| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wlimeq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the limit class. (Contributed by Scott Fenton, 15-Jun-2018.) |
| Ref | Expression |
|---|---|
| wlimeq2 | ⊢ (𝐴 = 𝐵 → WLim(𝑅, 𝐴) = WLim(𝑅, 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . 2 ⊢ 𝑅 = 𝑅 | |
| 2 | wlimeq12 35853 | . 2 ⊢ ((𝑅 = 𝑅 ∧ 𝐴 = 𝐵) → WLim(𝑅, 𝐴) = WLim(𝑅, 𝐵)) | |
| 3 | 1, 2 | mpan 690 | 1 ⊢ (𝐴 = 𝐵 → WLim(𝑅, 𝐴) = WLim(𝑅, 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 WLimcwlim 35845 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-xp 5617 df-cnv 5619 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-sup 9321 df-inf 9322 df-wlim 35847 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |