {⟨𝑥, 𝑦⟩ ∣ (((𝑓𝑈 ↦ (𝐺 ∘ (𝑓𝐹)))‘𝑥){⟨𝑎, 𝑏⟩ ∣ ∃𝑐 ∈ dom 𝐹((𝑎𝑐) ∈ (𝑏𝑐) ∧ ∀𝑑 ∈ dom 𝐹(𝑐𝑑 → (𝑎𝑑) = (𝑏𝑑)))} ((𝑓𝑈 ↦ (𝐺 ∘ (𝑓𝐹)))‘𝑦) ∧ (𝑥𝑈𝑦𝑈))})
210 wemapwe.t . . . . . . . . 9 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 ((𝑥𝑧)𝑆(𝑦𝑧) ∧ ∀𝑤𝐴 (𝑧𝑅𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
211 df-xp 5542 . . . . . . . . 9 (𝑈 × 𝑈) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑈𝑦𝑈)}
212210, 211ineq12i 4111 . . . . . . . 8 (𝑇 ∩ (𝑈 × 𝑈)) = ({⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 ((𝑥𝑧)𝑆(𝑦𝑧) ∧ ∀𝑤𝐴 (𝑧𝑅𝑤 → (𝑥𝑤) = (𝑦𝑤)))} ∩ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑈𝑦𝑈)})
213 inopab 5684 . . . . . . . 8 ({⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 ((𝑥𝑧)𝑆(𝑦𝑧) ∧ ∀𝑤𝐴 (𝑧𝑅𝑤 → (𝑥𝑤) = (𝑦𝑤)))} ∩ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑈𝑦𝑈)}) = {⟨𝑥, 𝑦⟩ ∣ (∃𝑧𝐴 ((𝑥𝑧)𝑆(𝑦𝑧) ∧ ∀𝑤𝐴 (𝑧𝑅𝑤 → (𝑥𝑤) = (𝑦𝑤))) ∧ (𝑥𝑈𝑦𝑈))}
214212, 213eqtri 2759 . . . . . . 7 (𝑇 ∩ (𝑈 × 𝑈)) = {⟨𝑥, 𝑦⟩ ∣ (∃𝑧𝐴 ((𝑥𝑧)𝑆(𝑦𝑧) ∧ ∀𝑤𝐴 (𝑧𝑅𝑤 → (𝑥𝑤) = (𝑦𝑤))) ∧ (𝑥𝑈𝑦𝑈))}
215211ineq2i 4110 . . . . . . . 8 ({⟨𝑥, 𝑦⟩ ∣ ((𝑓𝑈 ↦ (𝐺 ∘ (𝑓𝐹)))‘𝑥){⟨𝑎, 𝑏⟩ ∣ ∃𝑐 ∈ dom 𝐹((𝑎𝑐) ∈ (𝑏𝑐) ∧ ∀𝑑 ∈ dom 𝐹(𝑐𝑑 → (𝑎𝑑) = (𝑏𝑑)))} ((𝑓𝑈 ↦ (𝐺 ∘ (𝑓𝐹)))‘𝑦)} ∩ (𝑈 × 𝑈)) = ({⟨𝑥, 𝑦⟩ ∣ ((𝑓𝑈 ↦ (𝐺 ∘ (𝑓𝐹)))‘𝑥){⟨𝑎, 𝑏⟩ ∣ ∃𝑐 ∈ dom 𝐹((𝑎𝑐) ∈ (𝑏𝑐) ∧ ∀𝑑 ∈ dom 𝐹(𝑐𝑑 → (𝑎𝑑) = (𝑏𝑑)))} ((𝑓𝑈 ↦ (𝐺 ∘ (𝑓𝐹)))‘𝑦)} ∩ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑈𝑦𝑈)})
216 inopab 5684 . . . . . . . 8 ({⟨𝑥, 𝑦⟩ ∣ ((𝑓𝑈 ↦ (𝐺 ∘ (𝑓𝐹)))‘𝑥){⟨𝑎, 𝑏⟩ ∣ ∃𝑐 ∈ dom 𝐹((𝑎𝑐) ∈ (𝑏𝑐) ∧ ∀𝑑 ∈ dom 𝐹(𝑐𝑑 → (𝑎𝑑) = (𝑏𝑑)))} ((𝑓𝑈 ↦ (𝐺 ∘ (𝑓𝐹)))‘𝑦)} ∩ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑈𝑦𝑈)}) = {⟨𝑥, 𝑦⟩ ∣ (((𝑓𝑈 ↦ (𝐺 ∘ (𝑓𝐹)))‘𝑥){⟨𝑎, 𝑏⟩ ∣ ∃𝑐 ∈ dom 𝐹((𝑎𝑐) ∈ (𝑏𝑐) ∧ ∀𝑑 ∈ dom 𝐹(𝑐𝑑 → (𝑎𝑑) = (𝑏𝑑)))} ((𝑓𝑈 ↦ (𝐺 ∘ (𝑓𝐹)))‘𝑦) ∧ (𝑥𝑈𝑦𝑈))}
