Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > wsuceq1 | Structured version Visualization version GIF version |
Description: Equality theorem for well-founded successor. (Contributed by Scott Fenton, 13-Jun-2018.) |
Ref | Expression |
---|---|
wsuceq1 | ⊢ (𝑅 = 𝑆 → wsuc(𝑅, 𝐴, 𝑋) = wsuc(𝑆, 𝐴, 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . 2 ⊢ 𝐴 = 𝐴 | |
2 | eqid 2736 | . 2 ⊢ 𝑋 = 𝑋 | |
3 | wsuceq123 34031 | . 2 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐴 ∧ 𝑋 = 𝑋) → wsuc(𝑅, 𝐴, 𝑋) = wsuc(𝑆, 𝐴, 𝑋)) | |
4 | 1, 2, 3 | mp3an23 1452 | 1 ⊢ (𝑅 = 𝑆 → wsuc(𝑅, 𝐴, 𝑋) = wsuc(𝑆, 𝐴, 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 wsuccwsuc 34027 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-br 5090 df-opab 5152 df-xp 5620 df-cnv 5622 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6232 df-sup 9291 df-inf 9292 df-wsuc 34029 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |