Proof of Theorem unxpdom2
| Step | Hyp | Ref
| Expression |
| 1 | | relsdom 8974 |
. . . . . . . 8
⊢ Rel
≺ |
| 2 | 1 | brrelex2i 5722 |
. . . . . . 7
⊢
(1o ≺ 𝐴 → 𝐴 ∈ V) |
| 3 | 2 | adantr 480 |
. . . . . 6
⊢
((1o ≺ 𝐴 ∧ 𝐵 ≼ 𝐴) → 𝐴 ∈ V) |
| 4 | | 1onn 8660 |
. . . . . 6
⊢
1o ∈ ω |
| 5 | | xpsneng 9078 |
. . . . . 6
⊢ ((𝐴 ∈ V ∧ 1o
∈ ω) → (𝐴
× {1o}) ≈ 𝐴) |
| 6 | 3, 4, 5 | sylancl 586 |
. . . . 5
⊢
((1o ≺ 𝐴 ∧ 𝐵 ≼ 𝐴) → (𝐴 × {1o}) ≈ 𝐴) |
| 7 | 6 | ensymd 9027 |
. . . 4
⊢
((1o ≺ 𝐴 ∧ 𝐵 ≼ 𝐴) → 𝐴 ≈ (𝐴 × {1o})) |
| 8 | | endom 9001 |
. . . 4
⊢ (𝐴 ≈ (𝐴 × {1o}) → 𝐴 ≼ (𝐴 × {1o})) |
| 9 | 7, 8 | syl 17 |
. . 3
⊢
((1o ≺ 𝐴 ∧ 𝐵 ≼ 𝐴) → 𝐴 ≼ (𝐴 × {1o})) |
| 10 | | simpr 484 |
. . . 4
⊢
((1o ≺ 𝐴 ∧ 𝐵 ≼ 𝐴) → 𝐵 ≼ 𝐴) |
| 11 | | 0ex 5287 |
. . . . . 6
⊢ ∅
∈ V |
| 12 | | xpsneng 9078 |
. . . . . 6
⊢ ((𝐴 ∈ V ∧ ∅ ∈
V) → (𝐴 ×
{∅}) ≈ 𝐴) |
| 13 | 3, 11, 12 | sylancl 586 |
. . . . 5
⊢
((1o ≺ 𝐴 ∧ 𝐵 ≼ 𝐴) → (𝐴 × {∅}) ≈ 𝐴) |
| 14 | 13 | ensymd 9027 |
. . . 4
⊢
((1o ≺ 𝐴 ∧ 𝐵 ≼ 𝐴) → 𝐴 ≈ (𝐴 × {∅})) |
| 15 | | domentr 9035 |
. . . 4
⊢ ((𝐵 ≼ 𝐴 ∧ 𝐴 ≈ (𝐴 × {∅})) → 𝐵 ≼ (𝐴 × {∅})) |
| 16 | 10, 14, 15 | syl2anc 584 |
. . 3
⊢
((1o ≺ 𝐴 ∧ 𝐵 ≼ 𝐴) → 𝐵 ≼ (𝐴 × {∅})) |
| 17 | | 1n0 8508 |
. . . 4
⊢
1o ≠ ∅ |
| 18 | | xpsndisj 6163 |
. . . 4
⊢
(1o ≠ ∅ → ((𝐴 × {1o}) ∩ (𝐴 × {∅})) =
∅) |
| 19 | 17, 18 | mp1i 13 |
. . 3
⊢
((1o ≺ 𝐴 ∧ 𝐵 ≼ 𝐴) → ((𝐴 × {1o}) ∩ (𝐴 × {∅})) =
∅) |
| 20 | | undom 9081 |
. . 3
⊢ (((𝐴 ≼ (𝐴 × {1o}) ∧ 𝐵 ≼ (𝐴 × {∅})) ∧ ((𝐴 × {1o}) ∩
