MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unxpdom2 Structured version   Visualization version   GIF version

Theorem unxpdom2 9139
Description: Corollary of unxpdom 9138. (Contributed by NM, 16-Sep-2004.)
Assertion
Ref Expression
unxpdom2 ((1o𝐴𝐵𝐴) → (𝐴𝐵) ≼ (𝐴 × 𝐴))

Proof of Theorem unxpdom2
StepHypRef Expression
1 relsdom 8871 . . . . . . . 8 Rel ≺
21brrelex2i 5668 . . . . . . 7 (1o𝐴𝐴 ∈ V)
32adantr 480 . . . . . 6 ((1o𝐴𝐵𝐴) → 𝐴 ∈ V)
4 1onn 8550 . . . . . 6 1o ∈ ω
5 xpsneng 8970 . . . . . 6 ((𝐴 ∈ V ∧ 1o ∈ ω) → (𝐴 × {1o}) ≈ 𝐴)
63, 4, 5sylancl 586 . . . . 5 ((1o𝐴𝐵𝐴) → (𝐴 × {1o}) ≈ 𝐴)
76ensymd 8922 . . . 4 ((1o𝐴𝐵𝐴) → 𝐴 ≈ (𝐴 × {1o}))
8 endom 8896 . . . 4 (𝐴 ≈ (𝐴 × {1o}) → 𝐴 ≼ (𝐴 × {1o}))
97, 8syl 17 . . 3 ((1o𝐴𝐵𝐴) → 𝐴 ≼ (𝐴 × {1o}))
10 simpr 484 . . . 4 ((1o𝐴𝐵𝐴) → 𝐵𝐴)
11 0ex 5240 . . . . . 6 ∅ ∈ V
12 xpsneng 8970 . . . . . 6 ((𝐴 ∈ V ∧ ∅ ∈ V) → (𝐴 × {∅}) ≈ 𝐴)
133, 11, 12sylancl 586 . . . . 5 ((1o𝐴𝐵𝐴) → (𝐴 × {∅}) ≈ 𝐴)
1413ensymd 8922 . . . 4 ((1o𝐴𝐵𝐴) → 𝐴 ≈ (𝐴 × {∅}))
15 domentr 8930 . . . 4 ((𝐵𝐴𝐴 ≈ (𝐴 × {∅})) → 𝐵 ≼ (𝐴 × {∅}))
1610, 14, 15syl2anc 584 . . 3 ((1o𝐴𝐵𝐴) → 𝐵 ≼ (𝐴 × {∅}))
17 1n0 8398 . . . 4 1o ≠ ∅
18 xpsndisj 6105 . . . 4 (1o ≠ ∅ → ((𝐴 × {1o}) ∩ (𝐴 × {∅})) = ∅)
1917, 18mp1i 13 . . 3 ((1o𝐴𝐵𝐴) → ((𝐴 × {1o}) ∩ (𝐴 × {∅})) = ∅)
20 undom 8973 . . 3 (((𝐴 ≼ (𝐴 × {1o}) ∧ 𝐵 ≼ (𝐴 × {∅})) ∧ ((𝐴 × {1o}) ∩ (𝐴 × {∅})) = ∅) → (𝐴𝐵) ≼ ((𝐴 × {1o}) ∪ (𝐴 × {∅})))
219, 16, 19, 20syl21anc 837 . 2 ((1o𝐴𝐵𝐴) → (𝐴𝐵) ≼ ((𝐴 × {1o}) ∪ (𝐴 × {∅})))
22 sdomentr 9019 . . . . 5 ((1o𝐴𝐴 ≈ (𝐴 × {1o})) → 1o ≺ (𝐴 × {1o}))
237, 22syldan 591 . . . 4 ((1o𝐴𝐵𝐴) → 1o ≺ (𝐴 × {1o}))
24 sdomentr 9019 . . . . 5 ((1o𝐴𝐴 ≈ (𝐴 × {∅})) → 1o ≺ (𝐴 × {∅}))
2514, 24syldan 591 . . . 4 ((1o𝐴𝐵𝐴) → 1o ≺ (𝐴 × {∅}))
26 unxpdom 9138 . . . 4 ((1o ≺ (𝐴 × {1o}) ∧ 1o ≺ (𝐴 × {∅})) → ((𝐴 × {1o}) ∪ (𝐴 × {∅})) ≼ ((𝐴 × {1o}) × (𝐴 × {∅})))
2723, 25, 26syl2anc 584 . . 3 ((1o𝐴𝐵𝐴) → ((𝐴 × {1o}) ∪ (𝐴 × {∅})) ≼ ((𝐴 × {1o}) × (𝐴 × {∅})))
28 xpen 9048 . . . 4 (((𝐴 × {1o}) ≈ 𝐴 ∧ (𝐴 × {∅}) ≈ 𝐴) → ((𝐴 × {1o}) × (𝐴 × {∅})) ≈ (𝐴 × 𝐴))
296, 13, 28syl2anc 584 . . 3 ((1o𝐴𝐵𝐴) → ((𝐴 × {1o}) × (𝐴 × {∅})) ≈ (𝐴 × 𝐴))
30 domentr 8930 . . 3 ((((𝐴 × {1o}) ∪ (𝐴 × {∅})) ≼ ((𝐴 × {1o}) × (𝐴 × {∅})) ∧ ((𝐴 × {1o}) × (𝐴 × {∅})) ≈ (𝐴 × 𝐴)) → ((𝐴 × {1o}) ∪ (𝐴 × {∅})) ≼ (𝐴 × 𝐴))
3127, 29, 30syl2anc 584 . 2 ((1o𝐴𝐵𝐴) → ((𝐴 × {1o}) ∪ (𝐴 × {∅})) ≼ (𝐴 × 𝐴))
32 domtr 8924 . 2 (((𝐴𝐵) ≼ ((𝐴 × {1o}) ∪ (𝐴 × {∅})) ∧ ((𝐴 × {1o}) ∪ (𝐴 × {∅})) ≼ (𝐴 × 𝐴)) → (𝐴𝐵) ≼ (𝐴 × 𝐴))
3321, 31, 32syl2anc 584 1 ((1o𝐴𝐵𝐴) → (𝐴𝐵) ≼ (𝐴 × 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  Vcvv 3436  cun 3895  cin 3896  c0 4278  {csn 4571   class class class wbr 5086   × cxp 5609  ωcom 7791  1oc1o 8373  cen 8861  cdom 8862  csdm 8863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-om 7792  df-1st 7916  df-2nd 7917  df-1o 8380  df-2o 8381  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator