MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wetrep Structured version   Visualization version   GIF version

Theorem wetrep 5519
Description: On a class well-ordered by membership, the membership predicate is transitive. (Contributed by NM, 22-Apr-1994.)
Assertion
Ref Expression
wetrep (( E We 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))

Proof of Theorem wetrep
StepHypRef Expression
1 weso 5517 . . 3 ( E We 𝐴 → E Or 𝐴)
2 sotr 5467 . . 3 (( E Or 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧))
31, 2sylan 583 . 2 (( E We 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧))
4 epel 5438 . . 3 (𝑥 E 𝑦𝑥𝑦)
5 epel 5438 . . 3 (𝑦 E 𝑧𝑦𝑧)
64, 5anbi12i 630 . 2 ((𝑥 E 𝑦𝑦 E 𝑧) ↔ (𝑥𝑦𝑦𝑧))
7 epel 5438 . 2 (𝑥 E 𝑧𝑥𝑧)
83, 6, 73imtr3g 298 1 (( E We 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1088  wcel 2114   class class class wbr 5031   E cep 5434   Or wor 5442   We wwe 5483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-ext 2711  ax-sep 5168  ax-nul 5175  ax-pr 5297
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-sb 2075  df-clab 2718  df-cleq 2731  df-clel 2812  df-ne 2936  df-ral 3059  df-v 3401  df-dif 3847  df-un 3849  df-nul 4213  df-if 4416  df-sn 4518  df-pr 4520  df-op 4524  df-br 5032  df-opab 5094  df-eprel 5435  df-po 5443  df-so 5444  df-we 5486
This theorem is referenced by:  wefrc  5520  ordelord  6195
  Copyright terms: Public domain W3C validator