![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpdisj2 | Structured version Visualization version GIF version |
Description: Cartesian products with disjoint sets are disjoint. (Contributed by NM, 13-Sep-2004.) |
Ref | Expression |
---|---|
xpdisj2 | ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐶 × 𝐴) ∩ (𝐷 × 𝐵)) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq2 5424 | . 2 ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐶 ∩ 𝐷) × (𝐴 ∩ 𝐵)) = ((𝐶 ∩ 𝐷) × ∅)) | |
2 | inxp 5549 | . 2 ⊢ ((𝐶 × 𝐴) ∩ (𝐷 × 𝐵)) = ((𝐶 ∩ 𝐷) × (𝐴 ∩ 𝐵)) | |
3 | xp0 5852 | . . 3 ⊢ ((𝐶 ∩ 𝐷) × ∅) = ∅ | |
4 | 3 | eqcomi 2780 | . 2 ⊢ ∅ = ((𝐶 ∩ 𝐷) × ∅) |
5 | 1, 2, 4 | 3eqtr4g 2832 | 1 ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐶 × 𝐴) ∩ (𝐷 × 𝐵)) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1508 ∩ cin 3821 ∅c0 4172 × cxp 5401 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2743 ax-sep 5056 ax-nul 5063 ax-pr 5182 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-rab 3090 df-v 3410 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-nul 4173 df-if 4345 df-sn 4436 df-pr 4438 df-op 4442 df-br 4926 df-opab 4988 df-xp 5409 df-rel 5410 df-cnv 5411 |
This theorem is referenced by: xpsndisj 5857 |
Copyright terms: Public domain | W3C validator |