MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpdisj2 Structured version   Visualization version   GIF version

Theorem xpdisj2 6156
Description: Cartesian products with disjoint sets are disjoint. (Contributed by NM, 13-Sep-2004.)
Assertion
Ref Expression
xpdisj2 ((𝐴𝐵) = ∅ → ((𝐶 × 𝐴) ∩ (𝐷 × 𝐵)) = ∅)

Proof of Theorem xpdisj2
StepHypRef Expression
1 xpeq2 5680 . 2 ((𝐴𝐵) = ∅ → ((𝐶𝐷) × (𝐴𝐵)) = ((𝐶𝐷) × ∅))
2 inxp 5816 . 2 ((𝐶 × 𝐴) ∩ (𝐷 × 𝐵)) = ((𝐶𝐷) × (𝐴𝐵))
3 xp0 6152 . . 3 ((𝐶𝐷) × ∅) = ∅
43eqcomi 2745 . 2 ∅ = ((𝐶𝐷) × ∅)
51, 2, 43eqtr4g 2796 1 ((𝐴𝐵) = ∅ → ((𝐶 × 𝐴) ∩ (𝐷 × 𝐵)) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  cin 3930  c0 4313   × cxp 5657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-xp 5665  df-rel 5666  df-cnv 5667
This theorem is referenced by:  xpsndisj  6157
  Copyright terms: Public domain W3C validator