Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wlimeq2 Structured version   Visualization version   GIF version

Theorem wlimeq2 35855
Description: Equality theorem for the limit class. (Contributed by Scott Fenton, 15-Jun-2018.)
Assertion
Ref Expression
wlimeq2 (𝐴 = 𝐵 → WLim(𝑅, 𝐴) = WLim(𝑅, 𝐵))

Proof of Theorem wlimeq2
StepHypRef Expression
1 eqid 2731 . 2 𝑅 = 𝑅
2 wlimeq12 35853 . 2 ((𝑅 = 𝑅𝐴 = 𝐵) → WLim(𝑅, 𝐴) = WLim(𝑅, 𝐵))
31, 2mpan 690 1 (𝐴 = 𝐵 → WLim(𝑅, 𝐴) = WLim(𝑅, 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  WLimcwlim 35845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-xp 5617  df-cnv 5619  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-sup 9321  df-inf 9322  df-wlim 35847
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator