MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unxpdom2 Structured version   Visualization version   GIF version

Theorem unxpdom2 9031
Description: Corollary of unxpdom 9030. (Contributed by NM, 16-Sep-2004.)
Assertion
Ref Expression
unxpdom2 ((1o𝐴𝐵𝐴) → (𝐴𝐵) ≼ (𝐴 × 𝐴))

Proof of Theorem unxpdom2
StepHypRef Expression
1 relsdom 8740 . . . . . . . 8 Rel ≺
21brrelex2i 5644 . . . . . . 7 (1o𝐴𝐴 ∈ V)
32adantr 481 . . . . . 6 ((1o𝐴𝐵𝐴) → 𝐴 ∈ V)
4 1onn 8470 . . . . . 6 1o ∈ ω
5 xpsneng 8843 . . . . . 6 ((𝐴 ∈ V ∧ 1o ∈ ω) → (𝐴 × {1o}) ≈ 𝐴)
63, 4, 5sylancl 586 . . . . 5 ((1o𝐴𝐵𝐴) → (𝐴 × {1o}) ≈ 𝐴)
76ensymd 8791 . . . 4 ((1o𝐴𝐵𝐴) → 𝐴 ≈ (𝐴 × {1o}))
8 endom 8767 . . . 4 (𝐴 ≈ (𝐴 × {1o}) → 𝐴 ≼ (𝐴 × {1o}))
97, 8syl 17 . . 3 ((1o𝐴𝐵𝐴) → 𝐴 ≼ (𝐴 × {1o}))
10 simpr 485 . . . 4 ((1o𝐴𝐵𝐴) → 𝐵𝐴)
11 0ex 5231 . . . . . 6 ∅ ∈ V
12 xpsneng 8843 . . . . . 6 ((𝐴 ∈ V ∧ ∅ ∈ V) → (𝐴 × {∅}) ≈ 𝐴)
133, 11, 12sylancl 586 . . . . 5 ((1o𝐴𝐵𝐴) → (𝐴 × {∅}) ≈ 𝐴)
1413ensymd 8791 . . . 4 ((1o𝐴𝐵𝐴) → 𝐴 ≈ (𝐴 × {∅}))
15 domentr 8799 . . . 4 ((𝐵𝐴𝐴 ≈ (𝐴 × {∅})) → 𝐵 ≼ (𝐴 × {∅}))
1610, 14, 15syl2anc 584 . . 3 ((1o𝐴𝐵𝐴) → 𝐵 ≼ (𝐴 × {∅}))
17 1n0 8318 . . . 4 1o ≠ ∅
18 xpsndisj 6066 . . . 4 (1o ≠ ∅ → ((𝐴 × {1o}) ∩ (𝐴 × {∅})) = ∅)
1917, 18mp1i 13 . . 3 ((1o𝐴𝐵𝐴) → ((𝐴 × {1o}) ∩ (𝐴 × {∅})) = ∅)
20 undom 8846 . . 3 (((𝐴 ≼ (𝐴 × {1o}) ∧ 𝐵 ≼ (𝐴 × {∅})) ∧ ((𝐴 × {1o}) ∩ (𝐴 × {∅})) = ∅) → (𝐴𝐵) ≼ ((𝐴 × {1o}) ∪ (𝐴 × {∅})))
219, 16, 19, 20syl21anc 835 . 2 ((1o𝐴𝐵𝐴) → (𝐴𝐵) ≼ ((𝐴 × {1o}) ∪ (𝐴 × {∅})))
22 sdomentr 8898 . . . . 5 ((1o𝐴𝐴 ≈ (𝐴 × {1o})) → 1o ≺ (𝐴 × {1o}))
237, 22syldan 591 . . . 4 ((1o𝐴𝐵𝐴) → 1o ≺ (𝐴 × {1o}))
24 sdomentr 8898 . . . . 5 ((1o𝐴𝐴 ≈ (𝐴 × {∅})) → 1o ≺ (𝐴 × {∅}))
2514, 24syldan 591 . . . 4 ((1o𝐴𝐵𝐴) → 1o ≺ (𝐴 × {∅}))
26 unxpdom 9030 . . . 4 ((1o ≺ (𝐴 × {1o}) ∧ 1o ≺ (𝐴 × {∅})) → ((𝐴 × {1o}) ∪ (𝐴 × {∅})) ≼ ((𝐴 × {1o}) × (𝐴 × {∅})))
2723, 25, 26syl2anc 584 . . 3 ((1o𝐴𝐵𝐴) → ((𝐴 × {1o}) ∪ (𝐴 × {∅})) ≼ ((𝐴 × {1o}) × (𝐴 × {∅})))
28 xpen 8927 . . . 4 (((𝐴 × {1o}) ≈ 𝐴 ∧ (𝐴 × {∅}) ≈ 𝐴) → ((𝐴 × {1o}) × (𝐴 × {∅})) ≈ (𝐴 × 𝐴))
296, 13, 28syl2anc 584 . . 3 ((1o𝐴𝐵𝐴) → ((𝐴 × {1o}) × (𝐴 × {∅})) ≈ (𝐴 × 𝐴))
30 domentr 8799 . . 3 ((((𝐴 × {1o}) ∪ (𝐴 × {∅})) ≼ ((𝐴 × {1o}) × (𝐴 × {∅})) ∧ ((𝐴 × {1o}) × (𝐴 × {∅})) ≈ (𝐴 × 𝐴)) → ((𝐴 × {1o}) ∪ (𝐴 × {∅})) ≼ (𝐴 × 𝐴))
3127, 29, 30syl2anc 584 . 2 ((1o𝐴𝐵𝐴) → ((𝐴 × {1o}) ∪ (𝐴 × {∅})) ≼ (𝐴 × 𝐴))
32 domtr 8793 . 2 (((𝐴𝐵) ≼ ((𝐴 × {1o}) ∪ (𝐴 × {∅})) ∧ ((𝐴 × {1o}) ∪ (𝐴 × {∅})) ≼ (𝐴 × 𝐴)) → (𝐴𝐵) ≼ (𝐴 × 𝐴))
3321, 31, 32syl2anc 584 1 ((1o𝐴𝐵𝐴) → (𝐴𝐵) ≼ (𝐴 × 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wne 2943  Vcvv 3432  cun 3885  cin 3886  c0 4256  {csn 4561   class class class wbr 5074   × cxp 5587  ωcom 7712  1oc1o 8290  cen 8730  cdom 8731  csdm 8732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-om 7713  df-1st 7831  df-2nd 7832  df-1o 8297  df-2o 8298  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator