MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sucxpdom Structured version   Visualization version   GIF version

Theorem sucxpdom 9150
Description: Cartesian product dominates successor for set with cardinality greater than 1. Proposition 10.38 of [TakeutiZaring] p. 93 (but generalized to arbitrary sets, not just ordinals). (Contributed by NM, 3-Sep-2004.) (Proof shortened by Mario Carneiro, 27-Apr-2015.)
Assertion
Ref Expression
sucxpdom (1o𝐴 → suc 𝐴 ≼ (𝐴 × 𝐴))

Proof of Theorem sucxpdom
StepHypRef Expression
1 df-suc 6313 . 2 suc 𝐴 = (𝐴 ∪ {𝐴})
2 relsdom 8879 . . . . . . . . 9 Rel ≺
32brrelex2i 5676 . . . . . . . 8 (1o𝐴𝐴 ∈ V)
4 1on 8400 . . . . . . . 8 1o ∈ On
5 xpsneng 8979 . . . . . . . 8 ((𝐴 ∈ V ∧ 1o ∈ On) → (𝐴 × {1o}) ≈ 𝐴)
63, 4, 5sylancl 586 . . . . . . 7 (1o𝐴 → (𝐴 × {1o}) ≈ 𝐴)
76ensymd 8930 . . . . . 6 (1o𝐴𝐴 ≈ (𝐴 × {1o}))
8 endom 8904 . . . . . 6 (𝐴 ≈ (𝐴 × {1o}) → 𝐴 ≼ (𝐴 × {1o}))
97, 8syl 17 . . . . 5 (1o𝐴𝐴 ≼ (𝐴 × {1o}))
10 ensn1g 8947 . . . . . . . . 9 (𝐴 ∈ V → {𝐴} ≈ 1o)
113, 10syl 17 . . . . . . . 8 (1o𝐴 → {𝐴} ≈ 1o)
12 ensdomtr 9030 . . . . . . . 8 (({𝐴} ≈ 1o ∧ 1o𝐴) → {𝐴} ≺ 𝐴)
1311, 12mpancom 688 . . . . . . 7 (1o𝐴 → {𝐴} ≺ 𝐴)
14 0ex 5246 . . . . . . . . 9 ∅ ∈ V
15 xpsneng 8979 . . . . . . . . 9 ((𝐴 ∈ V ∧ ∅ ∈ V) → (𝐴 × {∅}) ≈ 𝐴)
163, 14, 15sylancl 586 . . . . . . . 8 (1o𝐴 → (𝐴 × {∅}) ≈ 𝐴)
1716ensymd 8930 . . . . . . 7 (1o𝐴𝐴 ≈ (𝐴 × {∅}))
18 sdomentr 9028 . . . . . . 7 (({𝐴} ≺ 𝐴𝐴 ≈ (𝐴 × {∅})) → {𝐴} ≺ (𝐴 × {∅}))
1913, 17, 18syl2anc 584 . . . . . 6 (1o𝐴 → {𝐴} ≺ (𝐴 × {∅}))
20 sdomdom 8905 . . . . . 6 ({𝐴} ≺ (𝐴 × {∅}) → {𝐴} ≼ (𝐴 × {∅}))
2119, 20syl 17 . . . . 5 (1o𝐴 → {𝐴} ≼ (𝐴 × {∅}))
22 1n0 8406 . . . . . 6 1o ≠ ∅
23 xpsndisj 6112 . . . . . 6 (1o ≠ ∅ → ((𝐴 × {1o}) ∩ (𝐴 × {∅})) = ∅)
2422, 23mp1i 13 . . . . 5 (1o𝐴 → ((𝐴 × {1o}) ∩ (𝐴 × {∅})) = ∅)
25 undom 8982 . . . . 5 (((𝐴 ≼ (𝐴 × {1o}) ∧ {𝐴} ≼ (𝐴 × {∅})) ∧ ((𝐴 × {1o}) ∩ (𝐴 × {∅})) = ∅) → (𝐴 ∪ {𝐴}) ≼ ((𝐴 × {1o}) ∪ (𝐴 × {∅})))
269, 21, 24, 25syl21anc 837 . . . 4 (1o𝐴 → (𝐴 ∪ {𝐴}) ≼ ((𝐴 × {1o}) ∪ (𝐴 × {∅})))
27 sdomentr 9028 . . . . . 6 ((1o𝐴𝐴 ≈ (𝐴 × {1o})) → 1o ≺ (𝐴 × {1o}))
287, 27mpdan 687 . . . . 5 (1o𝐴 → 1o ≺ (𝐴 × {1o}))
29 sdomentr 9028 . . . . . 6 ((1o𝐴𝐴 ≈ (𝐴 × {∅})) → 1o ≺ (𝐴 × {∅}))
3017, 29mpdan 687 . . . . 5 (1o𝐴 → 1o ≺ (𝐴 × {∅}))
31 unxpdom 9148 . . . . 5 ((1o ≺ (𝐴 × {1o}) ∧ 1o ≺ (𝐴 × {∅})) → ((𝐴 × {1o}) ∪ (𝐴 × {∅})) ≼ ((𝐴 × {1o}) × (𝐴 × {∅})))
3228, 30, 31syl2anc 584 . . . 4 (1o𝐴 → ((𝐴 × {1o}) ∪ (𝐴 × {∅})) ≼ ((𝐴 × {1o}) × (𝐴 × {∅})))
33 domtr 8932 . . . 4 (((𝐴 ∪ {𝐴}) ≼ ((𝐴 × {1o}) ∪ (𝐴 × {∅})) ∧ ((𝐴 × {1o}) ∪ (𝐴 × {∅})) ≼ ((𝐴 × {1o}) × (𝐴 × {∅}))) → (𝐴 ∪ {𝐴}) ≼ ((𝐴 × {1o}) × (𝐴 × {∅})))
3426, 32, 33syl2anc 584 . . 3 (1o𝐴 → (𝐴 ∪ {𝐴}) ≼ ((𝐴 × {1o}) × (𝐴 × {∅})))
35 xpen 9057 . . . 4 (((𝐴 × {1o}) ≈ 𝐴 ∧ (𝐴 × {∅}) ≈ 𝐴) → ((𝐴 × {1o}) × (𝐴 × {∅})) ≈ (𝐴 × 𝐴))
366, 16, 35syl2anc 584 . . 3 (1o𝐴 → ((𝐴 × {1o}) × (𝐴 × {∅})) ≈ (𝐴 × 𝐴))
37 domentr 8938 . . 3 (((𝐴 ∪ {𝐴}) ≼ ((𝐴 × {1o}) × (𝐴 × {∅})) ∧ ((𝐴 × {1o}) × (𝐴 × {∅})) ≈ (𝐴 × 𝐴)) → (𝐴 ∪ {𝐴}) ≼ (𝐴 × 𝐴))
3834, 36, 37syl2anc 584 . 2 (1o𝐴 → (𝐴 ∪ {𝐴}) ≼ (𝐴 × 𝐴))
391, 38eqbrtrid 5127 1 (1o𝐴 → suc 𝐴 ≼ (𝐴 × 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wne 2925  Vcvv 3436  cun 3901  cin 3902  c0 4284  {csn 4577   class class class wbr 5092   × cxp 5617  Oncon0 6307  suc csuc 6309  1oc1o 8381  cen 8869  cdom 8870  csdm 8871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6310  df-on 6311  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-1st 7924  df-2nd 7925  df-1o 8388  df-2o 8389  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator