MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsndisj Structured version   Visualization version   GIF version

Theorem xpsndisj 6055
Description: Cartesian products with two different singletons are disjoint. (Contributed by NM, 28-Jul-2004.)
Assertion
Ref Expression
xpsndisj (𝐵𝐷 → ((𝐴 × {𝐵}) ∩ (𝐶 × {𝐷})) = ∅)

Proof of Theorem xpsndisj
StepHypRef Expression
1 disjsn2 4645 . 2 (𝐵𝐷 → ({𝐵} ∩ {𝐷}) = ∅)
2 xpdisj2 6054 . 2 (({𝐵} ∩ {𝐷}) = ∅ → ((𝐴 × {𝐵}) ∩ (𝐶 × {𝐷})) = ∅)
31, 2syl 17 1 (𝐵𝐷 → ((𝐴 × {𝐵}) ∩ (𝐶 × {𝐷})) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wne 2942  cin 3882  c0 4253  {csn 4558   × cxp 5578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-cnv 5588
This theorem is referenced by:  xp01disj  8287  unxpdom2  8960  sucxpdom  8961
  Copyright terms: Public domain W3C validator