Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wetrep | Structured version Visualization version GIF version |
Description: On a class well-ordered by membership, the membership predicate is transitive. (Contributed by NM, 22-Apr-1994.) |
Ref | Expression |
---|---|
wetrep | ⊢ (( E We 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑧) → 𝑥 ∈ 𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | weso 5580 | . . 3 ⊢ ( E We 𝐴 → E Or 𝐴) | |
2 | sotr 5527 | . . 3 ⊢ (( E Or 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ((𝑥 E 𝑦 ∧ 𝑦 E 𝑧) → 𝑥 E 𝑧)) | |
3 | 1, 2 | sylan 580 | . 2 ⊢ (( E We 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ((𝑥 E 𝑦 ∧ 𝑦 E 𝑧) → 𝑥 E 𝑧)) |
4 | epel 5498 | . . 3 ⊢ (𝑥 E 𝑦 ↔ 𝑥 ∈ 𝑦) | |
5 | epel 5498 | . . 3 ⊢ (𝑦 E 𝑧 ↔ 𝑦 ∈ 𝑧) | |
6 | 4, 5 | anbi12i 627 | . 2 ⊢ ((𝑥 E 𝑦 ∧ 𝑦 E 𝑧) ↔ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑧)) |
7 | epel 5498 | . 2 ⊢ (𝑥 E 𝑧 ↔ 𝑥 ∈ 𝑧) | |
8 | 3, 6, 7 | 3imtr3g 295 | 1 ⊢ (( E We 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑧) → 𝑥 ∈ 𝑧)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 ∈ wcel 2106 class class class wbr 5074 E cep 5494 Or wor 5502 We wwe 5543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-eprel 5495 df-po 5503 df-so 5504 df-we 5546 |
This theorem is referenced by: wefrc 5583 ordelord 6288 |
Copyright terms: Public domain | W3C validator |