217215, 216eqtri 2759 . . . . . . 7 ({⟨𝑥, 𝑦⟩ ∣ ((𝑓𝑈 ↦ (𝐺 ∘ (𝑓𝐹)))‘𝑥){⟨𝑎, 𝑏⟩ ∣ ∃𝑐 ∈ dom 𝐹((𝑎𝑐) ∈ (𝑏𝑐) ∧ ∀𝑑 ∈ dom 𝐹(𝑐𝑑 → (𝑎𝑑) = (𝑏𝑑)))} ((𝑓𝑈 ↦ (𝐺 ∘ (𝑓𝐹)))‘𝑦)} ∩ (𝑈 × 𝑈)) = {⟨𝑥, 𝑦⟩ ∣ (((𝑓𝑈 ↦ (𝐺 ∘ (𝑓𝐹)))‘𝑥){⟨𝑎, 𝑏⟩ ∣ ∃𝑐 ∈ dom 𝐹((𝑎𝑐) ∈ (𝑏𝑐) ∧ ∀𝑑 ∈ dom 𝐹(𝑐𝑑 → (𝑎𝑑) = (𝑏𝑑)))} ((𝑓𝑈 ↦ (𝐺 ∘ (𝑓𝐹)))‘𝑦) ∧ (𝑥𝑈𝑦𝑈))}
218209, 214, 2173eqtr4g 2796 . . . . . 6 ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → (𝑇 ∩ (𝑈 × 𝑈)) = ({⟨𝑥, 𝑦⟩ ∣ ((𝑓𝑈 ↦ (𝐺 ∘ (𝑓𝐹)))‘𝑥){⟨𝑎, 𝑏⟩ ∣ ∃𝑐 ∈ dom 𝐹((𝑎𝑐) ∈ (𝑏𝑐) ∧ ∀𝑑 ∈ dom 𝐹(𝑐𝑑 → (𝑎𝑑) = (𝑏𝑑)))} ((𝑓𝑈 ↦ (𝐺 ∘ (𝑓𝐹)))‘𝑦)} ∩ (𝑈 × 𝑈)))
219 weeq1 5524 . . . . . 6 ((𝑇 ∩ (𝑈 × 𝑈)) = ({⟨𝑥, 𝑦⟩ ∣ ((𝑓𝑈 ↦ (𝐺 ∘ (𝑓𝐹)))‘𝑥){⟨𝑎, 𝑏⟩ ∣ ∃𝑐 ∈ dom 𝐹((𝑎𝑐) ∈ (𝑏𝑐) ∧ ∀𝑑 ∈ dom 𝐹(𝑐𝑑 → (𝑎𝑑) = (𝑏𝑑)))} ((𝑓𝑈 ↦ (𝐺 ∘ (𝑓𝐹)))‘𝑦)} ∩ (𝑈 × 𝑈)) → ((𝑇 ∩ (𝑈 × 𝑈)) We 𝑈 ↔ ({⟨𝑥, 𝑦⟩ ∣ ((𝑓𝑈 ↦ (𝐺 ∘ (𝑓𝐹)))‘𝑥){⟨𝑎, 𝑏⟩ ∣ ∃𝑐 ∈ dom 𝐹((𝑎𝑐) ∈ (𝑏𝑐) ∧ ∀𝑑 ∈ dom 𝐹(𝑐𝑑 → (𝑎𝑑) = (𝑏𝑑)))} ((𝑓𝑈 ↦ (𝐺 ∘ (𝑓𝐹)))‘𝑦)} ∩ (𝑈 × 𝑈)) We 𝑈))
220218, 219syl 17 . . . . 5 ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → ((𝑇 ∩ (𝑈 × 𝑈)) We 𝑈 ↔ ({⟨𝑥, 𝑦⟩ ∣ ((𝑓𝑈 ↦ (𝐺 ∘ (𝑓𝐹)))‘𝑥){⟨𝑎, 𝑏⟩ ∣ ∃𝑐 ∈ dom 𝐹((𝑎𝑐) ∈ (𝑏𝑐) ∧ ∀𝑑 ∈ dom 𝐹(𝑐𝑑 → (𝑎𝑑) = (𝑏𝑑)))} ((𝑓𝑈 ↦ (𝐺 ∘ (𝑓𝐹)))‘𝑦)} ∩ (𝑈 × 𝑈)) We 𝑈))
22170, 220mpbird 260 . . . 4 ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → (𝑇 ∩ (𝑈 × 𝑈)) We 𝑈)
222 weinxp 5618 . . . 4 (𝑇 We 𝑈 ↔ (𝑇 ∩ (𝑈 × 𝑈)) We 𝑈)
223221, 222sylibr 237 . . 3 ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → 𝑇 We 𝑈)
224223ex 416 . 2 (𝜑 → ((𝐵 ∈ V ∧ 𝐴 ∈ V) → 𝑇 We 𝑈))
225 we0 5531 . . 3 𝑇 We ∅
226 elmapex 8507 . . . . . . . . 9 (𝑥 ∈ (𝐵m 𝐴) → (𝐵 ∈ V ∧ 𝐴 ∈ V))
