MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsndisj Structured version   Visualization version   GIF version

Theorem xpsndisj 6157
Description: Cartesian products with two different singletons are disjoint. (Contributed by NM, 28-Jul-2004.)
Assertion
Ref Expression
xpsndisj (𝐵𝐷 → ((𝐴 × {𝐵}) ∩ (𝐶 × {𝐷})) = ∅)

Proof of Theorem xpsndisj
StepHypRef Expression
1 disjsn2 4693 . 2 (𝐵𝐷 → ({𝐵} ∩ {𝐷}) = ∅)
2 xpdisj2 6156 . 2 (({𝐵} ∩ {𝐷}) = ∅ → ((𝐴 × {𝐵}) ∩ (𝐶 × {𝐷})) = ∅)
31, 2syl 17 1 (𝐵𝐷 → ((𝐴 × {𝐵}) ∩ (𝐶 × {𝐷})) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wne 2933  cin 3930  c0 4313  {csn 4606   × cxp 5657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-xp 5665  df-rel 5666  df-cnv 5667
This theorem is referenced by:  xp01disj  8508  unxpdom2  9267  sucxpdom  9268
  Copyright terms: Public domain W3C validator