MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sucxpdom Structured version   Visualization version   GIF version

Theorem sucxpdom 9263
Description: Cartesian product dominates successor for set with cardinality greater than 1. Proposition 10.38 of [TakeutiZaring] p. 93 (but generalized to arbitrary sets, not just ordinals). (Contributed by NM, 3-Sep-2004.) (Proof shortened by Mario Carneiro, 27-Apr-2015.)
Assertion
Ref Expression
sucxpdom (1o𝐴 → suc 𝐴 ≼ (𝐴 × 𝐴))

Proof of Theorem sucxpdom
StepHypRef Expression
1 df-suc 6358 . 2 suc 𝐴 = (𝐴 ∪ {𝐴})
2 relsdom 8966 . . . . . . . . 9 Rel ≺
32brrelex2i 5711 . . . . . . . 8 (1o𝐴𝐴 ∈ V)
4 1on 8492 . . . . . . . 8 1o ∈ On
5 xpsneng 9070 . . . . . . . 8 ((𝐴 ∈ V ∧ 1o ∈ On) → (𝐴 × {1o}) ≈ 𝐴)
63, 4, 5sylancl 586 . . . . . . 7 (1o𝐴 → (𝐴 × {1o}) ≈ 𝐴)
76ensymd 9019 . . . . . 6 (1o𝐴𝐴 ≈ (𝐴 × {1o}))
8 endom 8993 . . . . . 6 (𝐴 ≈ (𝐴 × {1o}) → 𝐴 ≼ (𝐴 × {1o}))
97, 8syl 17 . . . . 5 (1o𝐴𝐴 ≼ (𝐴 × {1o}))
10 ensn1g 9036 . . . . . . . . 9 (𝐴 ∈ V → {𝐴} ≈ 1o)
113, 10syl 17 . . . . . . . 8 (1o𝐴 → {𝐴} ≈ 1o)
12 ensdomtr 9127 . . . . . . . 8 (({𝐴} ≈ 1o ∧ 1o𝐴) → {𝐴} ≺ 𝐴)
1311, 12mpancom 688 . . . . . . 7 (1o𝐴 → {𝐴} ≺ 𝐴)
14 0ex 5277 . . . . . . . . 9 ∅ ∈ V
15 xpsneng 9070 . . . . . . . . 9 ((𝐴 ∈ V ∧ ∅ ∈ V) → (𝐴 × {∅}) ≈ 𝐴)
163, 14, 15sylancl 586 . . . . . . . 8 (1o𝐴 → (𝐴 × {∅}) ≈ 𝐴)
1716ensymd 9019 . . . . . . 7 (1o𝐴𝐴 ≈ (𝐴 × {∅}))
18 sdomentr 9125 . . . . . . 7 (({𝐴} ≺ 𝐴𝐴 ≈ (𝐴 × {∅})) → {𝐴} ≺ (𝐴 × {∅}))
1913, 17, 18syl2anc 584 . . . . . 6 (1o𝐴 → {𝐴} ≺ (𝐴 × {∅}))
20 sdomdom 8994 . . . . . 6 ({𝐴} ≺ (𝐴 × {∅}) → {𝐴} ≼ (𝐴 × {∅}))
2119, 20syl 17 . . . . 5 (1o𝐴 → {𝐴} ≼ (𝐴 × {∅}))
22 1n0 8500 . . . . . 6 1o ≠ ∅
23 xpsndisj 6152 . . . . . 6 (1o ≠ ∅ → ((𝐴 × {1o}) ∩ (𝐴 × {∅})) = ∅)
2422, 23mp1i 13 . . . . 5 (1o𝐴 → ((𝐴 × {1o}) ∩ (𝐴 × {∅})) = ∅)
25 undom 9073 . . . . 5 (((𝐴 ≼ (𝐴 × {1o}) ∧ {𝐴} ≼ (𝐴 × {∅})) ∧ ((𝐴 × {1o}) ∩ (𝐴 × {∅})) = ∅) → (𝐴 ∪ {𝐴}) ≼ ((𝐴 × {1o}) ∪ (𝐴 × {∅})))
269, 21, 24, 25syl21anc 837 . . . 4 (1o𝐴 → (𝐴 ∪ {𝐴}) ≼ ((𝐴 × {1o}) ∪ (𝐴 × {∅})))
27 sdomentr 9125 . . . . . 6 ((1o𝐴𝐴 ≈ (𝐴 × {1o})) → 1o ≺ (𝐴 × {1o}))
287, 27mpdan 687 . . . . 5 (1o𝐴 → 1o ≺ (𝐴 × {1o}))
29 sdomentr 9125 . . . . . 6 ((1o𝐴𝐴 ≈ (𝐴 × {∅})) → 1o ≺ (𝐴 × {∅}))
3017, 29mpdan 687 . . . . 5 (1o𝐴 → 1o ≺ (𝐴 × {∅}))
31 unxpdom 9261 . . . . 5 ((1o ≺ (𝐴 × {1o}) ∧ 1o ≺ (𝐴 × {∅})) → ((𝐴 × {1o}) ∪ (𝐴 × {∅})) ≼ ((𝐴 × {1o}) × (𝐴 × {∅})))
3228, 30, 31syl2anc 584 . . . 4 (1o𝐴 → ((𝐴 × {1o}) ∪ (𝐴 × {∅})) ≼ ((𝐴 × {1o}) × (𝐴 × {∅})))
33 domtr 9021 . . . 4 (((𝐴 ∪ {𝐴}) ≼ ((𝐴 × {1o}) ∪ (𝐴 × {∅})) ∧ ((𝐴 × {1o}) ∪ (𝐴 × {∅})) ≼ ((𝐴 × {1o}) × (𝐴 × {∅}))) → (𝐴 ∪ {𝐴}) ≼ ((𝐴 × {1o}) × (𝐴 × {∅})))
3426, 32, 33syl2anc 584 . . 3 (1o𝐴 → (𝐴 ∪ {𝐴}) ≼ ((𝐴 × {1o}) × (𝐴 × {∅})))
35 xpen 9154 . . . 4 (((𝐴 × {1o}) ≈ 𝐴 ∧ (𝐴 × {∅}) ≈ 𝐴) → ((𝐴 × {1o}) × (𝐴 × {∅})) ≈ (𝐴 × 𝐴))
366, 16, 35syl2anc 584 . . 3 (1o𝐴 → ((𝐴 × {1o}) × (𝐴 × {∅})) ≈ (𝐴 × 𝐴))
37 domentr 9027 . . 3 (((𝐴 ∪ {𝐴}) ≼ ((𝐴 × {1o}) × (𝐴 × {∅})) ∧ ((𝐴 × {1o}) × (𝐴 × {∅})) ≈ (𝐴 × 𝐴)) → (𝐴 ∪ {𝐴}) ≼ (𝐴 × 𝐴))
3834, 36, 37syl2anc 584 . 2 (1o𝐴 → (𝐴 ∪ {𝐴}) ≼ (𝐴 × 𝐴))
391, 38eqbrtrid 5154 1 (1o𝐴 → suc 𝐴 ≼ (𝐴 × 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  wne 2932  Vcvv 3459  cun 3924  cin 3925  c0 4308  {csn 4601   class class class wbr 5119   × cxp 5652  Oncon0 6352  suc csuc 6354  1oc1o 8473  cen 8956  cdom 8957  csdm 8958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ord 6355  df-on 6356  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-1st 7988  df-2nd 7989  df-1o 8480  df-2o 8481  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator