Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > wlimeq2 | Structured version Visualization version GIF version |
Description: Equality theorem for the limit class. (Contributed by Scott Fenton, 15-Jun-2018.) |
Ref | Expression |
---|---|
wlimeq2 | ⊢ (𝐴 = 𝐵 → WLim(𝑅, 𝐴) = WLim(𝑅, 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . 2 ⊢ 𝑅 = 𝑅 | |
2 | wlimeq12 33740 | . 2 ⊢ ((𝑅 = 𝑅 ∧ 𝐴 = 𝐵) → WLim(𝑅, 𝐴) = WLim(𝑅, 𝐵)) | |
3 | 1, 2 | mpan 686 | 1 ⊢ (𝐴 = 𝐵 → WLim(𝑅, 𝐴) = WLim(𝑅, 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 WLimcwlim 33732 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-xp 5586 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-sup 9131 df-inf 9132 df-wlim 33734 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |