| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wlimeq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the limit class. (Contributed by Scott Fenton, 15-Jun-2018.) |
| Ref | Expression |
|---|---|
| wlimeq2 | ⊢ (𝐴 = 𝐵 → WLim(𝑅, 𝐴) = WLim(𝑅, 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . 2 ⊢ 𝑅 = 𝑅 | |
| 2 | wlimeq12 35842 | . 2 ⊢ ((𝑅 = 𝑅 ∧ 𝐴 = 𝐵) → WLim(𝑅, 𝐴) = WLim(𝑅, 𝐵)) | |
| 3 | 1, 2 | mpan 690 | 1 ⊢ (𝐴 = 𝐵 → WLim(𝑅, 𝐴) = WLim(𝑅, 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 WLimcwlim 35834 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-xp 5665 df-cnv 5667 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-sup 9459 df-inf 9460 df-wlim 35836 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |