![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > wlimeq2 | Structured version Visualization version GIF version |
Description: Equality theorem for the limit class. (Contributed by Scott Fenton, 15-Jun-2018.) |
Ref | Expression |
---|---|
wlimeq2 | ⊢ (𝐴 = 𝐵 → WLim(𝑅, 𝐴) = WLim(𝑅, 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2735 | . 2 ⊢ 𝑅 = 𝑅 | |
2 | wlimeq12 35801 | . 2 ⊢ ((𝑅 = 𝑅 ∧ 𝐴 = 𝐵) → WLim(𝑅, 𝐴) = WLim(𝑅, 𝐵)) | |
3 | 1, 2 | mpan 690 | 1 ⊢ (𝐴 = 𝐵 → WLim(𝑅, 𝐴) = WLim(𝑅, 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 WLimcwlim 35793 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-xp 5695 df-cnv 5697 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-sup 9480 df-inf 9481 df-wlim 35795 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |