| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpdisj2 | Structured version Visualization version GIF version | ||
| Description: Cartesian products with disjoint sets are disjoint. (Contributed by NM, 13-Sep-2004.) |
| Ref | Expression |
|---|---|
| xpdisj2 | ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐶 × 𝐴) ∩ (𝐷 × 𝐵)) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq2 5637 | . 2 ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐶 ∩ 𝐷) × (𝐴 ∩ 𝐵)) = ((𝐶 ∩ 𝐷) × ∅)) | |
| 2 | inxp 5771 | . 2 ⊢ ((𝐶 × 𝐴) ∩ (𝐷 × 𝐵)) = ((𝐶 ∩ 𝐷) × (𝐴 ∩ 𝐵)) | |
| 3 | xp0 6105 | . . 3 ⊢ ((𝐶 ∩ 𝐷) × ∅) = ∅ | |
| 4 | 3 | eqcomi 2740 | . 2 ⊢ ∅ = ((𝐶 ∩ 𝐷) × ∅) |
| 5 | 1, 2, 4 | 3eqtr4g 2791 | 1 ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐶 × 𝐴) ∩ (𝐷 × 𝐵)) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∩ cin 3901 ∅c0 4283 × cxp 5614 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-xp 5622 df-rel 5623 df-cnv 5624 |
| This theorem is referenced by: xpsndisj 6110 |
| Copyright terms: Public domain | W3C validator |