Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xpsndisj | Structured version Visualization version GIF version |
Description: Cartesian products with two different singletons are disjoint. (Contributed by NM, 28-Jul-2004.) |
Ref | Expression |
---|---|
xpsndisj | ⊢ (𝐵 ≠ 𝐷 → ((𝐴 × {𝐵}) ∩ (𝐶 × {𝐷})) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disjsn2 4645 | . 2 ⊢ (𝐵 ≠ 𝐷 → ({𝐵} ∩ {𝐷}) = ∅) | |
2 | xpdisj2 6054 | . 2 ⊢ (({𝐵} ∩ {𝐷}) = ∅ → ((𝐴 × {𝐵}) ∩ (𝐶 × {𝐷})) = ∅) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐵 ≠ 𝐷 → ((𝐴 × {𝐵}) ∩ (𝐶 × {𝐷})) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ≠ wne 2942 ∩ cin 3882 ∅c0 4253 {csn 4558 × cxp 5578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 |
This theorem is referenced by: xp01disj 8287 unxpdom2 8960 sucxpdom 8961 |
Copyright terms: Public domain | W3C validator |