![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wetrep | Structured version Visualization version GIF version |
Description: On a class well-ordered by membership, the membership predicate is transitive. (Contributed by NM, 22-Apr-1994.) |
Ref | Expression |
---|---|
wetrep | ⊢ (( E We 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑧) → 𝑥 ∈ 𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | weso 5691 | . . 3 ⊢ ( E We 𝐴 → E Or 𝐴) | |
2 | sotr 5633 | . . 3 ⊢ (( E Or 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ((𝑥 E 𝑦 ∧ 𝑦 E 𝑧) → 𝑥 E 𝑧)) | |
3 | 1, 2 | sylan 579 | . 2 ⊢ (( E We 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ((𝑥 E 𝑦 ∧ 𝑦 E 𝑧) → 𝑥 E 𝑧)) |
4 | epel 5602 | . . 3 ⊢ (𝑥 E 𝑦 ↔ 𝑥 ∈ 𝑦) | |
5 | epel 5602 | . . 3 ⊢ (𝑦 E 𝑧 ↔ 𝑦 ∈ 𝑧) | |
6 | 4, 5 | anbi12i 627 | . 2 ⊢ ((𝑥 E 𝑦 ∧ 𝑦 E 𝑧) ↔ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑧)) |
7 | epel 5602 | . 2 ⊢ (𝑥 E 𝑧 ↔ 𝑥 ∈ 𝑧) | |
8 | 3, 6, 7 | 3imtr3g 295 | 1 ⊢ (( E We 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑧) → 𝑥 ∈ 𝑧)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 ∈ wcel 2108 class class class wbr 5166 E cep 5598 Or wor 5606 We wwe 5651 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-eprel 5599 df-po 5607 df-so 5608 df-we 5654 |
This theorem is referenced by: wefrc 5694 ordelord 6417 |
Copyright terms: Public domain | W3C validator |