MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wetrep Structured version   Visualization version   GIF version

Theorem wetrep 5541
Description: On a class well-ordered by membership, the membership predicate is transitive. (Contributed by NM, 22-Apr-1994.)
Assertion
Ref Expression
wetrep (( E We 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))

Proof of Theorem wetrep
StepHypRef Expression
1 weso 5539 . . 3 ( E We 𝐴 → E Or 𝐴)
2 sotr 5490 . . 3 (( E Or 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧))
31, 2sylan 582 . 2 (( E We 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧))
4 epel 5462 . . 3 (𝑥 E 𝑦𝑥𝑦)
5 epel 5462 . . 3 (𝑦 E 𝑧𝑦𝑧)
64, 5anbi12i 628 . 2 ((𝑥 E 𝑦𝑦 E 𝑧) ↔ (𝑥𝑦𝑦𝑧))
7 epel 5462 . 2 (𝑥 E 𝑧𝑥𝑧)
83, 6, 73imtr3g 297 1 (( E We 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1081  wcel 2107   class class class wbr 5057   E cep 5457   Or wor 5466   We wwe 5506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pr 5320
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rab 3145  df-v 3495  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-sn 4560  df-pr 4562  df-op 4566  df-br 5058  df-opab 5120  df-eprel 5458  df-po 5467  df-so 5468  df-we 5509
This theorem is referenced by:  wefrc  5542  ordelord  6206
  Copyright terms: Public domain W3C validator