Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wsuceq2 Structured version   Visualization version   GIF version

Theorem wsuceq2 35780
Description: Equality theorem for well-founded successor. (Contributed by Scott Fenton, 13-Jun-2018.)
Assertion
Ref Expression
wsuceq2 (𝐴 = 𝐵 → wsuc(𝑅, 𝐴, 𝑋) = wsuc(𝑅, 𝐵, 𝑋))

Proof of Theorem wsuceq2
StepHypRef Expression
1 eqid 2740 . 2 𝑅 = 𝑅
2 eqid 2740 . 2 𝑋 = 𝑋
3 wsuceq123 35778 . 2 ((𝑅 = 𝑅𝐴 = 𝐵𝑋 = 𝑋) → wsuc(𝑅, 𝐴, 𝑋) = wsuc(𝑅, 𝐵, 𝑋))
41, 2, 3mp3an13 1452 1 (𝐴 = 𝐵 → wsuc(𝑅, 𝐴, 𝑋) = wsuc(𝑅, 𝐵, 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wsuccwsuc 35774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-xp 5706  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-sup 9511  df-inf 9512  df-wsuc 35776
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator