Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wlimeq2 Structured version   Visualization version   GIF version

Theorem wlimeq2 34793
Description: Equality theorem for the limit class. (Contributed by Scott Fenton, 15-Jun-2018.)
Assertion
Ref Expression
wlimeq2 (𝐴 = 𝐵 → WLim(𝑅, 𝐴) = WLim(𝑅, 𝐵))

Proof of Theorem wlimeq2
StepHypRef Expression
1 eqid 2733 . 2 𝑅 = 𝑅
2 wlimeq12 34791 . 2 ((𝑅 = 𝑅𝐴 = 𝐵) → WLim(𝑅, 𝐴) = WLim(𝑅, 𝐵))
31, 2mpan 689 1 (𝐴 = 𝐵 → WLim(𝑅, 𝐴) = WLim(𝑅, 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  WLimcwlim 34783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-xp 5683  df-cnv 5685  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-sup 9437  df-inf 9438  df-wlim 34785
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator