MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sucxpdom Structured version   Visualization version   GIF version

Theorem sucxpdom 8721
Description: Cartesian product dominates successor for set with cardinality greater than 1. Proposition 10.38 of [TakeutiZaring] p. 93 (but generalized to arbitrary sets, not just ordinals). (Contributed by NM, 3-Sep-2004.) (Proof shortened by Mario Carneiro, 27-Apr-2015.)
Assertion
Ref Expression
sucxpdom (1o𝐴 → suc 𝐴 ≼ (𝐴 × 𝐴))

Proof of Theorem sucxpdom
StepHypRef Expression
1 df-suc 6196 . 2 suc 𝐴 = (𝐴 ∪ {𝐴})
2 relsdom 8510 . . . . . . . . 9 Rel ≺
32brrelex2i 5608 . . . . . . . 8 (1o𝐴𝐴 ∈ V)
4 1on 8105 . . . . . . . 8 1o ∈ On
5 xpsneng 8596 . . . . . . . 8 ((𝐴 ∈ V ∧ 1o ∈ On) → (𝐴 × {1o}) ≈ 𝐴)
63, 4, 5sylancl 586 . . . . . . 7 (1o𝐴 → (𝐴 × {1o}) ≈ 𝐴)
76ensymd 8554 . . . . . 6 (1o𝐴𝐴 ≈ (𝐴 × {1o}))
8 endom 8530 . . . . . 6 (𝐴 ≈ (𝐴 × {1o}) → 𝐴 ≼ (𝐴 × {1o}))
97, 8syl 17 . . . . 5 (1o𝐴𝐴 ≼ (𝐴 × {1o}))
10 ensn1g 8568 . . . . . . . . 9 (𝐴 ∈ V → {𝐴} ≈ 1o)
113, 10syl 17 . . . . . . . 8 (1o𝐴 → {𝐴} ≈ 1o)
12 ensdomtr 8647 . . . . . . . 8 (({𝐴} ≈ 1o ∧ 1o𝐴) → {𝐴} ≺ 𝐴)
1311, 12mpancom 684 . . . . . . 7 (1o𝐴 → {𝐴} ≺ 𝐴)
14 0ex 5208 . . . . . . . . 9 ∅ ∈ V
15 xpsneng 8596 . . . . . . . . 9 ((𝐴 ∈ V ∧ ∅ ∈ V) → (𝐴 × {∅}) ≈ 𝐴)
163, 14, 15sylancl 586 . . . . . . . 8 (1o𝐴 → (𝐴 × {∅}) ≈ 𝐴)
1716ensymd 8554 . . . . . . 7 (1o𝐴𝐴 ≈ (𝐴 × {∅}))
18 sdomentr 8645 . . . . . . 7 (({𝐴} ≺ 𝐴𝐴 ≈ (𝐴 × {∅})) → {𝐴} ≺ (𝐴 × {∅}))
1913, 17, 18syl2anc 584 . . . . . 6 (1o𝐴 → {𝐴} ≺ (𝐴 × {∅}))
20 sdomdom 8531 . . . . . 6 ({𝐴} ≺ (𝐴 × {∅}) → {𝐴} ≼ (𝐴 × {∅}))
2119, 20syl 17 . . . . 5 (1o𝐴 → {𝐴} ≼ (𝐴 × {∅}))
22 1n0 8115 . . . . . 6 1o ≠ ∅
23 xpsndisj 6019 . . . . . 6 (1o ≠ ∅ → ((𝐴 × {1o}) ∩ (𝐴 × {∅})) = ∅)
2422, 23mp1i 13 . . . . 5 (1o𝐴 → ((𝐴 × {1o}) ∩ (𝐴 × {∅})) = ∅)
25 undom 8599 . . . . 5 (((𝐴 ≼ (𝐴 × {1o}) ∧ {𝐴} ≼ (𝐴 × {∅})) ∧ ((𝐴 × {1o}) ∩ (𝐴 × {∅})) = ∅) → (𝐴 ∪ {𝐴}) ≼ ((𝐴 × {1o}) ∪ (𝐴 × {∅})))
269, 21, 24, 25syl21anc 835 . . . 4 (1o𝐴 → (𝐴 ∪ {𝐴}) ≼ ((𝐴 × {1o}) ∪ (𝐴 × {∅})))
27 sdomentr 8645 . . . . . 6 ((1o𝐴𝐴 ≈ (𝐴 × {1o})) → 1o ≺ (𝐴 × {1o}))
287, 27mpdan 683 . . . . 5 (1o𝐴 → 1o ≺ (𝐴 × {1o}))
29 sdomentr 8645 . . . . . 6 ((1o𝐴𝐴 ≈ (𝐴 × {∅})) → 1o ≺ (𝐴 × {∅}))
3017, 29mpdan 683 . . . . 5 (1o𝐴 → 1o ≺ (𝐴 × {∅}))
31 unxpdom 8719 . . . . 5 ((1o ≺ (𝐴 × {1o}) ∧ 1o ≺ (𝐴 × {∅})) → ((𝐴 × {1o}) ∪ (𝐴 × {∅})) ≼ ((𝐴 × {1o}) × (𝐴 × {∅})))
3228, 30, 31syl2anc 584 . . . 4 (1o𝐴 → ((𝐴 × {1o}) ∪ (𝐴 × {∅})) ≼ ((𝐴 × {1o}) × (𝐴 × {∅})))
33 domtr 8556 . . . 4 (((𝐴 ∪ {𝐴}) ≼ ((𝐴 × {1o}) ∪ (𝐴 × {∅})) ∧ ((𝐴 × {1o}) ∪ (𝐴 × {∅})) ≼ ((𝐴 × {1o}) × (𝐴 × {∅}))) → (𝐴 ∪ {𝐴}) ≼ ((𝐴 × {1o}) × (𝐴 × {∅})))
3426, 32, 33syl2anc 584 . . 3 (1o𝐴 → (𝐴 ∪ {𝐴}) ≼ ((𝐴 × {1o}) × (𝐴 × {∅})))
35 xpen 8674 . . . 4 (((𝐴 × {1o}) ≈ 𝐴 ∧ (𝐴 × {∅}) ≈ 𝐴) → ((𝐴 × {1o}) × (𝐴 × {∅})) ≈ (𝐴 × 𝐴))
366, 16, 35syl2anc 584 . . 3 (1o𝐴 → ((𝐴 × {1o}) × (𝐴 × {∅})) ≈ (𝐴 × 𝐴))
37 domentr 8562 . . 3 (((𝐴 ∪ {𝐴}) ≼ ((𝐴 × {1o}) × (𝐴 × {∅})) ∧ ((𝐴 × {1o}) × (𝐴 × {∅})) ≈ (𝐴 × 𝐴)) → (𝐴 ∪ {𝐴}) ≼ (𝐴 × 𝐴))
3834, 36, 37syl2anc 584 . 2 (1o𝐴 → (𝐴 ∪ {𝐴}) ≼ (𝐴 × 𝐴))
391, 38eqbrtrid 5098 1 (1o𝐴 → suc 𝐴 ≼ (𝐴 × 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1530  wcel 2107  wne 3021  Vcvv 3500  cun 3938  cin 3939  c0 4295  {csn 4564   class class class wbr 5063   × cxp 5552  Oncon0 6190  suc csuc 6192  1oc1o 8091  cen 8500  cdom 8501  csdm 8502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-ral 3148  df-rex 3149  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-om 7574  df-1st 7685  df-2nd 7686  df-1o 8098  df-2o 8099  df-er 8284  df-en 8504  df-dom 8505  df-sdom 8506
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator