Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wsuceq1 Structured version   Visualization version   GIF version

Theorem wsuceq1 34032
Description: Equality theorem for well-founded successor. (Contributed by Scott Fenton, 13-Jun-2018.)
Assertion
Ref Expression
wsuceq1 (𝑅 = 𝑆 → wsuc(𝑅, 𝐴, 𝑋) = wsuc(𝑆, 𝐴, 𝑋))

Proof of Theorem wsuceq1
StepHypRef Expression
1 eqid 2736 . 2 𝐴 = 𝐴
2 eqid 2736 . 2 𝑋 = 𝑋
3 wsuceq123 34031 . 2 ((𝑅 = 𝑆𝐴 = 𝐴𝑋 = 𝑋) → wsuc(𝑅, 𝐴, 𝑋) = wsuc(𝑆, 𝐴, 𝑋))
41, 2, 3mp3an23 1452 1 (𝑅 = 𝑆 → wsuc(𝑅, 𝐴, 𝑋) = wsuc(𝑆, 𝐴, 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wsuccwsuc 34027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4269  df-if 4473  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-br 5090  df-opab 5152  df-xp 5620  df-cnv 5622  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6232  df-sup 9291  df-inf 9292  df-wsuc 34029
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator