MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unxpdom2 Structured version   Visualization version   GIF version

Theorem unxpdom2 9155
Description: Corollary of unxpdom 9154. (Contributed by NM, 16-Sep-2004.)
Assertion
Ref Expression
unxpdom2 ((1o𝐴𝐵𝐴) → (𝐴𝐵) ≼ (𝐴 × 𝐴))

Proof of Theorem unxpdom2
StepHypRef Expression
1 relsdom 8886 . . . . . . . 8 Rel ≺
21brrelex2i 5678 . . . . . . 7 (1o𝐴𝐴 ∈ V)
32adantr 480 . . . . . 6 ((1o𝐴𝐵𝐴) → 𝐴 ∈ V)
4 1onn 8564 . . . . . 6 1o ∈ ω
5 xpsneng 8986 . . . . . 6 ((𝐴 ∈ V ∧ 1o ∈ ω) → (𝐴 × {1o}) ≈ 𝐴)
63, 4, 5sylancl 586 . . . . 5 ((1o𝐴𝐵𝐴) → (𝐴 × {1o}) ≈ 𝐴)
76ensymd 8938 . . . 4 ((1o𝐴𝐵𝐴) → 𝐴 ≈ (𝐴 × {1o}))
8 endom 8912 . . . 4 (𝐴 ≈ (𝐴 × {1o}) → 𝐴 ≼ (𝐴 × {1o}))
97, 8syl 17 . . 3 ((1o𝐴𝐵𝐴) → 𝐴 ≼ (𝐴 × {1o}))
10 simpr 484 . . . 4 ((1o𝐴𝐵𝐴) → 𝐵𝐴)
11 0ex 5249 . . . . . 6 ∅ ∈ V
12 xpsneng 8986 . . . . . 6 ((𝐴 ∈ V ∧ ∅ ∈ V) → (𝐴 × {∅}) ≈ 𝐴)
133, 11, 12sylancl 586 . . . . 5 ((1o𝐴𝐵𝐴) → (𝐴 × {∅}) ≈ 𝐴)
1413ensymd 8938 . . . 4 ((1o𝐴𝐵𝐴) → 𝐴 ≈ (𝐴 × {∅}))
15 domentr 8946 . . . 4 ((𝐵𝐴𝐴 ≈ (𝐴 × {∅})) → 𝐵 ≼ (𝐴 × {∅}))
1610, 14, 15syl2anc 584 . . 3 ((1o𝐴𝐵𝐴) → 𝐵 ≼ (𝐴 × {∅}))
17 1n0 8412 . . . 4 1o ≠ ∅
18 xpsndisj 6118 . . . 4 (1o ≠ ∅ → ((𝐴 × {1o}) ∩ (𝐴 × {∅})) = ∅)
1917, 18mp1i 13 . . 3 ((1o𝐴𝐵𝐴) → ((𝐴 × {1o}) ∩ (𝐴 × {∅})) = ∅)
20 undom 8989 . . 3 (((𝐴 ≼ (𝐴 × {1o}) ∧ 𝐵 ≼ (𝐴 × {∅})) ∧ ((𝐴 × {1o}) ∩ (𝐴 × {∅})) = ∅) → (𝐴𝐵) ≼ ((𝐴 × {1o}) ∪ (𝐴 × {∅})))
219, 16, 19, 20syl21anc 837 . 2 ((1o𝐴𝐵𝐴) → (𝐴𝐵) ≼ ((𝐴 × {1o}) ∪ (𝐴 × {∅})))
22 sdomentr 9035 . . . . 5 ((1o𝐴𝐴 ≈ (𝐴 × {1o})) → 1o ≺ (𝐴 × {1o}))
237, 22syldan 591 . . . 4 ((1o𝐴𝐵𝐴) → 1o ≺ (𝐴 × {1o}))
24 sdomentr 9035 . . . . 5 ((1o𝐴𝐴 ≈ (𝐴 × {∅})) → 1o ≺ (𝐴 × {∅}))
2514, 24syldan 591 . . . 4 ((1o𝐴𝐵𝐴) → 1o ≺ (𝐴 × {∅}))
26 unxpdom 9154 . . . 4 ((1o ≺ (𝐴 × {1o}) ∧ 1o ≺ (𝐴 × {∅})) → ((𝐴 × {1o}) ∪ (𝐴 × {∅})) ≼ ((𝐴 × {1o}) × (𝐴 × {∅})))
2723, 25, 26syl2anc 584 . . 3 ((1o𝐴𝐵𝐴) → ((𝐴 × {1o}) ∪ (𝐴 × {∅})) ≼ ((𝐴 × {1o}) × (𝐴 × {∅})))
28 xpen 9064 . . . 4 (((𝐴 × {1o}) ≈ 𝐴 ∧ (𝐴 × {∅}) ≈ 𝐴) → ((𝐴 × {1o}) × (𝐴 × {∅})) ≈ (𝐴 × 𝐴))
296, 13, 28syl2anc 584 . . 3 ((1o𝐴𝐵𝐴) → ((𝐴 × {1o}) × (𝐴 × {∅})) ≈ (𝐴 × 𝐴))
30 domentr 8946 . . 3 ((((𝐴 × {1o}) ∪ (𝐴 × {∅})) ≼ ((𝐴 × {1o}) × (𝐴 × {∅})) ∧ ((𝐴 × {1o}) × (𝐴 × {∅})) ≈ (𝐴 × 𝐴)) → ((𝐴 × {1o}) ∪ (𝐴 × {∅})) ≼ (𝐴 × 𝐴))
3127, 29, 30syl2anc 584 . 2 ((1o𝐴𝐵𝐴) → ((𝐴 × {1o}) ∪ (𝐴 × {∅})) ≼ (𝐴 × 𝐴))
32 domtr 8940 . 2 (((𝐴𝐵) ≼ ((𝐴 × {1o}) ∪ (𝐴 × {∅})) ∧ ((𝐴 × {1o}) ∪ (𝐴 × {∅})) ≼ (𝐴 × 𝐴)) → (𝐴𝐵) ≼ (𝐴 × 𝐴))
3321, 31, 32syl2anc 584 1 ((1o𝐴𝐵𝐴) → (𝐴𝐵) ≼ (𝐴 × 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wne 2929  Vcvv 3437  cun 3896  cin 3897  c0 4282  {csn 4577   class class class wbr 5095   × cxp 5619  ωcom 7805  1oc1o 8387  cen 8876  cdom 8877  csdm 8878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-om 7806  df-1st 7930  df-2nd 7931  df-1o 8394  df-2o 8395  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator