Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wsuceq1 Structured version   Visualization version   GIF version

Theorem wsuceq1 35816
Description: Equality theorem for well-founded successor. (Contributed by Scott Fenton, 13-Jun-2018.)
Assertion
Ref Expression
wsuceq1 (𝑅 = 𝑆 → wsuc(𝑅, 𝐴, 𝑋) = wsuc(𝑆, 𝐴, 𝑋))

Proof of Theorem wsuceq1
StepHypRef Expression
1 eqid 2737 . 2 𝐴 = 𝐴
2 eqid 2737 . 2 𝑋 = 𝑋
3 wsuceq123 35815 . 2 ((𝑅 = 𝑆𝐴 = 𝐴𝑋 = 𝑋) → wsuc(𝑅, 𝐴, 𝑋) = wsuc(𝑆, 𝐴, 𝑋))
41, 2, 3mp3an23 1455 1 (𝑅 = 𝑆 → wsuc(𝑅, 𝐴, 𝑋) = wsuc(𝑆, 𝐴, 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wsuccwsuc 35811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-xp 5691  df-cnv 5693  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-sup 9482  df-inf 9483  df-wsuc 35813
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator