MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wetrep Structured version   Visualization version   GIF version

Theorem wetrep 5670
Description: On a class well-ordered by membership, the membership predicate is transitive. (Contributed by NM, 22-Apr-1994.)
Assertion
Ref Expression
wetrep (( E We 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))

Proof of Theorem wetrep
StepHypRef Expression
1 weso 5668 . . 3 ( E We 𝐴 → E Or 𝐴)
2 sotr 5613 . . 3 (( E Or 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧))
31, 2sylan 581 . 2 (( E We 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧))
4 epel 5584 . . 3 (𝑥 E 𝑦𝑥𝑦)
5 epel 5584 . . 3 (𝑦 E 𝑧𝑦𝑧)
64, 5anbi12i 628 . 2 ((𝑥 E 𝑦𝑦 E 𝑧) ↔ (𝑥𝑦𝑦𝑧))
7 epel 5584 . 2 (𝑥 E 𝑧𝑥𝑧)
83, 6, 73imtr3g 295 1 (( E We 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088  wcel 2107   class class class wbr 5149   E cep 5580   Or wor 5588   We wwe 5631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-ral 3063  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-eprel 5581  df-po 5589  df-so 5590  df-we 5634
This theorem is referenced by:  wefrc  5671  ordelord  6387
  Copyright terms: Public domain W3C validator