227226con3i 157 . . . . . . . 8 (¬ (𝐵 ∈ V ∧ 𝐴 ∈ V) → ¬ 𝑥 ∈ (𝐵m 𝐴))
228227pm2.21d 121 . . . . . . 7 (¬ (𝐵 ∈ V ∧ 𝐴 ∈ V) → (𝑥 ∈ (𝐵m 𝐴) → ¬ 𝑥 finSupp 𝑍))
229228ralrimiv 3094 . . . . . 6 (¬ (𝐵 ∈ V ∧ 𝐴 ∈ V) → ∀𝑥 ∈ (𝐵m 𝐴) ¬ 𝑥 finSupp 𝑍)
230 rabeq0 4285 . . . . . 6 ({𝑥 ∈ (𝐵m 𝐴) ∣ 𝑥 finSupp 𝑍} = ∅ ↔ ∀𝑥 ∈ (𝐵m 𝐴) ¬ 𝑥 finSupp 𝑍)
231229, 230sylibr 237 . . . . 5 (¬ (𝐵 ∈ V ∧ 𝐴 ∈ V) → {𝑥 ∈ (𝐵m 𝐴) ∣ 𝑥 finSupp 𝑍} = ∅)
2321, 231syl5eq 2783 . . . 4 (¬ (𝐵 ∈ V ∧ 𝐴 ∈ V) → 𝑈 = ∅)
233 weeq2 5525 . . . 4 (𝑈 = ∅ → (𝑇 We 𝑈𝑇 We ∅))
234232, 233syl 17 . . 3 (¬ (𝐵 ∈ V ∧ 𝐴 ∈ V) → (𝑇 We 𝑈𝑇 We ∅))
235225, 234mpbiri 261 . 2 (¬ (𝐵 ∈ V ∧ 𝐴 ∈ V) → 𝑇 We 𝑈)
236224, 235pm2.61d1 183 1 (𝜑𝑇 We 𝑈)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1543  wcel 2112  wne 2932  wral 3051  wrex 3052  {crab 3055  Vcvv 3398  cin 3852  c0 4223   class class class wbr 5039  {copab 5101  cmpt 5120   E cep 5444   We wwe 5493   × cxp 5534  ccnv 5535  dom cdm 5536  ran crn 5537  ccom 5540  Ord word 6190  Oncon0 6191   Fn wfn 6353  wf 6354  1-1wf1 6355  ontowfo 6356  1-1-ontowf1o 6357  cfv 6358   Isom wiso 6359  (class class class)co 7191  o coe 8179  m cmap 8486   finSupp cfsupp 8963  OrdIsocoi 9103   CNF ccnf 9254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-se 5495  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-supp 7882  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-seqom 8162  df-1o 8180  df-2o 8181  df-oadd 8184  df-omul 8185  df-oexp 8186  df-er 8369  df-map 8488  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-fsupp 8964  df-oi 9104  df-cnf 9255
This theorem is referenced by:  ltbwe  20955
  Copyright terms: Public domain W3C validator