(𝐴 × {∅})) =
∅) → (𝐴 ∪
𝐵) ≼ ((𝐴 × {1o}) ∪
(𝐴 ×
{∅}))) |
| 21 | 9, 16, 19, 20 | syl21anc 837 |
. 2
⊢
((1o ≺ 𝐴 ∧ 𝐵 ≼ 𝐴) → (𝐴 ∪ 𝐵) ≼ ((𝐴 × {1o}) ∪ (𝐴 ×
{∅}))) |
| 22 | | sdomentr 9133 |
. . . . 5
⊢
((1o ≺ 𝐴 ∧ 𝐴 ≈ (𝐴 × {1o})) →
1o ≺ (𝐴
× {1o})) |
| 23 | 7, 22 | syldan 591 |
. . . 4
⊢
((1o ≺ 𝐴 ∧ 𝐵 ≼ 𝐴) → 1o ≺ (𝐴 ×
{1o})) |
| 24 | | sdomentr 9133 |
. . . . 5
⊢
((1o ≺ 𝐴 ∧ 𝐴 ≈ (𝐴 × {∅})) → 1o
≺ (𝐴 ×
{∅})) |
| 25 | 14, 24 | syldan 591 |
. . . 4
⊢
((1o ≺ 𝐴 ∧ 𝐵 ≼ 𝐴) → 1o ≺ (𝐴 ×
{∅})) |
| 26 | | unxpdom 9271 |
. . . 4
⊢
((1o ≺ (𝐴 × {1o}) ∧
1o ≺ (𝐴
× {∅})) → ((𝐴 × {1o}) ∪ (𝐴 × {∅})) ≼
((𝐴 ×
{1o}) × (𝐴
× {∅}))) |
| 27 | 23, 25, 26 | syl2anc 584 |
. . 3
⊢
((1o ≺ 𝐴 ∧ 𝐵 ≼ 𝐴) → ((𝐴 × {1o}) ∪ (𝐴 × {∅})) ≼
((𝐴 ×
{1o}) × (𝐴
× {∅}))) |
| 28 | | xpen 9162 |
. . . 4
⊢ (((𝐴 × {1o})
≈ 𝐴 ∧ (𝐴 × {∅}) ≈
𝐴) → ((𝐴 × {1o})
× (𝐴 ×
{∅})) ≈ (𝐴
× 𝐴)) |
| 29 | 6, 13, 28 | syl2anc 584 |
. . 3
⊢
((1o ≺ 𝐴 ∧ 𝐵 ≼ 𝐴) → ((𝐴 × {1o}) × (𝐴 × {∅})) ≈
(𝐴 × 𝐴)) |
| 30 | | domentr 9035 |
. . 3
⊢ ((((𝐴 × {1o}) ∪
(𝐴 × {∅}))
≼ ((𝐴 ×
{1o}) × (𝐴
× {∅})) ∧ ((𝐴 × {1o}) × (𝐴 × {∅})) ≈
(𝐴 × 𝐴)) → ((𝐴 × {1o}) ∪ (𝐴 × {∅})) ≼
(𝐴 × 𝐴)) |
| 31 | 27, 29, 30 | syl2anc 584 |
. 2
⊢
((1o ≺ 𝐴 ∧ 𝐵 ≼ 𝐴) → ((𝐴 × {1o}) ∪ (𝐴 × {∅})) ≼
(𝐴 × 𝐴)) |
| 32 | | domtr 9029 |
. 2
⊢ (((𝐴 ∪ 𝐵) ≼ ((𝐴 × {1o}) ∪ (𝐴 × {∅})) ∧
((𝐴 ×
{1o}) ∪ (𝐴
× {∅})) ≼ (𝐴 × 𝐴)) → (𝐴 ∪ 𝐵) ≼ (𝐴 × 𝐴)) |
| 33 | 21, 31, 32 | syl2anc 584 |
1
⊢
((1o ≺ 𝐴 ∧ 𝐵 ≼ 𝐴) → (𝐴 ∪ 𝐵) ≼ (𝐴 × 𝐴)) |